Zeitschrift:	Archives des sciences [1948-1980]
Herausgeber:	Société de Physique et d'Histoire Naturelle de Genève
Band:	13 (1960)
Heft:	9: Colloque Ampère
Artikel:	Nuclear quadrupole effects in spinels (Mg Al2 04)
Autor:	Brun, E. / Hafner, St. / Hartmann, P.
DOI:	https://doi.org/10.5169/seals-738610

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 05.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nuclear Quadrupole Effects in Spinels (Mg $A1_2 0_4$)

by E. Brun^{*a*}), St. HAFNER^{*b*}), and P. HARTMANN^{*a*})

a) Physik Institut der Universität, Zürich

b) Institut für Kristallogr. und Petrogr. der E.T.H., Zürich

The negative oxygen ions in a spinel (Mg Al₂ O₄) form an almost closepacked cubic structure. The positive metal ions Mg ⁺² and Al ⁺³ are located at various interstices between the O ⁻² ions. There are tetrahedral and octahedral interstices with four and six O ⁻² nearest neighbours, respectively. The point symmetry of a tetrahedral site is cubic (T_d) that of an octahedral site is rhomboedric (D_{3d}).

The magnetic resonance of Al²⁷ with I = 5/2, $\mu = + 3.6385$ n.m. and $Q = 0.149 \times 10^{-24}$ cm² was studied in a magnetic field of approximately 8000 Gauss in various naturally and artificially grown single crystals [1]. The resonance signals observed show typical electric quadrupole effects such as appearance and orientation dependence of satellites and second-order shifts of central lines [2, 3]. Carefully investigated rotation patterns and measured relative intensities of the lines yielded the following results:

a) In natural crystals the strong lines (including satellites and central lines) can be grouped into four systems of five lines each. From the angular dependence one can conclude that these systems of lines are due to Al^{27} nuclei at octahedral sites. Furthermore, the crystalline field at such a site shows rotational symmetry along one of the four body diagonals of the unit cell e.g. along the [111] direction in accordance with the point symmetry D_{3d} . Approximately 80% of all the Al^{27} in a natural spinel contribute to these signals. Besides the strong lines a weak one appears which shows neither a splitting nor a shift. It can be assigned to Al^{27} nuclei occupying tetrahedral sites with cubic symmetry. Therefore, to a great extent natural spinel approximates "normal spinel structure". The quadrupole coupling constant for Al^{27} at octahedral sites is

$$\frac{e \text{ QV}_{zz}}{h} = 3.72 \pm 0.04 \text{ Mc/sec.}$$

where V_{zz} is the field gradient along the trigonal axis. With the known quadrupole moment of Al²⁷ one finds

$$V_{zz} = 10.32 \times 10^{+16} \text{ Volt/cm}^2$$
 .

Under the assumption of purely ionic structure (point charge model) of spinel, V_{zz} can be calculated from the following formula given by Bersohn [4]

$$V_{zz, cal.} = (1 - \gamma_{\infty}) \sum_{j} e_{j} \sum_{i} \frac{3 z_{ij}^{2} - r_{ij}^{2}}{r_{ij} 5}$$

where $\gamma_{zz} = -2.59$ is the antishielding factor for Al⁺³. The sum is taken over all the atoms in the crystal of type *j* with which there is associated a charge e_j . In the case of spinel the lattice sum was carried out over approximately 11000 atoms. The value found is

$$V_{zz\ cal} = 2.15 imes 10^{+16} ext{ Volt/cm}^2$$
 .

- b) Spectra taken from synthetic spinels differ appreciably from those of natural ones. No satellites can be seen. Weak central lines appear which show second-order shifts, similar to those in the above mentioned case. An unshifted line of approx. the same intensity as the shifted lines is present. The best explanation of these results follows from an assumption of a disordered cation distribution.
- c) Natural spinels when heated above 900° C and subsequently cooled yielded spectra which resemble those of synthetic spinels. From this it can be concluded that an order-disorder transition takes place in the temperature range of 800° C- 900° C which is in agreement with infrared observations [5]. Annealing a disordered crystal at a temperature of approx. 700° C over a period of two months did lead to a spectrum in agreement with what one would expect from a slightly reordered cation distribution.

REFERENCES

- 1. BRUN, E., St. HAFNER, P. HARTMANN und F. LAVES, Naturwissenschaften Heft 12, S. 277, 1960.
- 2. POUND, R. V., Phys. Rev., 79, 685 (1950).
- 3. VOLKOFF, G. M., Can. J. Physics, 31, 820 (1953).
- 4. BERSOHN, R., J. Chem. Physics, 29, 326 (1958).
- 5. HAFNER, St. und F. LAVES, Fortschr. Mineral, 38 (1960) in print.