Zeitschrift:	Archives des sciences [1948-1980]		
Herausgeber:	Société de Physique et d'Histoire Naturelle de Genève		
Band:	32 (1979)		
Heft:	1-3		
Artikel:	A new occurence of thaumasite near Bodrum, SW Turkey		
Autor:	Piskin, ÖZKAN / Delaloye, Michel		
DOI:	https://doi.org/10.5169/seals-739912		

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 07.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A NEW OCCURENCE OF THAUMASITE NEAR BODRUM, SW TURKEY

BY

Özkan PISKIN¹ and Michel DELALOYE²

ABSTRACT

An occurence of the rare mineral thaumasite in Turkey is described for the first time. It is found at Girelbelen- Bodrum in veins within xenoliths of carbonate rock in dioritic intrusions. It occurs in a sulfide mineral assemblage similar to those of its other occurences. Its optical and X-ray properties agree well with published data. It is believed to have formed at low temperature (< 300° C) from sulfide-rich solutions.

RÉSUMÉ

La thaumasite a été observée pour la première fois en Turquie, dans la région de Girelbelen-Bodrum, dans des fissures de roches d'origine carbonatée, et métamorphisées par des intrusions dioritiques. La paragenèse minérale de caractère sulfuré de la roche mère ressemble à celle qui a été décrite pour les rares affleurements de ce minéral. Les données optiques, roentgénographiques et chimiques du minéral sont présentées et les conditions de formation discutées.

INTRODUCTION

Although rarely found thaumasite (chemical composition $CaSO_4$. $CaCO_3$. $CaSiO_3$ 14H₂O) has been the subject of many studies. It was first reported in 1874 by Gumaelius in sulfide mineralizations at Bjelke, Sweden. It was later observed in similar conditions in Utah, Sweden and Norway. It is also known to occur with zeolites (Dana 1932) in vesicules in basic lavas (New Jersey) and as veinlets in meta-morphosed limestones intruded by granodiorites and monzonites (California).

We have observed thaumasite for the first time in Turkey near the village of Girelbelen (Turgutreis-Bodrum-Mugla). It is found in veins in mineralized rocks of carbonate origin occuring as xenoliths in dioritic rocks. In these veins, which range from several millimeters to a few centimeters in thickness, thaumasite forms radial aggregates, losing its transparency, because of exposure to the atmosphere, and

¹ E. U. Yer Bilimleri Fak., Bornova/Izmir, Turkey.

² Mineralogy Dept., The University, Geneva, Switzerland,

becoming white. The rock containing the thaumasite veins is mineralogically rather complex: monticellite/glaucochroite + idocrase + calcite + scapolite + opaque sulfide minerals.

OPTICAL AND X-RAY DATA

Under the microscope thaumasite is hexagonal, prismatic to acicular in habit, colorless and shows three good cleavages (1000, 0100, 0010). It has parallel extinction, elongation negative and is optically negative. Its indices of refraction are W = 1.507 - 1.509 (± 0.002) E = 1.4678 - 1.4688 (± 0.002) and its birefringance W-E = 0.040.

An X-ray powder diffraction study was made using a Gandolfi 57.5 mm diameter and a Guinier-Hägg 100 mm diameter camera (Cu K α , radiation = 1.540 Å, Ni filter). The thaumasite gave 49 reflexions, the principal ones of which are given in Table 1. The parameters calculated from these values are a = 11.06 Å, c = 10.34 Å, c/a = 0.934.

There is good agreement between these values and those in the literature, given below

a = 10.992 Å, c = 10.311 Å, c/a = 0.938 ASTM a = 11.03 Å, c = 10.40 Å, c/a = 0.943 Wherry (1922) a = 10.90 Å, c = 10.29 Å, c/a = 0.944 Aminoff (1933) a = 10.95 Å, c = 10.30 Å, c/a = 0.941 Welin (1956) a = 10.90 Å, c = 10.29 Å, c/a = 0.944 Font-Altaba (1960)

CONCLUSION

Certain authors have assumed that thaumasite forms in the last stages of mineralization. Others thought that thaumasite, accompanying zeolites in vesicules in basic lavas, would be the product of the reaction of fluids with anhydrite, precipitating calcite and zeolites. Knill (1960) in studying the mineral proposed a structural scheme which was improved by Font-Altaba (1960). A differential thermal analysis of the mineral by the latter showed a loss of weight of 41.9% at 250° C and 50.8% at 330° C and the total loss of H₂O and CO₂ at 300° C. Thereafter, there was no loss of weight between 330° C and 1 000° C; at 950° C the phases anhydrite and larnite were formed.

At Girelbelen, the thaumasite is found in veins in thermally metasomatized carbonate rocks which are composed of monticellite/glaucochroite, scapolite and idocrase. The presence of these minerals in addition to galena-pyrite-chalcopyrite indicates that the metasomatic fluid was essentially rich in silicates and sulfides. However, the absence of the sulfide minerals in the thaumasite veins suggests that

A NEW OCCURENCE OF THAUMASITE NEAR BODRUM, SW TURKEY

this mineral was the product of low temperature sulfide-rich fluids which did not contain any metallic elements. In view of the above and considering the stability fields of the zeolites, it is suggested that the thaumasite at Girelbelen was almost certainly formed below 300° C and probably even below 200° C, there being no notable pressure effects.

TABLE 1

J/I _t d Å	I/I _o d Å	I/I ₁ d Å	I/I _o d Å
Mesured	ASTM	Mesured	ASTM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 2.028 9 1.978 3 1.955 10 1.944 7 1.919 6 1.866 10 1.787 8 1.765 4 1.755 45 1.713 20 1.692 11 1.640 8 1.635	$ \left\{\begin{array}{ccccc} 2 & 2.086 \\ 4 & 2.045 \\ 3 & 2.019 \end{array}\right. $ $ \begin{array}{c} 3 & 1.934 \\ 10 & 1.911 \\ 3 & 1.809 \\ 3 & 1.778 \\ \end{array} $ $ \begin{array}{c} 3 & 1.733 \\ 2 & 1.692 \\ 4 & 1.626 \end{array} $

X-ray powder diffraction data for thaumasite from Girelbelen

BIBLIOGRAPHY

DANA E. S. (1932): A textbook of Mineralogy, John Wiley and Sons, New York, London p. 851. FONT-ALTABA (1960): A thermal study of thaumasite. *Min. Mag.* Vol. 32, p. 567-572. KNILL D. C. (1960): Thaumasite from Co. Down, Northern Ireland. *Min. Mag.* Vol. 32, p. 416-418. WINCHELL A. N. (1967): Elements of Optical Mineralogy. John Wiley and Sons, New York, p. 179.

277