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NEW HAMILTONIANS FOR HIGH-ORDER EQUATIONS
OF THE CALCULUS OF VARIATIONS:

A GENERALIZATION OF THE DORFMAN APPROACH

BY

Olivier de LA GRANDVILLE*

ABSTRACT

Through generalized Hamiltonians, which have a direct economic interpretation, we show that we
can derive in a straightforward way high-order variational equations, as well as the Ostrogradski
equation. The latter is of considerable importance, since it lies at the very heart of mathematical
physics: in particular, it leads to the Laplace and to the Schrodinger equations.

RESUME

L'objet de cet article est de montrer comment on peut definir de nouveaux Hamiltoniens afin de

pouvoir deriver tres simplement les equations d'Euler-Poisson et d'Ostrogradski appartenant au calcul
des variations. L'equation d'Ostrogradski est centrale ä la physique mathematique, car eile conduit aux
equations de Laplace et de Schrodinger.

In a remarkable paper, Robert Dorfman [1] had shown how the maximum

principle could be derived from straightforward economic reasoning, specifically from
capital theory. He had shown, in particular, that differentiating a modified Hamiltonian
both with respect to the state variable and the control variable led directly to the

maximum principle.
In this note we would like to point out that it is possible to extend this method to

obtain important building blocks of the calculus of variations, namely the Euler-Poisson
and the Ostrogradski equations; the latter leads to central results in physics. We will do

so by introducing Hamiltonians of increasing generality, all of which have direct
economic interpretations.

I. From the Dorfman Hamiltonian to the Euter equation

Using Dorfman's notation, recall the problem of finding a control variable x x(t)
which maximizes the functional JJ u(k, x, t) dt where k k(t) is a state variable, under

* University of Geneva, 3 place de l'Universite, CH-1204 Geneva, Switzerland. I wish to extend
to Robert Dorfman my deepest thanks for his extremely useful comments on this paper.
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the constraint k f(k, x, t). One procedure, suggested by Dorfman, is to form a modified
Hamiltonian H* u(k, x, t) + — (Ak); equating to zero the partial derivatives of H* with

dt

respect to x and k will lead to the simplest version of Pontryagin's maximum principle.

Remember also the link existing between the maximum principle and the calculus of
variations, which enables to get in one line the Euler equation. Set the constraint k

f(k, x, t) equal to x, as a particular case. We then have to find k(t) (or k(t)) such that

Jl u(k, k, t)dt is maximized, which is the basic problem of the calculus of variations.

Form H* u(k, x, t) + jt (Ak) u(k, k, t) + kk + Ak. H*k =0 implies uk + X =0;

H* =0 implies uk + A 0 and iik + k 0. Hence we must have uk -^ uk 0, which is

the Euler equation1.

II. Generalizations

This reasoning can be generalized. Let us first introduce some definitions, which
will then be applied to concrete calculus of variations problems.

price of a variable: we define the price of the jth variable of a functional as the

partial derivative of the functional with respect to this variable: that is the rate of
increase of the functional with respect to the variable at any time.

value of a variable: the value of a variable is defined as the price of the variable
times the variable itself.

• value ofa system: we define the value of a system as the total effects of the set of
variables. We shall separate short-term (or direct) effects from long-term (or indirect)
ones. The short-term effect is the integrand of the functional. The long-term effect is the

rate of increase of the value of all variables in the system.

The following table summarizes these definitions.

Concept Definition

• price of a variable

• value of a variable

• short-term effects of a set of variables

• long-term effects of a set of variables

• total effects of a set of variables
value of a system of variables

• partial derivative of the maximum value of the functional with
respect to the variable

• product between the price of the variable and the variable itself

• integrand of the functional

• sum of the time derivatives of the value of each variable
derivative of the sum of the values of the variables

• short-term plus long-term effects of a set of variables integrand
of the functional plus the derivative of the sum of the values of
the variables

1 A deep account of the relationship between the classical calculus of variations and optimal control
theory is given in L. Pontryagin et alu [4], chapter 5. A simpler presentation will be found in I.M.
Gelfand and S.V. Fomin [3], appendix II. The reader unfamiliar with the calculus of variations will
find an excellent introduction in L. Elsgolc [2].
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In order to maximise (or minimise) a functional, we will then introduce a

generalized Hamiltonian which will simply be the equal to the total effects of a set of
variables, and we will maximise (or minimize) this Hamiltonian with respect to each

variable.
As a first example, we will consider functionals depending on high-order

derivatives; we will then tum towards multiple integrals, i.e. functionals involving functions
of severable variables and their partial derivatives up to the nth order.

7. Functionals depending on high-order derivatives

Suppose that we want to find y(x) such that

/a F(x, y,y' y(JK y<n>) dx

is maximized (yM denotes the j'h derivative of the function y(x); by convention we set

y(°) y (x)).

In this problem we define a system of n+1 prices, each corresponding to the n+1

variables y<°K..., y^n>:

A/M -^(j) fa F(x, y, y',.... y<n>) dx.j 0,.... n

The value of each variable, i.e. the product of the unit value of the variable and the

magnitude of the variable, is equal to Aj(x)-y^K

The short-term effects of the set of variables y,..., y<"> is just F (x, y,y',y("K and

the long term effect is ^ j Aj (x)y^F\.

j 0

Hence the value of the system of variables for any x is equal to: Hn F(x, y, y'

y(n)) +ck if A/ (x)y<J>]

j 0

(x, y, y',y<n>) + "x [\y<J+1)+ \ \0)j
j 0 1 ~]

F(x,y,y', ...,y(n)) +A^y'-F A^y +A;y" + A jy'+

+ k} ly(j) + Xj jy(j'n + \jy(j+1> + Xjy
<J> +

Each of the components of {X^) is equal to X^J+>> + A jy^J> : it is therefore made

up of the rate of increase of y^ multiplied by its price, and of the price increase of y^
multiplied by y^ (this latter part corresponds to the "capital gain" in the Dorfman
interpretation of his modified Hamiltonian).

Let us now derive the total value of the system Hn partially with respect to each

variable y, y', y(n) and set each derivative equal to 0. We then have the following
system of n+1 differential equations;



54 new hamiltonians for high-order equations of the calculus of variations:

Hny=Fy + \- 0

Hy Fy + A0 + A 0

(2) H y(j) Fy(jj + \j_I + \} 0

H y(n-l) —Fy(n-I) + A n_2 + A n.]-0

Hy(n) Fy<") + A 0

n
Differentiate each equation Hy c,; =0 (j 0,n) j times with respect to jr. We get:

Fy+ A
0

0

2; Fy-+ k0 + \ 0

(3)

dJlLFjjj + A <J> +A,<J+1> 0
dxfJ) J ~ *

älüLp +\<n> n
(bdn) }'(n) n-I

We can now write, from system (3):

(n)_ d<"> „A n-l~~ dJ") hyM

(n-I)_ d("-D „ rfW
n-2 dJ"'1) '"yfn-l) dx<n> y<")

x(n-2)_ d("-2> r d<n-H d<"> rn-J ' dx<n-2> y("-2> dJf-'F dJn)ty(")

I4J A F ,2 d<"-'+2> „^ ' n-i ^dx(n-i+l) Fy(n-1+1) ^-1+2)^^1-1+2)

+ +MV^r i J,'
dx<n> yf"> J=1 ' dxtn-'+J) y("-'+J)

Hence, the variable A appearing in the first equation of system (3), and which

corresponds to / n in (4), is equal to
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A ' 1 (- I) F

We then get, from the first equation of (J), the Euler-Poisson equation which reads.

F^ji H)ldZ^>=°

2. Functionals defined by multiple integrals

This kind of economic reasoning can be further extended to functionals of the form

J- f Flxt V z." V - fj dxl dx,r
R

1 '

which have a considerable importance in physics, and which can be encountered in

economics as well (for instance in dynamic location problems, or in stochastic
optimization).

In order to get the Ostrogradski formula which sets a first order condition for z(xt,
an) to be an extremal of this functional, let us form a general Dorfman-type

Hamiltonian

"G F'xf -V =x, \1 + £=j ^ (A (x, x„) z(xj -v,,)]

where A (xj} xn) is defined by

d_

it
A <-xi XJ J F(-Xi -v2> v - V dx' dv

R

As before, A can be interpreted as the price of z. This Hamiltonian can conveniently be

written as

n n
HG F[xi x;z;z z ] + z v A +A I z" •*I Kn i =1 b i =/ li

Differentiate HG with respect to z and z z and set the n+J resulting partial
I n

derivatives to zero. We have:

t5) HG= F, + A + + Ar =0
*/ An

HG F, + A 0 i=l,..., n

Differentiate each equation HG 0 with respect to xt (i=l,.... n).
Zx,

We get:

(6)

H — F,+ A, + -t- A 0
z - XI xn

-ä- HG =-$- F7 + A =0 i=l,..., n
L y. A



56 new hamiltonians for high-order equations of the calculus of variations:

System (6) entails the Ostrogradski equation:

i d
(7) Fz- x —Fz =0

z i=l dxt Xj

from which we can obtain the Laplace and the Schrödinger equations.

It is possible to generalize this method to functionals involving functions of n

variables and their partial derivatives up to the m1*1 order. We are then led to a

generalization of both the Euler-Poisson and the Ostrogradski equations. For simplicity,
we will treat the case n m 2. We have to find z that maximizes the functional

ff F(x,, x2; z; zXj, zxj z^, z^Jdxfa,
denoted // F(... )dxjdx2 for short.

D

We introduce a Dorfman-type Hamiltonian as follows: let

A°= ff F(... )dx,dx2
ch D

and M= ff F(... )dx,dx2 ,j 1,2

J

define the marginal contributions to the functional (or the prices) of z, z and z

respectively. A general Hamiltonian can then be written as follows:

(8) H2-2 F(x,, x2; z; zX], zxj zX]Xj, z^, z^) +

2 d „ 2 2dI — [k°z] + Z 2 — [\lzxJ
i =1 axl J =1 i =1 <*xl f

F(... + k°Y z + k°zr + kYz + k°zr +
X1 xl 2 2

+ A I zr + A!zr r + A { zr + A'zr +
X1 X1 XIXI x2 X1 lx2

+ A v,zr„ + A2zr,_ + k2 zr + A2zr rxj 2 1 2 2 2 2 2

(the first superscript in H2 2 refers to the number of variables of z; the second one
indicates the highest order of the derivatives in the functional).

Differentiating H2-2 with respect to z, zx^, z zXlxj' zx]x2< zx2x2> we 8et:

2 2 0 0
(9a) H2/ Fz + \UX]+kx=0

2 2 0 1 0
(9b) H/ Fz + k +kx+kx=0

X1 X1 12
(9c) H2Z2 F +k°+k2x+k2x=0

2 2 12
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(9d) h\2 Fz r
+A'=0

xjxl xjxl

(9e) H2z'\ =FZr r
+k' + \2 0

(9f) H2;2 =FZ +A2 0
X2X2 X2X2

Differentiate (9b) and (9c) with respect to Xj and x2, respectively; differentiate
twice (9d), (9e) and (9f) with respect to Xj, xl and x2, and x2, respectively. We then have

the following system:

do) Fz + \°j + \°2 o

f, VA?<+A*'*<+A^=0

+A"> +A '','2+A»V.'="

^ - +AL +A2 -&/&2 x1x2 X'X2 '*2~

d ^
rr ,2 _ n

*?2 fV2 + a^-°

System (10) yields the fourth-order partial differential equation

Fz--^-Fz - — Fz +^2Fz +z
fa] x\ dx2 2 Ac] *ix!

j 2
(11) Fz +^FZ =0

AcjAC2 xlx2 AC] 2x2

which is a general Ostrogradski equation.

We have thus shown that the Dorfman's modified Hamiltonian approach is

perfectly general: all the fundamental equations of the calculus of variations can be

derived from extensions of that approach.
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