Zeitschrift:	Bulletin de l'Association suisse des électriciens
Herausgeber:	Association suisse des électriciens
Band:	3 (1912)
Heft:	5
Artikel:	Experimentelle Untersuchungen am Quecksilberdampf-Gleichrichter für Wechselstrom
Autor:	Tschudy, W.
DOI:	https://doi.org/10.5169/seals-1056919

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 25.12.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZ. ELEKTROTECHNISCHER VEREIN BULLETIN ASSOCIATION SUISSE DES ÉLECTRICIENS

Erscheint monatlich mit den Jahres-Beilagen "Statistik der Starkstromanlagen der Schweiz" sowie "Jahresheft" und wird unter Mitwirkung einer vom Vorstand des S. E. V. ernannten Redaktionskommission herausgegeben.

Alle den Inhalt des "Bulletin" betreffenden Zuschriften sind zu richten an die

Redaktion: Ing.-Consulent Dr. W. Kummer, Mythenstrasse 15, Zürich II (Telephon 5806)

Alle Zuschriften betreffend Abonnement, Expedition und Inserate sind zu richten an den

Verlag: Fachschriften-Verlag & Buchdruckerei A.-G., Zürich

Bahnhofstrasse 61, Zürich I (Telephon 6741)

III. Jahrgang III^e Année

Bulletin No. 5

Mai 1912

Est publié sous la direction d'une Commission de Rédaction nommée par le Comité de l'A.S.E. Ce bulletin parait mensuellement et comporte comme annexes annuelles la "Statistique des installations électriques à fort courant de la Suisse", ainsi que l'"Annuaire". Toutes les communications concernant la matière du "Bulletin" sont à adresser à la

Rédaction: Ing.-Conseil Dr. W. Kummer

Mythenstrasse 15, Zurich II (Téléphone 5806)

l'éditeur : Fachschriften-Verlag & Buchdruckerei

S.-A., Zurich

Bahnhofstrasse 61, Zurich I (Téléphone 6741)

l'expédition et les insertions sont à adresser à

Toutes les correspondances concernant les abonnements,

Experimentelle Untersuchungen am Quecksilberdampf-Gleichrichter für Wechselstrom.

Von Dr. W. Tschudy, Ingenieur, Zürich.

Der von Cooper-Hewitt in U.-St. Amerika erfundene Quecksilberdampf-Gleichrichter¹), der dazu dient, mittels Wechselstrom pulsierenden Gleichstrom herzustellen, ist in Europa erst neuerdings und zwar zuerst in Deutschland bekannter geworden.

Bereits im Jahre 1892 hatte Arons²) den Quecksilberlichtbogen untersucht und auch eine Quecksilberdampflampe konstruiert. Neun Jahre später entstand die erste brauchbare Quecksilberdampflampe von Cooper-Hewitt. Zweifellos haben die Untersuchungen von Arons viel zu dieser Erfindung beigetragen, die in Amerika immer mehr ausgebildet worden ist.

Die Wirkungsweise des Gleichrichters ist infolge der eigenartigen Konstruktion des Apparates nicht leicht zu verstehen. Dieser Umstand mag dazu beigetragen haben, dass die nun bereits vor 10 Jahren gemachte Erfindung nur einer relativ kleinen Zahl von Ingenieuren bekannt geworden ist. Die Wirkungsweise des Gleichrichters wurde meines Wissens zuerst von Ch. P. Steinmetz³) in äusserst scharfer und anschaulicher Weise erklärt an Hand von gut aufgenommenen Oszillogrammen.

In einer Studie "Alternating current phenomena in the mercuary arc"⁴) behandelt Weintraub in der Hauptsache die Vorgänge bei der Entzündung des Quecksilberlichtbogens, wonach die Hypothese von J. J. Thomson⁵) "dass der Lichtbogen nur dann bestehen kann, wenn die Kathode auf einer derart hohen Temperatur gehalten wird, dass sie lediglich infolge dieser befähigt ist, Elektronen in genügender Menge auszustrahlen", bestätigt zu sein scheint.

Versuche über den Gleichrichter hat Polak⁶) veröffentlicht. Polak führte für die normale Periodenzahl (50) eine Belastungsreihe aus und nahm ferner Oszillogramme auf, die er jedoch nicht analysierte.

¹) Im Folgenden sei der Kürze halber nur vom Gleichrichter gesprochen. ²) Wied. Ann. 47. 1892. ³) Proceed. of the Amer. Inst. of Electr. Eng. 1905. ⁴) Phil. Mag. 1904. ⁵) J. J. Thomson: Elektrizitätsdurchgang in Gasen. ⁶) E. T. Z. 1907.

In neuerer Zeit sind in der Physik-Techn. Reichsanstalt von G. Schulze¹) Versuche mit Gleichrichtern angestellt worden, welche die Arbeitsweise, den Wirkungsgrad und die Lebensdauer von Gleichrichtern betreffen.

G. Schulze gibt für einen Drehstromgleichrichter einen Wirkungsgrad von 92,8 ^o/_o an, allerdings ohne den Verlust in der zum Apparat gehörigen Drosselspule gerechnet.

G. Schulze hat dann ferner Oszillogramme aufgenommen an einem Einphasen- und einem Drehstromgleichrichter; für letztern bestand die Belastung einmal aus Glühlampen und das andere Mal aus Akkumulatoren.

Die Oszillogramme zeigen, dass die Spannungskurve im Gleichstromkreis für beide Fälle nicht stark geändert wird. Ferner wird gezeigt, dass bei Einschaltung einer Drosselspule die Kurve flacher verläuft, als wenn keine Induktion im Gleichstromkreis vorhanden ist.

In einer weitern Arbeit wird vom gleichen Verfasser²) der "Rückstrom" im Gleichrichter gemessen.

Bisher hatte man angenommen, dass der Strom nur in der Richtung Anode-Kathode fliesse und nicht umgekehrt.

Nun hat G. Schulze gefunden, dass in der Richtung Kathode—Anode auch Strom fliesse, allerdings nur von der Grössenordnung 10^{-7} Ampère.

Eine weitere Veröffentlichung über den Gleichrichter ist von K. v. Keller³) gemacht worden, die ausser der Beschreibung der Wirkungsweise des Apparates eine Berechnung des Spannungsteilers enthält.

Ferner stellt er das Verhältnis der Wechselstromspannung zu derjenigen im Gleichstromkreis fest.

Die Arbeit von Hechler⁴) bringt weiter nichts Neues als die Erwähnung von einigen kleinen konstruktiven Abänderungen an Gleichrichtern.

Dagegen ist eine Arbeit von Béla B. Schäfer⁵) von bedeutendem Interesse.

Er führt Versuche an, die er mit einem Gleichrichtergefäss aus Stahl angestellt hat. Die Glasgefässe hatten neben der Gefahr des leichten Zerbrechens den Nachteil, dass sich die Elektrodeneinführung sehr schwierig gestaltete, und man deshalb den Apparat nur bis zu einer Stromstärke von 50 Ampère herstellen konnte.

Durch Anwendung eines Stahlgefässes war es nach Schäfer möglich, eine Nutzleistung von etwa 75 KW zu erzielen. Der Wirkungsgrad ist zu etwa $85^{0/0}$ angegeben, wobei sämtliche Verluste mit eingerechnet sind. Der Spannungsabfall in der Dampfstrecke ist 15 Volt, was übrigens auch in den vorerwähnten Arbeiten verzeichnet ist.

Es war nun von Interesse, den Effektverbrauch im Glaskolben für eine Reihe von Belastungen festzustellen, da in dieser Richtung noch gar keine Messungen vorlagen und letztere für die weitere Entwicklung des Apparates von Bedeutung sein dürften.

Ferner wollte ich den Wirkungsgrad des Gleichrichters mit und ohne Spannungsteiler bestimmen, da die Angaben des Wirkungsgrades des Gleichrichters bei den verschiedenen Autoren nicht übereinstimmten.

Da der Gleichrichter mit einem Spannungsteiler versehen ist, liegt der Gedanke nahe, dass der Gesamtwirkungsgrad sich ändere mit Variation der Periodenzahl. Es wurden deshalb Versuche in dieser Richtung angestellt, wobei jedoch auch in diesem Falle das Hauptinteresse auf das Verhalten des Verbrauches im Glaskolben gerichtet war.

Von den bisherigen Autoren waren, wie schon erwähnt, Kurven mit Hilfe eines Oszillographen aufgenommen worden, die jedoch keiner Analyse unterzogen worden sind. Es wurden deshalb mit Hilfe eines Kontaktapparates Kurven aufgenommen und diese genau analysiert.

Versuchsapparat und Schaltungsschema.

Zu den im Folgenden beschriebenen Versuchen diente ein Einphasen-Gleichrichter der Westinghouse-Elektrizitäts-Aktien-Gesellschaft.

Der Apparatenschild gibt folgende Daten:

Wechselstromspannnung 110 Volt; Gleichstromspannung 120 Volt. Gleichstrom 10,4 Ampère; Periodenzahl des Wechselstromes 50.

¹) E. T. Z. 1909. ²) E. T. Z. 1909. ³) E. T. Z. 1909. ⁴) E. T. Z. 1911. ⁵) E. T. Z. 1911.

Garantiert wird ein Wirkungsgrad von 85%.

Was die Einrichtung des Apparates betrifft, sei hier an Hand der Abbildung 1 kurz Folgendes erwähnt:

Die Wechselstromspannung (P_1) wird durch den Spannungsteiler A B erhöht, damit die zum Entzünden des Lichtbogens nötige Spannung vorhanden ist. Die Enden des Spannungsteilers sind verbunden mit den Anoden C und D, welche aus Graphit bestehen und in dem evakuierten Glaskolben eingeschmolzen sind. Die Kathode E besteht aus Quecksilber und liefert den positiven Pol für den Gleichstrom, der über L nach dem Spannungsmittelpunkt K des Spannungsteilers fliesst.

Die Elektrode F dient zum Entzünden des Lichtbogens und zwar in der Weise, dass der Glaskörper gekippt wird und dadurch das Quecksilber der Kathode und der Elektrode Kontakt macht, der aber sofort wieder unterbrochen wird. Es entsteht ein

Abb. 1. Schaltungsschema des Gleichrichters für Wechselstrom.

kleiner Lichtbogen, worauf dann der Strom von den Anoden zur gemeinsamen Kathode fliesst. Da im Stromzweig CF (siehe Abbildung 1), ein Widerstand G eingeschaltet ist, so wird nach der eingeleiteten Entzündung kein Strom in diesem Leiter fliessen.

In Abbildung 1 ist noch ein Stromkreis punktiert eingezeichnet. Wenn die Belastung aus Akkumulatoren besteht, so muss der Hebel H beim "Anlassen" so gestellt werden, dass der Gleichrichter auf den Widerstand I arbeitet, dann erst wird auf die Akkumulatoren geschaltet.

Im Folgenden sei nun das Schaltungsschema für die Messinstrumente angegeben, das bei der Bestimmung des Wirkungsgrades und des Effektverbrauches im Glaskolben verwendet wurde.

Es sollen mit W Effekte, mit I Effektivströme und mit P Effektivspannungen bezeichnet werden.

A und B seien die Klemmen für Wechselstrom, C und D diejenigen für Gleichstrom (vergl. Abbildung 2).

Die Bedeutung der übrigen Bezeichnungen geht ohne weiteres aus der Abbildung 2 hervor.

Abb. 2. Versuchsanordnung zur Bestimmung des Wirkungsgrades und der Effektverluste des Gleichrichters.

Ueber die verwendeten Instrumente sei Folgendes gesagt:

Der hinter O B eingeführte Wechselstromeffekt W_1 und der ausgegebene Gleichstromeffekt W_3 wurde mit Siemens - Präzisionswattmetern, der vor P Q, resp. P Rherrschende Effekt (W_2 ' und W_2 ") mit Weston-Wattmetern, der Wechselstrom I_1 , der Lichtbogenstrom I_2 , der Gleichstrom I_3 mit Elektrodynamometern; die zwischen A B auftretende Wechselstromspannung P_1 , die zwischen

Anode und Kathode bestehende Spannungsdifferenz P_2 und die Gleichstromspannung P_3 mit elektrostatischen Voltmetern gemessen.

Es ist nun der in den Apparat wirklich eingeführte Wechselstromeffekt:

$$W_1' = W_1 - I_1^2 \cdot r$$

wo $I_1^2 r$ der Effektverlust durch Stromwärme zwischen O A ist; r bedeutet den Widerstand des Leiterstückes I (Abbildung 2).

Der aus dem Apparat hinter den Orten C und D ausgeführte Effekt lässt sich darstellen durch:

$$W_3' = W_3 + \frac{\mathsf{P}_3^2}{r}$$

 W_3 ist der am Wattmeter abgelesene Effekt, P_3 ist die im "Gleichstromkreis" ¹) zwischen C D auftretende Spannung und r der induktionslose Widerstand der Spannungsleitung des Wattmeters.

Der Wirkungsgrad des Gleichrichters ist somit bestimmt durch den Quotienten:

$$\eta_3 = \frac{W_3'}{W_1'}.$$

Zur Bestimmung des Wirkungsgrades des Glaskolbens (Wirkungsgrad ohne Spannungsteiler gerechnet) ist folgende Ueberlegung zu machen:

$$W_{1}' = W_{cu} + W_{Fe} + W_{G} + W_{3}'$$

wo W_{cu} die Kupferverluste²), W_{Fe} die Eisenverluste des Spannungsteilers, W_G den Effektverbrauch im Glaskolben bezeichnet.

Letzterer kann nun aus obiger Beziehung festgestellt werden, indem man setzt:

$$W_{G} = W_{1}' - W_{cu} - W_{Fe} - W_{3}'$$

Nun ist:

$$W_2 = W_1' - W_{cu} - W_{Fe} = W_G + W_3'$$

der in den Glaskolben eingeführte Effekt.

Die folgenden Ausführungen befassen sich nun mit der Angabe der Schaltung zur Messung dieses Effektes.

In Abbildung 3 sind mit i_2' , i_2'' und i_3 die Momentanwerte der Ströme in den be-treffenden Stromzweigen bezeichnet, ferner bedeuten $p_5 - p_6$, $p_1 - p_6$ und $p_6 - p_3$ die Momentanwerte der Spannungsdifferenzen zwischen den bezeichneten Orten.

Somit ist nun:

$$W_{2} = W_{G} + W_{3}' = \frac{1}{T} \int_{0}^{T} [i_{2}' (p_{5} - p_{6}) + i_{2}'' (p_{1} - p_{6}) + i_{3} (p_{6} - p_{3})] dt$$

wenn T die Periodendauer bezeichnet.

Nun ist:
$$i_2' + i_2'' = i_3$$
.

Setzt man an Stelle von i_3 diesen Ausdruck in obige Gleichung, so wird:

$$W_{2} = \frac{1}{T} \int_{0}^{T} \left[i_{2}' \left(p_{5} - p_{6} \right) + i_{2}'' \left(p_{1} - p_{6} \right) + \left(i_{2}' + i_{2}'' \right) \left(p_{6} - p_{3} \right) \right] dt.$$

Multipliziert man den Klammerausdruck aus, so lässt sich dieser vereinfachen und man erhält: Т

$$W_{2} = \frac{1}{T} \int_{0}^{T} \left[i_{2}^{\prime\prime} \left(p_{1} - p_{3} \right) + i_{2}^{\prime} \left(p_{5} - p_{3} \right) \right] dt$$

oder

$$W_{2} = \frac{1}{T} \int_{0}^{T} i_{2}'' (p_{1} - p_{3}) dt + \frac{1}{T} \int_{0}^{T} i_{2}' (p_{5} - p_{3}) dt$$

¹) Es sei im Folgenden immer von Gleichstrom gesprochen, obgleich dies streng genommen nicht der Fall ist (siehe Abbildung 27). ²) Die "zusätzlichen Verluste" des Spannungsteilers sollen nicht weiter verfolgt werden und

sind in die Kupferverluste mit eingerechnet.

Es muss also das eine Wattmeter so geschaltet werden, dass die feste Spule vom Strome i_2 " durchflossen wird und die bewegliche Spule an die Spannungsdifferenz $p_1 - p_3$ gelegt ist. (Siehe Abb. 2 und vergl. Abb. 3).

Das andere Wattmeter wird in der Schaltung so angelegt, dass die feste Spule vom Strome i_2 ' durchflossen wird und die bewegliche Spule an die Spannungsdifferenz $p_5 - p_3$ angelegt ist.

Bezeichnet man mit W_2' und W_2'' die an den beiden Wattmetern abgelesenen Effekte, so ist der in den Glaskolben eingeführte Effekt:

$$W_2 = W_2' - I_2^2 r' + W_2'' - I_2^2 r''.$$

Abb. 3. Zur Erläuterung des Beweises für die Richtigkeit der in Abb. 2 angegebenen Schaltung zur Messung der Effekte W_2' und W_2''

Der Widerstand r' setzt sich zusammen aus dem-

jenigen des Dynamometers und dem Widerstand des Leiterstückes zwischen Wattmeterklemme und der einen Anode des Gleichrichters (siehe Abb. 2); r'' setzt sich nur aus dem Widerstand der Zuleitung zusammen, da der Strom I_2 nur in einem Zweige gemessen wurde (siehe Abb. 2), weil kein Unterschied in Bezug auf die Grösse des Stromes in den beiden Zweigen konstatiert werden konnte.

Nachdem nun dies festgelegt ist, lässt sich der Wirkungsgrad η_2 des Glaskolbens [ohne Spannungsteiler gerechnet] ausdrücken durch:

$$\gamma_{12} = rac{W_3}{W_2' - I_2{}^2} r' + rac{W_3'}{W_2'' - I_2{}^2} r''.$$

Mit $W_3^{(1)}$ wurde der aus dem Apparat ausgeführte Effekt bezeichnet.

Eine weitere wichtige Grösse lässt sich nun ohne weiteres feststellen; nämlich der Effektverbrauch im Glaskolben.

Nach der Gleichung auf Seite 88 unten ist:

$$W_2 = W_G + W_3$$
' oder also $W_G = W_2 - W_3$ ',

weitere Erklärung benötigt.

Es ist selbstverständlich, dass der Effektverbrauch im Glaskolben auch in der Weise bestimmt werden kann, wie in nebenstehender Abbildung gezeichnet ist und die keine

Es ist jedoch der auf Seite 87 angegebenen Schaltung deshalb der Vorzug zu geben, weil man mit Hilfe derselben den Wirkungsgrad des Spannungsteilers allein und den

Um den aus dem Spannungsteiler ausgeführten Effekt

 $W_{s} = W_{2}' + \frac{P_{5}^{2}}{r} + W_{2}'' + \frac{P_{5}^{2}}{r}$

Wirkungsgrad des Glaskolbens bestimmen kann.

zu erhalten, muss geschrieben werden:

wobei W_2 und W_3 ' mit Hilfe der erläuterten Schaltung bestimmt werden können.

Abb. 4. Schaltschema zur direkten Messung des Effektverbrauches im Gefäss.

Es bedeuten W_2' und W_2'' die an den Wattmetern abgelesenen Effekte. P_5 ist die in Abbildung 2 bezeichnete Spannung und r der induktionslose Widerstand der Spannungsleitung des Wattmeters.

Somit lässt sich nun der Wirkungsgrad r_{i1} des Spannungsteilers bestimmen aus:

$$\eta_1 = rac{W_1'}{W_2' + rac{{P_5}^2}{r} + W_2'' + rac{{P_5}^2}{r}}$$

Mit W1' wurde der in den Apparat eingeführte Effekt benannt.

¹) Vergl. S. 88.

Die Effektverluste im Spannungsteiler.

Die Verluste im untersuchten Gleichrichterapparat setzen sich zusammen aus:

- 1. Den Kupfer- und Eisenverlusten im Spannungsteiler,
- 2. dem Effektverbrauch im Glaskolben.

Von diesen Grössen ist letztere die Hauptsache. Wir wollen aber auch kurz auf die Kupfer- und Eisenverluste im Spannungsteiler eingehen.

Die Eisenverluste lassen sich bekanntlich aus dem "Leerlauf" bestimmen, indem man von dem bei "Leerlauf" eingeführten wat

180

160

Effekt die Kupferverluste im Primärkreis abzieht.

In diesem Falle betrug der Widerstand im Primärkreis $r_1 = 0,249 \Omega$, so dass die Kupferverluste vernachlässigt werden konnten.

In Abb. 5 sind einige der bei der Messung erhaltenen Grössen aufgezeichnet.

Bei diesen Versuchen wurde die primäre Spannung P_1 konstant gehalten. W_{Fe} bedeutet die Eisenverluste. P_3 ist die sekundäre Spannung des Spannungsteilers.

Der Verlauf der Eisenverluste bei variabler Periodenzahl ist aus Abbildung 5 zu ersehen.

Für die verschiedenen Periodenzahlen lassen sich die Kupferverluste aus folgender Gleichung übersehen:

Es ist:

510

$$W_1 - I_1^2 r = W_2 + W_{Fe} + W_{cu}$$

dabei ist W_2 der aus dem Spannungsteiler ausgeführte Effekt und W_{cu} die Kupferverluste.

Da die Eisenverluste vorhin bestimmt worden sind, so lassen sich dann aus der eben angeführten Gleichung die Kupferverluste ermitteln.

In Abbildung 5 sind die Kupfer- und Eisenverluste des Spannungsteilers in Funktion der Periodenzahl aufgetragen. Man ersieht daraus, dass die Eisenverluste von 40 Perioden an nach abwärts rasch zunehmen, weil die Induktion im Eisen stark ansteigt. Die Kupferverluste nehmen ab bis zu 33 Perioden, um dann wieder stark anzuwachsen.

Der Einfluss der beiden Verluste lässt sich aus der Kurve $W_{cu} + W_{Fe}$ übersehen.

Die Gesamtverluste im Spannungsteiler nehmen mit kleiner werdender Periodenzahl ab bis zu zirka 38 Perioden; dann bleiben sie annähernd konstant bis zu 33 Perioden und steigen dann rasch an.

Nun lässt sich auch der Verlauf des Wirkungsgrades des Spannungsteilers übersehen.

 $\eta_{\,1} = rac{W_2}{W_2 \,+\, W_{Fe} \,+\, W_{cu}}$

Für konstanten Nutzeffekt W_2 ist γ_{11} eine Funktion von $W_{Fe} + W_{cu}$. Mit abnehmender Periodenzahl nimmt demgemäss der Wirkungsgrad des Spannungsteilers zu, erreicht ein Maximum bei 33 Perioden, um dann im Bereich der kleinern Periodenzahlen wieder abzunehmen.

Die Verhältnisse am Spannungsteiler wären somit klargelegt und es ist nun der Effektverbrauch im Glaskolben zu besprechen.

110

Die Effektverluste im Glaskolben.

In Abbildung 6 sind die Effektverluste $\frac{W_G}{2}$ für die normale Periodenzahl 50 aufgetragen in Funktion des Lichtbogenstromes I_2 . Ferner ist aufgezeichnet die Spannung P_2 .

Hieraus ist ersichtlich, dass mit wachsendem Strome I_2 die Verluste im Glaskolben rasch zunehmen, während sich die Spannung P_2 nur sehr wenig ändert.

Es ist nun von sehr grossem Interesse zu wissen, in welchem Zusammenhang I_2 und und $\frac{W_G}{2}$ zueinander stehen.

Man kann, geleitet von den Ergebnissen, folgenden Ansatz machen:

 $\frac{W_G}{2} = A \cdot I_2^2 + B \cdot I_2$

oder wenn wir mit y die Grösse $\frac{W_G}{2}$ und mit x die Grösse I_2 bezeichnen,

 $y = A x^2 + B x$

wobei A und B zwei aus den Beobachtungen zu bestimmende Konstanten sind, die wir mit Hilfe der Methode der kleinsten Quadrate ermitteln. Es ist somit:

$$A = \frac{\Sigma \ y \ x \ \Sigma \ x^3 - \Sigma \ x^2 \ \Sigma \ y \ x^2}{(\Sigma \ x^3)^2 - \Sigma \ x^2 \ \Sigma \ x^4} \quad \text{und} \ B = \frac{\Sigma \ y \ x^2 \ \Sigma \ x^3 - \Sigma \ y \ x \ \Sigma \ x^4}{(\Sigma \ x^3)^2 - \Sigma \ x^2 \ \Sigma \ x^4} \, .$$

Es sei:

 $P_1 = 110$ Volt und normaler Periodenzahl 50.

Setzt man in erstern Ausdruck die errechneten Grössen ein, so ergibt sich für die Periodenzahl 50:

$$A = \frac{2130.1489 - 105,15913}{(1489)^2 - 204,7.11494} = 0,650.$$

Für *B* erhält man:

$$B = \frac{15913.1489 - 2130.11494}{(1489)^2 - 204,7 \ 11494.} = 5,680.$$

Es wird also:

$$\frac{W_G}{2} = 0,650 I_2^2 + 5,680 I_2.$$

Es sind nun für eine Reihe von Werten für I_2 die Effektverbrauche nach dieser Formel gerechnet worden, um zu prüfen, ob dieser Zusammenhang in Wahrheit besteht.

Trägt man die erhaltenen Grössen in Abbildung 6 auf, so resultiert die punktiert gezeichnete Kurve.

Es sei nun im Folgenden untersucht, ob die Form:

$$\frac{W_G}{2} = A I_2^2 + B I_2$$

für alle Periodenzahlen gilt.

Stellt man in gleicher Weise, wie eben erläutert worden ist, die Gleichung $\frac{W_G}{2} = f(I_2)$

für die verschiedenen Periodenzahlen fest, so ergeben sich die in nebenstehender Tabelle angegebenen Werte der Konstanten A und B für die verschiedenen Periodenzahlen.

Es lässt sich somit feststellen, dass die Gleichung:

$$\frac{W_G}{2} = A I_2^2 + B I_2$$

für alle Periodenzahlen giltig ist, dass sich aber die Konstanten A und B mit der Periodenzahl ändern.

In Abbildung 7 sind die Effektverbrauche im Glaskolben für verschiedene Periodenzahlen in Funktion des Nutzeffektes aufgezeichnet.

Es ist daraus zu ersehen, dass der Effektverbrauch zunächst mit wachsender Belastung fast geradlinig zunimmt, dann aber rasch ansteigt, besonders nachdem die normale Leistung (1050 Watt) überschritten ist.

Bei halber Last also $W_3 = 525$ Watt ist der Effektverbrauch $W_G = 49$ Watt, somit 9,3% vom Nutzeffekt und bei Vollast (1050 Watt) $W_G = 141$ Watt, also 14,4% von der Nutzleistung.

Aus der Abbildung 7 geht weiter hervor, dass W_G mit wachsender Periodenzahl rasch zunimmt. So ist für 26 Perioden und $W_3 = 1050$ Watt, $W_G = 123$ Watt und für 100 Perioden und gleicher Nutzleistung $W_G = 249$ Watt.

Perioden-	A	В		
	2.500			
26	0,523	0,20		
33	0,587	6,60		
40	0,741	5,78		
50	0,650	5,68		
60	0,465	7,06		
70	0,410	7,41		
80	0,348	8,75		
90	0,225	9,57		
100	0,208	9,90		

Abb. 7. Gleichstromspannung P_3 und Effektverlust W_G in Abhängigkeit des nutzbaren Effektes W_n bei konstanter Spannung $P_1 = 110$ Volt und veränderlicher Periodenzahl.

Dieses auffallend grosse Anwachsen des Verbrauches beim Uebergang zu höhern Periodenzahlen ist verständlich, wenn wir die in Abbildung 8 gezeichneten Ströme I_2 in Funktion von W_3 verfolgen.

Für $W_3 = 525$ Watt und normale Periodenzahl ist $I_2 = 2,95$ Ampère, während bei 1050 Watt, $I_2 = 7,00$ Ampère beträgt. Der Strom steigt auf das 2,37 fache, während der Effektverbrauch auf das Doppelte geht. Die Effektverluste nehmen mit wachsender Belastung in grösserm Verhältnis zu als die Stromstärke I_2 . Mit zunehmender Periodenzahl nehmen die Ströme I_2 zu, und deshalb werden auch die Effektverluste im Glaskolben grösser, da nach S. 92

besteht.

$$\frac{W_G}{2} = A I_2^2 + B I_2$$

Der Wirkungsrad η_2 (ohne Spannungsteiler gerechnet), nimmt deshalb für konstanten Nutzeffekt mit wachsender Periodenzahl ab, da

$$\eta_2 = rac{W_3{}^{\prime}}{W_3{}^{\prime} + W_3}$$

und nach dem eben Gesagten W_G zunimmt. Im folgenden Abschnitt können nun, da wir über die einzelnen Verluste orientiert sind, die Wirkungsgrade η_1 , η_2 und η_3 behandelt werden.

Die Wirkungsgrade.

Es bedeutete τ_{11} den Wirkungsgrad des Spannungsteilers, τ_{12} denjenigen des Glaskolbens und τ_{13} den Gesamtwirkungsgrad (vergl. S. 88 und 89).

In Abbildung 9 sind die drei Wirkungsgrade γ_{11} , γ_{12} und γ_{13} für normale Periodenzahl in Funktion des Nutzeffektes aufgezeichnet.

and the particular of the particular of	- W3'	η 1	Aender. in º/o	η_2	Aender. in ⁰ / ₀	η 3	Aender. in ⁰ / ₀	
	525	÷92,0		91,0		82,5		
	1050	80,6	2,6	88,5	2,7	78,3	5,1	

In beigedruckter Tabelle sind die aus der Kurve entnommenen Werte der Wirkungs-

grade für "Halb-" und "Vollast" aufgezeichnet. Für γ_{11} ist eine Abnahme von 2,6% zu konstatieren; γ_{12} nimmt um 2,7% ab und η_3 um 5,1 %.

Auffallend hoch ist der Wirkungsgrad η_2 , so dass die Gleichrichtung an und für sich mit sehr hohem Nutzeffekt arbeitet und in dieser Eigenschaft dem Transformator nahe kommt.

Dadurch, dass ein Spannungsteiler nötig ist, wird der Wirkungsgrad auf 78,3% her-untergedrückt. Auf jeden Fall wäre es möglich, den Wirkungsgrad des Spannungsteilers noch zu verbessern.

Der Gesamtwirkungsgrad η_3 ist kleiner gefunden worden als von den bisherigen Autoren angegeben worden ist. Dazu wäre noch zu bemerken, dass die Kurve der elektromotorischen Kraft des zu den Messungen benutzten Generators fast reine Sinusform hat.

Abb. 9. Wirkungsgrad des Spannungsteilers n_1 sowie Wirkungsgrad n2 (ohne Spannungsteiler gerechnet) und Gesamtwirkungsgrad n3 in Abhängigkeit des nutzbaren Effektes bei konstanter Spannung $P_1 = 110$ Volt und normaler Periodenzahl.

In Abbildung 10 ist die vom Generator aufgenommene *E. M. K.* Kurve aufgezeichnet; Gleichzeitig ist ferner in derselben Abbildung 10 auch die Sinuslinie punktiert eingezeichnet worden. Man ersieht daraus, dass die Kurve der elektromotorischen Kraft nur sehr wenig von der Sinusform abweicht.¹)

Wir werden später sehen, dass die Kurvenform Einfluss hat auf den Wirkungsgrad des Gleichrichters.

Aus der Abbildung 9 ist ferner ersichtlich, dass der Wirkungsgrad τ_{13} bei grösserer als normaler Belastung rasch abfällt; dies ist auch erklärlich, wenn man beachtet, dass die Effektverluste im Glaskolben sehr rasch zunehmen (vergl. Abb. 7), weil eben auch I_2 stärker ansteigt (vergl. Abb. 8) und die Verluste bedingt sind durch die Beziehung:

$$\frac{W_G}{2} = A I_2^2 + B I_2$$

wie auf S. 92 entwickelt worden ist.

Wir wenden uns nun noch einer Grösse zu, die von Interesse ist, nämlich dem Spannungsabfall im Gleichstromkreis.

Der Spannungsabfall im Gleichstromkreis.

In Abbildung 7 ist für die verschiedenen Periodenzahlen die Spannung P_3 im Gleichstromkreis in Funktion des nutzbaren Effektes aufgetragen.

Es ist daraus zu ersehen, dass mit wachsender Belastung die Spannung P_3 abnimmt. Es sei nun für diesen Fall der Begriff des Spannungsabfalles im Gleichstromkreis eingeführt. Es sei darunter verstanden die Abnahme der Spannung P_3 von halber Belastung (525 Watt) bis zu Vollast (1050 Watt).

Der nutzbare Effekt, 525 Watt, entspricht ungefähr der kleinsten zulässigen Belastung (genau 480 Watt), bei welcher der Gleichrichter bei normaler Spannung und Periodenzahl noch funktioniert.

Für normale Periodenzahl (50 Perioden) ist die Spannung $P_3 = 120,7$ Volt, bei 525 Watt, nutzbarem Effekt, und bei 1050 Watt gleich 104,5 Volt. Die Abnahme beträgt 16,3 Volt, oder $13,6^{0}/_{0}$. Der Spannungsabfall ist somit beträchtlich.

Aus der Abbildung 7 ist ferner zu ersehen, dass für konstanten nutzbaren Effekt die Spannung P_3 mit wachsender Periodenzahl abnimmt.

Es wäre nun noch die Frage von Interesse, wie sich der Spannungsabfall mit der Periodenzahl ändert.

Zu diesem Zwecke sind der Abbildung 7 für die verschiedenen Periodenzahlen die Spannungen bei 525 Watt (mit P_3 ' bezeichnet) und diejenigen bei 1050 Watt (P_3 '' genannt) entnommen und tabellarisch zusammengestellt und der Spannungsabfall in Prozenten ausgedrückt.

Aus der Abbildung ist zu ersehen, dass der Spannungsabfall mit grösser werdender Periodenzahl zunimmt.

Während der Spannungsabfall bei 26 Perioden $9,3^{0}/_{0}$ beträgt, ist er bei 100 Perioden bereits auf $28,6^{0}/_{0}$ angewachsen.

In Abbildung 11 ist der Spannungsabfall sowie die Differenz $P_3' - P_3''$ in Funktion der Periodenzahl aufgetragen.

Bis zu 80 Perioden nimmt der Spannungsabfall fast linear mit der Frequenz zu.

In Abbildung 6 ist die Spannung im Lichtbogen P_2 in Funktion der Stromstärke I_2 aufgetragen.

Daraus ist ersichtlich, dass sich die Spannung sehr wenig ändert. Für $I_2 = 2,5$ Ampère hat die Spannung P_2 den Wert 211,0 Volt, während für $I_2 = 9,0$ Ampère $P_2 = 203,8$ Volt ist. Die Abnahme ist somit $3,5^{0}/_{0}$.

Die Kurven in Abbildung 12 veranschaulichen die Abhängigkeit des Effektverbrauches im Glaskolben von der Spannung P_3 bei variabler Periodenzahl.

¹) Die Analyse der Kurve der elektromotorischen Kraft ergibt die Gleichung:

 $e = 142,2 \sin (2 \pi nt - 0^{\circ} 29') + 0,997 \sin (6 \pi nt + 9^{\circ} 30') + 0,341 \sin (10 \pi nt - 9^{\circ} 30').$

eistung (1050 watt) aufgezeichnet und in Abb. 15 in Funktion der Periodenzam aufgeträgen.									
Perioden- zahl	P_1	I_2	<i>I</i> 3	P_3	Spannungs- abfall in ⁰ / ₀	Wa	η_1 in $^0/_0$	η² in º/o	η3 in "/0
26	110,0	6,10	8,75	121,8	9,3	123	86,8	89,5	77,3
33	110,0	6,26	9,12	116,0	10,6	127	89,8	89,3	80,1
40	110,0	6,60	9,60	110,0	11,9	132	89,8	89,0	79,6
50	110,0	6,95	10,15	104,0	13,5	142	89,2	88,5	78,6
60	110,0	7,37	10,80	97,4	15,5	154	88,7	87,0	77,0
70	110,0	7,80	11,50	91,6	17,8	171	88,0	86,0	75,2
80	110,0	8,30	12,30	86,0	19,8	188	87,4	84,5	73,5
90	110,0	8,90	13,40	77,2	23,9	214	85,7	83,0	71,1
100	110,0	9,60	14,70	70,0	28,6	249	84,7	81,5	69,0
			1				1		

Im Folgenden sei nun das Verhalten der wichtigsten Größen für verschiedene Periodenzahl und konstanten Nutzeffekt festgestellt. In nachstehender Tabelle sind die Werte für normale Leistung (1050 Watt) aufgezeichnet und in Abb. 13 in Funktion der Periodenzahl aufgetragen.

Die Ströme I_2 und I_3 sind der Abbildung 8, P_3 und W_G der Abbildung 7 für einen nutzbaren Effekt von 1050 Watt (normale Leistung) entnommen worden.

Das Verhalten des Wirkungsgrades η_{12} (Wirkungsgrad ohne Spannungsteiler gerechn.) geht aus der Abbildung 14 hervor, in welcher η_{12} in Funktion des nutzbaren Effektes aufgetragen ist für verschiedene Periodenzahlen. Die Abbildung zeigt, daß mit kleiner werdender Periodenzahl der Wirkungsgrad η_{12} zunimmt. Entnimmt man dieser Abbildung für einen nutzbaren Effekt von 1050 Watt die Werte für η_{12} , so erhält man die in Tabelle 15 angeführten Zahlen, die in Abbildung 13 in Funktion der Periodenzahl aufgezeichnet sind. In gleicher Weise sind die Werte η_3 für den konstanten Nutzeffekt 1050 Watt gefunden worden und in Tabelle 15 verzeichnet. Die Kurve η_3 in Abbildung 13 zeigt das Verhalten dieses Wirkungsgrades in Funktion der Periodenzahl.

Abb. 12. Der Effektverbrauch W_G in Abhängigkeit der Gleichstromspannung P_3 bei konstanter Spannung $P_1 = 110$ Volt und veränderlicher Periodenzahl.

Das Verhältnis der Ströme I2. und I3 zueinander.

Es sei nun an Hand der Abbildung 13 der Verlauf der einzelnen Größen besprochen: Der Strom I_2 nimmt im Bereiche der Periodenzahlen 26-28 fast geradlinig zu. Die Kurve I_3 verläuft von 26-80 Perioden linear und biegt dann nach oben ab. Um einen Zusammenhang zwischen den Strömen I_2 und I_3 zu finden, wurde in Abbildung 16 I_2 in Funktion von I_3 aufgetragen und zwar für die Periodenzahlen 26, 40, 60, 80 und 100.

Hieraus ergibt sich die Beziehung:

$$I_2 = CI_3$$

wo C eine von der Periodenzahl abhängige Größe ist, deren Werte in Abbildung 16 aufgezeichnet sind.

Der Zusammenhang zwischen I_2 und I_3 lässt sich auch durch die Rechnung ermitteln:

Es ist:
$$i_3 = i_1 + i_2$$
 also $i_3^2 = i_1^2 + i_2^2 + 2i_1i_2$
oder $\frac{1}{T} \int_0^T i_3^2 dt = \frac{1}{T} \int_0^T i_1^2 dt + \frac{1}{T} \int_0^T i_2^2 dt + \frac{2}{T} \int_0^T i_1i_2 dt$
somit $I_3^2 = I_1^2 + I_2^2 + \frac{2}{T} \int_0^T i_1i_2 dt$

Ist nun der zeitliche Verlauf der beiden Ströme so wie das Schema gemäss Abbildung 17 zeigt, so ist für jedes t in der ersten Hälfte der Periode i_1 von einem gewissen Werte aber $i_2 = 0$ und für jedes t in der zweiten Hälfte i_2 von einem gewissen Werte aber $i_1 = 0$; also ist bei solchem Verlauf von i_1 und i_2

$$\int_{0}^{T_{i}} i_{1} i_{2} dt = 0.$$

Somit besteht dann die Relation:

$$I_3^2 = I_1^2 + I_2^2 = 2I_1^2$$
 oder $= 2I_2^2$.

Also

$$I_2 = \frac{1}{\sqrt{2}} = 0,707 I_3.$$

Nun zeigen aber die Beobachtungen das Ergebnis gemäss folgender Zusammenstellung:

Perioden- zahl	26	33	40	50	60	70	80	90	100
Größe C	0,708	0,700	0,694	0,690	0,684	0,680	0,675	0,670	0,668

Die kleinen Abweichungen dieser Werte von der Größe 0,707 rühren davon her, dass sich die Kurven der beiden Lichtbogenströme I_1 und I_2

überdecken und somit $\int_{0} i_{1} i_{2} dt$ nicht null ist, wie in der Rechnung angenommen worden ist. Mit

Abb. 14. Versuchsanordnung zur Bestimmung des Wirkungsgrades und der Effektverluste des Gleichrichters. zunehmender Periodenzahl werden die Überdeckungen der beiden Stromkurven größer, wie aus Abbildung 18 ersichtlich ist. Es muss noch bemerkt werden, dass bei der Aufnahme der Stromkurven für 40 und 70 Perioden, deren Werte in den Abbildungen verzeichnet sind, induktive Belastung war, und $P_1 = 55$ Volt betrug; während die bisher ausgeführten Versuche bei induktionsloser Belastung und $P_1 = 110$ Volt angestellt wurden.

Immerhin lässt sich soviel sagen, dass die Abweichungen der Konstanten C vom berech-

$$\int_{0}^{T} i_1 i_2 dt = 0$$

 $\begin{array}{ccc} & T \\ 0 \\ \hline \\ Abb. 17. \end{array} Die um 180^{\circ} verschobenen \end{array}$

weniger gut zutrifft als bei niederen Periodenzahlen.

Der Gesamtwirkungsgrad τ_{13} erreicht bei 36,5 Perioden sein Maximum mit 79,5 % und nimmt dann mit wachsender PeriodenIlle Année 1912

Watt

160

120

100

80

60

Wa 140

zahl ab, so dass bei 100 Perioden nur noch ein Wirkungsgrad von 69 % besteht. Dass der Wirkungsgrad unterhalb 36,5 Perioden sehr rasch abfällt, liegt daran, dass die Effektverluste im Spannungsteiler sich stark vergrössern (vergl. Seite 90). Der Wirkungsgrad τ_{12} erreicht den grössten Wert von 89,5 %; mit zunehmender Periodenzahl ist eine Abnahme zu konstatieren, so dass bei 100 Perioden τ_{12} nur noch 81,5 % beträgt.

Da der zu den Messungen benützte Generator bei 100 Perioden bereits mit 1500 Umdrehungen/Minuten lief (normale Umdrehungszahl = 740) und eine weitere Steigerung der Umdrehungszahl des Generators zur Erhöhung der Periodenzahl als zu gefährlich erachtet wurde, ist der Versuch, noch grössere Periodenzahlen zu erreichen, an einem Generator mit mehr Polen gemacht worden.

Die Kurve der elektromotorischen Kraft für den letzteren Generator zeigte eine grössere Abweichung von der Sinusform als diejenige des zuerst benützten Generators.

In Abbildung 19 ist die vom Generator aufgenommene Kurve der elektromotorischen

Die in Abb. 20 aufgetragenen Kurven stellen den Effektverbrauch im Glaskolben für die primäre Spannung $P_1 = 110,0$ Volt

und der Periodenzahl 80 dar.

Die eine Kurve ist mit dem achtpoligen Generator und die andere punktiert eingezeichnete Kurve mit dem 16 poligen Generator erhalten worden.

Da die Kurven in Abbildung 20 verschieden verlaufen, musste davon Abstand genommen werden, Messungen mit der 16 poligen Maschine vorzunehmen, da dieselben doch nicht in Beziehung zu den mit dem 8 poligen Generator vorgenommenen Versuchen gebracht werden

Dass der Effektverbrauch im Glaskolben ausserordentlich abhängig ist von der Kurvenform, wird durchaus verständlich, wenn wir das auf Seite 109 Gesagte berücksichtigen.

aufgezeichnet.

Momentanwerte der elektro-

motorischen Kraft für die

verschiedenen Federstellungen

sind in Abb. 19 enthalten,

wobei ferner die Sinuslinie

zur Hälfte punktiert einge-

der elektromotorischen Kraft

nur sehr wenig von einander

differieren¹), (vergl. Abb. 10),

so zeigt doch die Kurve für

den Effektverbrauch im Glas-

Trotzdem die beiden Kurven

kolben für beide Generatoren einen verschiedenen Verlauf (vergl. Abb. 20).

zeichnet ist.

Kraft

Die

Aufnahme der Kurven.

Um die Kurven zuverlässig aufzeichnen und um eine genaue Analyse derselben ausführen zu können, werden dieselben mit Hilfe eines Kontaktapparates aufgenommen.

Es handelt sich um folgende Kurven:

1. Spannungs- und Stromkurve im Wechselstromkreis $[P_1 \text{ und } I_1; \text{ siehe Abb. 21 u. 22}]$ 2. Die Kurven P_2 und I_2 [Abb. 23, 24, 25 und 26] für den Gleichrichter. 3. Die Kurven P_3 und I_3 [Abb. 27] für den nutzbaren Effekt.

Ampère 15 13 - Federeinstellung 64 68 60 80 Rotationsrichtung Abb. 22. Stromkurve im Wechselstromkreis für konstante Spannung $P_1 = 110$ Volt, 50 Perioden und induktionslose Belastung im Gleichstromkreis (7 Glühlampen).

Während der Aufnahme der Kurven ist die primäre Spannung P_1 auf 110,0 Volt konstant gehalten worden. Die Periodenzahl des Wechselstromes war 50 Perioden. Da der bei den Messungen verwendete Generator 8 polig ist, so sind auf der Scheibe $\frac{360^{\circ}}{100}$ – = 90 Winkelgrade einzustellen, um den Verlauf der Kurve während einer Periode zu erhalten.

Für eine Einstellung sind jeweilen 4 Ablesungen gemacht worden; aus den 4 Zahlen wurde dann das Mittel genommen. In der Nähe der Nullpunkte der Kurven wurde die Zahl der Ablesungen auf 10 erhöht und ausserdem die Kontakt-Feder nur um halbe Winkelgrade verstellt.

Im Folgenden sind nun noch die bei der Kurvenaufnahme erhaltenen Werte aufgezeichnet.

Abb. 23. Kurve des Lichtbogenstromes I_2 " und ein Teil der Kurve Lichtbogenstromes I_2 " für konstante Spannung $P_1 = 110$ Volt, 50 Perie und induktionslose Belastung im Gleichstromkreis (7 Glühlampen).

Abb. 25. Veränderlichkeit der Kurve der Anodenspannung $P_{2''}$ bei konstanter Spannung $P_1 = 110$ Volt, 50 Perioden und induktionsloser Belastung im Gleichstromkreis (7 Glühlampen) bis zum Eintritt des stationären Zustandes. Die Punkte der in diesem Zeitpunkte aufgenommenen Kurve sind mit o bezeichnet.

In Abbildung 25 ist ersichtlich, in welcher Weise sich die Spannungskurve P_2 ändert, bis eine stationäre Temperatur im Glaskolben herrscht.

Es wurde zunächst die Spannungskurve P_2 aufgenommen; sie wurde unmittelbar nach dem Einschalten des Gleichrichters abgelesen. Die diesbezgülichen Punkte sind in Abb. 25 mit \odot bezeichnet. Eine Stunde nach dem der Apparat in Betrieb gesetzt worden war, ist die Kurve nochmals aufgezeichnet worden. Die in Abbildung 25 mit \odot bezeichneten Punkte gehören dieser Kurve an; die Zahlenwerte für die bei stationärem Zustande des Apparates aufgenommene Kurve sind ebenfalls aus der Abbildung

wo n die Periodenzahl bezeichnet.

Wird die Zeit T einer Periode eingeführt, so kann, da n. T = 1 ist, folgende Form gewonnen werden:

$$i_t = J_0 + J_1 \sin\left(\frac{2\pi t}{T} + c_1\right) + J_2 \sin\left(\frac{4\pi t}{T} + c_2\right) + \dots$$

Wenn die Kurve symmetrisch ist zur Zeitachse X, (wie z. B. in Abb. 28) so fallen das konstante Glied und die Glieder mit geraden Indizes weg, denn es ist:

$$i_t = -i\left(\frac{T}{2}+t\right)$$

Somit

$$-i_{t} = i_{\left(\frac{T}{2} + t\right)} = J_{0} - J_{1} \sin\left(\frac{2\pi t}{T} + c_{1}\right) + J_{2} \sin\left(\frac{4\pi t}{T} + c_{2}\right) = J_{3} \sin\left(\frac{6\pi t}{T} + c_{3}\right) + \dots$$

Oder

$$2 i_{t} = 2 J_{1} \sin \left(\frac{2 \pi t}{T} + c_{1}\right) + 2 J_{3} \sin \left(\frac{6 \pi t}{T} + c_{3}\right) + \dots$$

Und

$$i_t = J_1 \sin\left(\frac{2\pi t}{T} + c_1\right) + J_3 \sin\left(\frac{6\pi t}{T} + c_3\right) + \dots$$

Nach diesen Gesichtspunkten konnte die Spannungs- und die Stromkurve im Wechselstromkreis (vergl. Abb. 21 und 22) analysiert werden.

Da die Kurven in Abbildung 25 und 26 keinerlei Symmetrie aufweisen, so ist die Spannungskurve durch die Gleichung darzustellen:

$$p_2 = P_0 + P_1 \sin\left(rac{2\,\pi\,t}{T} + c_1
ight) + P_2 \sin\left(rac{4\,\pi\,t}{T} + c_2
ight) + P_3 \sin\left(rac{6\,\pi\,t}{T} + c_3
ight) + \dots$$

Entsprechend lautet die Gleichung für den Strom (Vergl. Abb. 23 und 24). Nimmt die Stromkurve den Verlauf wie sie in Abbildung 29 gezeichnet ist, so besteht:

$$i_t = \frac{i_T}{2} + t.$$

Es ist allgemein:

$$i_t = J_0 + J_1 \sin\left(\frac{2\pi t}{T} + c_1\right) + J_2 \sin\left(\frac{4\pi t}{T} + c_2\right) + J_3 \sin\left(\frac{6\pi t}{T} + c_3\right) + \dots$$

und

$$\frac{i_T}{2} + t = J_0 - J_1 \sin \left(\frac{2\pi t}{T} + c_1\right) + J_2 \sin\left(\frac{4\pi t}{T} + c_2\right) - J_3 \sin\left(\frac{6\pi t}{T} + c_3\right) + \dots$$

Diese beiden angeführten Gleichungen können mit Berücksichtigung der Beziehung $i_t = \frac{i_T}{2} + t$ nur dann bestehen, wenn $J_1 = J_3 = J_5 = 0$, und es kann somit geschrieben werden:

$$i_t = J_0 + J_2 \sin\left(\frac{2 \pi t}{T} + c_2\right) + J_4 \sin\left(\frac{8 \pi t}{T} + c_4\right) + \dots$$

Es fallen also in diesem Falle die Glieder mit ungeraden Indizes weg. Es ist:

$$J_0 = \frac{1}{T} \int_0^T i \, dt$$

Planimetriert man also die Kurve und dividiert durch T in Zentimeter ausgedrückt, so ergibt sich das konstante Glied J_0 der Gleichung. Nach diesen Gesichtspunkten können die Kurven in Abbildung 27 analysiert werden.

Es seien nun die Formeln zur Berechnung der Amplituden und Phasenkonstanten gegeben.

Ist die Stromkurve symmetrisch verlaufend in Bezug auf die Abszissenaxe, wie es in Abbildung 30 gezeichnet ist, so lautet ihre Gleichung:

$$i = J_1 \sin\left(\frac{2\pi t}{T} + c_1\right) + J_3 \sin\left(\frac{6\pi t}{T} + c_3\right) + J_5 \sin\left(\frac{10\pi t}{T} + c_5\right) + \dots$$

Diese kann auch in der Form geschrieben werden:

$$i = J_1 \left[\sin \frac{2\pi t}{T} \cdot \cos c_1 + \cos \frac{2\pi t}{T} \sin c_1 \right] + J_3 \left[\sin \frac{6\pi t}{T} \cos c_3 + \cos \frac{6\pi t}{T} \sin c_3 \right] + \dots$$

oder, wenn man setzt:

$$S_{1} = f_{1} \sin c_{1} \operatorname{und} C_{1} = f_{1} \cos c_{1}, \quad \text{so ist:}$$

$$i = C_{1} \sin \frac{2\pi t}{T} + S_{1} \cos \frac{2\pi t}{T} + C_{3} \sin \frac{6\pi t}{T} + S_{3} \cos \frac{6\pi t}{T} + \ldots$$

Wird nun die Dauer einer Periode T in 2 m = 24 gleiche Teile geteilt und sind die beobachteten Werte i_1 , i_2 usw. in den Teilpunkten aufgetragen (vergl. Abb. 30) und ist ferner $\frac{2 \pi t}{T} = \omega = \frac{360^{\circ}}{24} = 15^{\circ}$ bestimmt, so lassen sich die unbekannten Konstanten C_1 S_1 , C_3 S_3 usw. berechnen durch die Formen:

$$C_1 = \frac{2}{2m} \left[i_1 \sin \omega + i_2 \sin 2 \omega + \dots + i_{2m-1} \sin (2m-1) \omega \right]$$

und

$$S_{1} = \frac{2}{2m} \left[i_{1} \cos \omega + i_{2} \cos 2 \omega + \ldots + i_{2m-1} \sin (2 m - 1) \omega \right].$$

Analog lassen sich C_{3} und S_{3} ermitteln aus:

 $C_{3} = \frac{2}{2 \text{ m}} \left[i_{1} \sin 3 \ \omega + i_{2} \sin 2 \ 3 \ \omega + i_{3} \sin 3 \ 3 \ \omega + \ldots + i_{2 \text{m-1}} \sin 3 \ (2 \ m - 1) \ \omega \right]$

und

 $S_{3} = \frac{2}{2m} \left[i_{1} \cos 3\omega + i_{2} \cos 2 \cdot 3\omega + i_{3} \cos 3 \cdot 3\omega + \ldots + i_{2m-1} \cos 3(2-1)\omega \right].$ Ferner ist:

Abb. 30. Einteilung der Strecke 0-360° der zu analysierenden Kurve in 24 Teile und Errichten der Ordinaten in den erhaltenen Teilpunkten.

Ist die Kurve symmetrisch zur x Achse, so genügt es nur die Halbwelle in Betracht zu ziehen.

Bei den ausgeführten Analysen wurde die ganze Welle in 24 gleiche Teile geteilt und in den Teilpunkten die Ordinaten y_1 , y_2 etc. (siehe Abb. 30) errichtet.

Es sei nun im Folgenden das Resultat der Analyse für die betreffenden Kurven angegeben: Für die Spannung im Wechselstromkreis (effektiver Wert mit P_1 bezeichnet) ergibt sich in Volt ausgedrückt:

 $p_1 = 146,5 \ sin \ (2 \ \pi nt - 4^040') + 23,44 \ sin \ (6 \ \pi nt + \pi - 20^045') + 19,85 \ sin \ (10 \ \pi nt + \pi + 42^035') + 18,87 \ sin \ (14 \ \pi nt - 10^044') + 5,7 \ sin \ (18 \ \pi nt - 6^042') + 3,86 \ sin \ (22 \ \pi nt + 62^033').$

Für den Strom im Wechselstromkreis (effektiver Wert mit I_1 bezeichnet) ergibt sich in Ampère ausgedrückt:

 $i_1 = 15,80 \sin (2 \pi nt + 4^{\circ}00') + 1,027 \sin (6 \pi nt - 71^{\circ}24') + 0,134 \sin (10 \pi nt - 24^{\circ}05')$

+ 0,202 sin $(14 \pi nt - 71^{\circ}42')$ + 0,336 sin $(18 \pi nt + \pi - 13^{\circ}10')$ + 0,200 sin $(22 \pi nt - 34^{\circ}27')$.

Für die Spannung im Lichtbogen (effektiver Wert mit P_2 " bezeichnet) (siehe Abb. 25) ergibt sich in Volt ausgedrückt:

 $p_{2} = 115,1 + 221,2 \sin (2 \pi nt + \pi - 11^{\circ}51') + 136,5 \sin (4 \pi nt + \pi + 70^{\circ}20') + 50,0 \sin (6 \pi nt - 5^{\circ}48') + 34,3 \sin (8 \pi nt + \pi - 20^{\circ}57') + 38,72 \sin (10 \pi nt + \pi + 87^{\circ}33') + 24,9 \sin (12 \pi nt + 27^{\circ}18') + 19,45 \sin (14 \pi nt + \pi - 9^{\circ}18') + 20,15 \sin (16 \pi nt - 67^{\circ}05') + 13,6 \sin (18 \pi nt + 62^{\circ}30') + 17,28 \sin (20 \pi nt + \pi - 9^{\circ}06') + 17,2 \sin (22 \pi nt - 40^{\circ}32).$

Für den Strom im Lichtbogen (effektiver Wert mit I_2 " bezeichnet); (siehe Abb. 23) ergibt sich in Ampère ausgedrückt:

$$\begin{split} i_2 &= 3,58 + 5,17 \sin (2 \ \pi nt - 31^{\circ}29') + 1,59 \sin (4 \ \pi nt + \pi + 17^{\circ}33') + 0,374 \sin (6 \ \pi nt - 38^{\circ}32') \\ &+ 0,108 \sin (8 \ \pi nt + \pi - 31^{\circ}55') + 0,183 \sin (10 \ \pi nt + 43^{\circ}59') + 0,045 \sin (12 \ \pi nt - 19^{\circ}23') \\ &+ 0,105 \sin (14 \ \pi nt + \pi - 5^{\circ}19') + 0,068 \sin (16 \ \pi nt + \pi + 72^{\circ}08') + 0,0581 \sin (18 \ \pi nt + 33^{\circ}42') \\ &+ 0,017 \sin (20 \ \pi nt + \pi + 20^{\circ}23') + 0,013 \sin (22 \ \pi nt - 52^{\circ}35'). \end{split}$$

Für die Spannungskurve im Gleichstromkreis (effektiver Wert mit P_3 bezeichnet) ergibt sich in Volt ausgedrückt:

 $p_3 = 102,7 + 44,7 \sin (4 \pi nt - 77^{\circ}22') + 2,23 \sin (8 \pi nt - 58^{\circ}58') + 2,32 \sin (12 \pi nt + \pi + 53^{\circ}28') + 1,62 \sin (16 \pi nt + 69^{\circ}09') + 12,02 \sin (20 \pi nt + 26^{\circ}50').$

Für die Stromkurve im Gleichstromkreis (effektiver Wert mit I_3 bezeichnet) ergibt sich in Ampère ausgedrückt:

 $i_3 = 7,07 + 3,008 \sin (4 \pi nt - 78^{\circ}25') + 0,182 \sin (8 \pi nt - 56^{\circ}33') + 0,157 \sin (12 \pi nt + \pi + 66^{\circ}10') + 0,096 \sin (16 \pi nt + \pi + 85^{\circ}11') + 0,197 \sin (20 \pi nt - 24^{\circ}58').$

Von besonderm Interesse sind nun Spannungs- und Stromkurven im Lichtbogen. — Es ist die Hälfte des Verbrauches im Glaskolben dargestellt durch die Beziehung:

$$\frac{W_G}{2}=\frac{1}{T}\int_0^T p_2 i_2 dt,$$

wenn T die Periodendauer, p_2 der Momentanwert der Lichtbogenspannung und i_2 derjenige des Lichtbogenstromes bedeutet.

Hat nun die Spannung die Form:

$$p_2 = P_0' + \Sigma P_m'$$
 sin. m. $2 \pi nt$

und besteht ferner für i_2 der Ausdruck:

$$i_2 = J_0' + \Sigma J_k' \, sin. \, (k. \, 2 \, \pi nt \, - \, \alpha_k'),$$

so ist der Effekt:

 $\frac{W_G}{2} = \frac{1}{T} \int_0^t \left[J_0' + \Sigma J_k' \sin (k \ 2 \pi nt - a_k') \right] \left[P_0' + \Sigma P_m' \sin m \ 2 \pi nt \right] dt.$

wo k und m verschieden voneinander sein mögen.

Oder:

$$\frac{W_G}{2} = \frac{1}{T} \int_0^t [J_0' P_0' + J_0' \Sigma P_m' \sin . m . 2 \pi nt + P_0' \Sigma J_k' \sin (k . 2 \pi nt - a_k') + \Sigma J_k' \Sigma P_m' \sin (k . 2 \pi nt - a_k') \sin . m . 2 \pi nt] dt.$$

Es ist nun:

$$\frac{1}{T} \int_{0}^{T} J_{0}' \cdot P_{0}' dt = J_{0}' P_{0}' und$$

$$\frac{1}{T} \int_{0}^{T} J_{0}' \Sigma P_{m}' \sin \cdot m \cdot 2 \pi nt dt = \frac{J_{0}' \Sigma P_{m}'}{T} \left[\frac{\cos m \cdot 2 \pi nt}{2 \pi n} \right]_{0}^{T} = 0.$$
Ebenso ist das Integral:
$$\frac{1}{T} \int_{0}^{T} P_{0}' \cdot \Sigma J_{k}' \sin (k \cdot 2 \pi nt - \alpha_{k}') dt = \frac{P_{0}' \Sigma J_{k}'}{T} \left[\frac{\cos (k \cdot 2 \pi nt - \alpha_{k}')}{2 \pi n} \right]_{0}^{T} = 0.$$
Wenn $m \succeq k$, so wird:
$$\frac{1}{T} \int_{0}^{T} \Sigma J_{k}' \sin (k \cdot 2 \pi nt - \alpha_{k}') \Sigma P_{m}' \sin \cdot m \cdot 2 \pi nt \cdot dt = 0;$$
wenn dagegen $m = k$ ist und man die Formel

$$\sin \alpha$$
 . $\sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha + \beta)$

anwendet, so geht der zuletzt betrachtete Integralausdruck über in:

T

$$\frac{\sum J_{k'} \sum P_{k'}}{2 T} \int_{0}^{T} \left[\cos a_{k'} - \cos (2 k \cdot 2 \pi nt - a_{k'}) \right] dt =$$

$$\frac{\sum J_{k'} \sum P_{k'}}{2 T} \left[\int_{0}^{T} \cos a_{k'} dt - \int_{0}^{T} \cos (2 k \cdot 2 \pi nt - a_{k'}) \right] dt =$$

$$\frac{\sum J_{k'} \sum P_{k'}}{2} \cos a_{k'} = 0.$$

Es lässt sich also der Effektverbrauch $\frac{W_G}{2}$ darstellen durch die Beziehung:

$$\frac{W_G}{2} = f_o' P_o' + \frac{\Sigma f_k' \Sigma P_k'}{2} \cos a_k', \text{ wo } k = 1, 2, 3 \text{ etc. ist.}$$

Dieser Ausdruck setzt sich zusammen aus dem konstanten Glied $J_o' P_o'$ und aus einer Reihe von Gliedern, herrührend von den Wellen. J_o' wird z. B. erhalten durch ein Siemens-Instrument, das den Mittelwert anzeigt und ebenso P_o' .

Der Gesamteffekt wird durch ein Wattmeter richtig angezeigt.

In gleicher Weise kann man auch den Ausdruck der Leistung im Gleichstromkreis ableiten.

$$W_3 = \frac{1}{T} \int_0^T i_3 \cdot p_3 \, dt,$$

wo T die Periodendauer, i_3 den Momentanwert des Stromes und p_3 derjenige der Spannung bedeutet.

Ist die Spannung p_3 in der Form vorhanden:

$$p_3 = P_0'' + \Sigma P_k'' \sin k \cdot 2 \pi nt$$
 und
 $i_3 = J_0'' + \Sigma J_k'' \sin (k \cdot 2 \pi nt - a_k''),$

so ist:

Es ist:

$$W_{3} = \frac{1}{T} \int_{0}^{T} \left[J_{0}'' + \Sigma J_{k}'' \sin (k \cdot 2 \pi nt - a_{k}'') \right] \left[P_{0}'' + \Sigma P_{k}'' \sin k \cdot 2 \pi nt \right] dt.$$

Oder

T

$$+ \sum J_{k}'' \sum P_{k}'' \sin (k \cdot 2 \pi nt - a_{k}'') \sin \cdot k \cdot 2 \pi nt dt.$$

Τ

Es ist nun:

T

$$\frac{1}{T}\int_{0}^{}J_{o}^{''}P_{o}^{''}dt = J_{o}^{''}P_{o}^{''}$$
 und

$$\frac{1}{T} \int_{0}^{T} J_{0}^{\prime\prime} \Sigma P_{k}^{\prime\prime} \sin k \cdot 2 \pi nt \, dt = \frac{J_{0}^{\prime\prime} \Sigma P_{k}^{\prime\prime}}{T} \left[\frac{\cos k \cdot 2 \pi nt}{2 \pi n} \right]_{0}^{T} = 0; \text{ fermer ist:}$$

$$\frac{1}{T} \int_{0}^{T} P_{0}^{\prime\prime} \Sigma J_{k}^{\prime\prime} \sin (k \cdot 2 \pi nt - a_{k}^{\prime\prime}) \, dt = \frac{P_{0}^{\prime\prime} \Sigma J_{k}^{\prime\prime}}{T} \left[\cos \frac{(k \cdot 2 \pi nt - a_{k}^{\prime\prime})}{2 \pi n} \right]_{0}^{T} = 0.$$

Der letztere Integralausdruck geht über in die Form, wenn wir wieder die Formel:

$$sin \ a \ sin \ \beta = \frac{1}{2} \cos (a - \beta) - \frac{1}{2} \cos (a + \beta) \text{ anwenden}:$$

$$\Sigma \frac{f_{k''}}{2} \frac{\Sigma}{T} \frac{P_{k''}}{\int_{0}^{T} \left[\cos a_{k''} - \cos (2 \ k \ 2 \ \pi nt - a_{k''}) \right] dt = \frac{\Sigma}{2} \frac{f_{k''}}{2} \frac{\Sigma}{T} \frac{P_{k''}}{2} \cos a_{k''} = 0.$$
Es ist somit:

$$W_3 = J_0^{"} P_0^{"} + \frac{\sum f_k^{"} \sum P_k^{"}}{2} \cos \alpha_k^{"}$$
, wo $k = 2, 4, 6$ etc. ist.

 J_o " P_o " gibt an das Produkt aus dem Mittelwert der Spannung und demjenigen des Stromes im Gleichstromkreis.

Da nun die Kurven analysiert sind, so kann man sich über den Einfluss der Wellen auf die Effekte W_1 , W_2 und W_3 Rechenschaft geben. Bekanntlich ist für symmetrischen Kurvenverlauf, also auch für W_1 gültig:

$$W_1 = \frac{J_1 P_1}{2} \cos a_1 + \frac{J_3 \cdot P_3}{2} \cos a_3 + \frac{J_5 \cdot P_5}{2} \cos a_5 + \ldots$$

Für i_1 war durch die Analyse die Gleichung gefunden worden:

 $i_{1} = 15,8 \sin (\delta + 4^{0}_{00'}) + 1,027 \sin (3 \delta - 71^{\circ}24') + 0,135 \sin (5 \delta - 24^{\circ}50') + 0,202 \sin (7 \delta - 71^{\circ}42') + 0,336 \sin (9 \delta + \pi - 13^{\circ}10') + 0,2 \sin (11 \delta - 34^{\circ}27')$

und für p_1 :

 $p_1 = 146,5 \sin (\delta - 4^{0}40') + 23,44 \sin (3 \ \delta + \pi - 20^{0}45') + 19,85 \sin (5 \ \delta + \pi + 42^{0}35') + 18,87 \sin (7 \ \delta - 10^{0}44') + 5,70 \sin (9 \ \delta - 6^{0}42') + 3,86 \sin (10 \ \delta + 62^{0}33').$ Somit erhält man für den Effekt im Primärkreis:

$$W_1 = rac{15,8.148,2}{2} \cos 8^\circ \cdot 40' + rac{1,027.23,44}{2} \cos (\pi - 50^\circ 39') \ + rac{0,1345.19,85}{2} \cos (\pi - 66^\circ \cdot 40') + rac{0,202.18,87}{2} \cos 60^\circ \cdot 58' \ + rac{0,3360.5,70}{2} \cos 6^\circ \cdot 28' + rac{0,2.3,86}{2} \cos (180^\circ - 83^\circ).$$

¹) Es sei $\delta = 2 \pi nt$.

Rechnet man die einzelnen Ausdrücke aus, so ergibt sich Folgendes:

1.
$$\frac{f_1 \cdot P_1}{2} \cos a_1 = + 1160,$$

2. $\frac{f_7 \cdot P_7}{2} \cos a_7 = + 0,92$
3. $\frac{f_9 \cdot P_9}{2} \cos a_9 = + 0,95$
 $1161,87$
4. $\frac{f_3 \cdot P_3}{2} \cos a_3 = - 7,64$
5. $\frac{f_5 \cdot P_5}{2} \cos a_5 = - 0,52$
6. $\frac{f_{11} \cdot P_{11}}{2} \cos a_4 = - 0,05$
 $- 8,21$

Somit $W_1 = 1153,66$ Watt $\simeq 1154$ Watt.

Ausser dem ersten Posten ist nur noch der Vierte, der vielleicht für die Berechnung der Leistung noch praktisch einen Einfluß hätte. Doch ist der Fehler, den wir durch die Weglassung dieses Ausdruckes begehen nur 0,66 %.

Der Ausdruck für W_1 ist also einfach:

$$W_1 = \frac{f_1 \cdot P_1}{2} \cos a_1.$$

Von grosser Wichtigkeit ist nun die Frage, ob die Oberwellen von Einfluss sind auf den Effektverbrauch im Glaskolben.

Auf Seite 106 ist gefunden worden:

$$\frac{W_{\rm G}}{2} = J_0' \cdot P_0' + \frac{J_1' \cdot P_1'}{2} \cos a_1 + \frac{J_2' \cdot P_2'}{2} \cos a_2 + \frac{J_3' \cdot P_3'}{2} \cos a_3 + \ldots$$

Ferner ist:

$$\begin{split} i_2 &= 3,58 + 5,17 \sin (\delta - 31^{\circ}29') + 1,595 \sin (2 \delta + \pi + 17^{\circ}33') + 0,374 \sin (3 \delta - 38^{\circ}32') \\ &+ 0,108 \sin (4 \delta + \pi - 31^{\circ}55') + 0,183 \sin (5 \delta + \pi + 43^{\circ}59') + 0,045 \sin (6 \delta - 19^{\circ}23') \\ &+ 0,105 \sin (7 \delta + \pi - 5^{\circ}19') + 0,068 \sin (8 \delta + \pi + 72^{\circ}08') + 0,0581 \sin (9 \delta + 30^{\circ}42') \\ &+ 0,0174 \sin (10 \delta + \pi + 20^{\circ}23') + 0,0137 \sin (11 \delta - 52^{\circ}35'). \end{split}$$

Für p_2 war nach Seite 105 gefunden worden:

 $p_{2} = 115,1 + 221,2 \sin (\delta + \pi - 10^{\circ}51') + 136,5 \sin (2 \delta + \pi + 70^{\circ}20') + 50 \sin (3 \delta - 5^{\circ}48')$ $+ 34,3 \sin (4 \delta + \pi + 20^{\circ}57') + 38,72 \sin (5 \delta + \pi + 87^{\circ}33') + 24,9 \sin (6 \delta + 27^{\circ}18')$ $+ 194,5 \sin (7 \delta + \pi - 9^{\circ}18') + 20,15 \sin (8 \delta - 67^{\circ}05') + 13,6 (9 \delta + 62^{\circ}30')$ $+ 17,28 \sin (10 \delta + \pi - 9^{\circ}06') + 17,20 \sin (11 \delta + 2 \pi - 40^{\circ}32).$

Somit wird :

$$\frac{W_{\rm G}}{2} = 3,58 \cdot 115,1 + \frac{5,17 \cdot 221,2}{2} \cos (\pi + 19^{0}38') + \frac{1,595 \cdot 136,5}{2} \cdot \cos 52^{0}47' + \frac{0,374 \cdot 50}{2} \cdot \cos 32^{0}44' + \frac{0,108 \cdot 34,3}{2} \cos 10^{0}58' + \frac{0,183 \cdot 38,72}{2} \cdot \cos 43^{0}34' + \frac{0,045 \cdot 24,9}{2} \cos 46^{0}41' + \frac{0,1050 \cdot 19,45}{2} \cos 3^{0}59' + \frac{0,068 \cdot 20,15}{2} \cos 40^{0}47' + \frac{0,0581 \cdot 13,6}{2} \cos 28^{0}49' + \frac{0,0174 \cdot 17,28}{2} \cos 11^{0}17' + \frac{0,0137 \cdot 17,2}{2} \cos 12^{0}03'.$$

Rechnet man die einzelnen Produkte aus, so erhält man:

1.
$$f_0 \cdot P_0 = 411,3$$

2. $\frac{f_2 \cdot P_2}{2} \cdot \cos a_2 = 65,8$
3. $\frac{f_3 \cdot P_3}{2} \cdot \cos a_3 = 7,7$
4. $\frac{f_4 \cdot P_4}{2} \cdot \cos a_4 = 1,82$
5. $\frac{f_5 \cdot P_5}{2} \cdot \cos a_5 = 2,56$
6. $\frac{f_6 \cdot P_6}{2} \cdot \cos a_6 = 0,38$
7. $\frac{f_7 \cdot P_7}{2} \cdot \cos a_7 = 1,02$
8. $\frac{f_8 \cdot P_8}{2} \cdot \cos a_8 = 0,52$
9. $\frac{f_9 \cdot P_9}{2} \cdot \cos a_9 = 0,35$
10. $\frac{f_0 \cdot P_{10}}{2} \cdot \cos a_{10} = 0,15$
11. $\frac{f_1 \cdot P_{11}}{2} \cdot \cos a_{11} = 0,12$
401,72

12. $\frac{f_1 P_1}{2}$. cos $a_1 = -539,2$

Es ist der mittels Wattmeter gefundene Effektverlust im Glaskolben für einen Stromzweig bei einer Belastung von 7 Glühlampen:

$$\frac{W_{\rm G}}{2} = 48 \text{ Watt.}$$

Der aus Spannungs- und Stromkurve ermittelte Effekt stimmt mit dem gemessenen Wert genau überein.

Aus der Ausrechnung der Leistung $\frac{W_G}{2}$ ersieht man, dass der 1., 2., 3. und 12. Posten von Einfluss auf den Effekt sind. Man kann daraus den wichtigen Schluss ziehen, dass die Kurvenform den Effektverbrauch im Glaskolben beeinflusst und daraus ergibt sich die weitere Konsequenz, dass der Wirkungsgrad abhängig von der Kurvenform ist.

Die 5 Posten, die in der Hauptsache den Effektverbrauch bedingen sind:

1.
$$\frac{f_1 \cdot P_1}{2} \cos a_1 = 539,2$$

2. $f_0 \cdot P_0 = 411,3 = 76,2 \ ^0/_0 \text{ vom } 1.$ Posten
3. $\frac{f_2 \cdot P_2}{2} \cos a_2 = 65,8 = 12,2 \ ^0/_0 \text{ , } 1. \text{ , } \text{,}$
4. $\frac{f_3 \cdot P_3}{2} \cos a_3 = 7,8 = 1,4 \ ^0/_0 \text{ , } 1. \text{ , } \text{,}$
5. $\frac{f_4 \cdot P_4}{2} \cos a_4 = 1,8 = 0,34 \ ^0/_0 \text{ , } 1. \text{ , } \text{,}$

Die andern Glieder kommen nicht in Betracht, da sie sich gegenseitig in ihrer Wirkung fast aufheben.

Man kann somit den Effektverlust im Glaskolben in einem Stromzweig darstellen durch:

$$\frac{W_G}{2} = J_0' \cdot P_0' + \frac{J_1' \cdot P_1'}{2} \cos a_1 + \frac{J_2' \cdot P_2'}{2} \cos a_2 + \frac{J_3' \cdot P_3'}{2} \cos a_3 + \frac{J_4' \cdot P_4'}{2} \cos a_4.$$

Lässt man das letzte Glied weg, so ist der Fehler in Bezug auf den gemessenen Effektverlust von $\frac{W_G}{2} = 48$ Watt, 3,8 %.

Für den Gleichstromkreis besteht nach S. 107, für den Effekt W3 die Beziehung:

$$W_{3} = J_{0}^{\prime\prime} \cdot P_{0}^{\prime\prime} + \frac{J_{2}^{\prime\prime} \cdot P_{2}^{\prime\prime}}{2} \cos a_{2} + \frac{J_{4}^{\prime\prime} \cdot P_{4}^{\prime\prime}}{2} \cos a_{4} + \ldots$$

Die Analyse der Stromkurve hatte ergeben:

- $i_3 = 7,07 + 3,008 \sin (2 \delta 78^{\circ}25') + 0,182 \sin (4 \delta 56^{\circ}33') + 0,157 \sin (6 \delta + \pi + 66^{\circ}10') + 0,0958 \sin (8 \delta + \pi + 85^{\circ}11) + 0,196 \sin (10 \delta + 24^{\circ}58').$ (Vergl. S. 105.) Und für:
- $p_3 = 102,7 + 44,7 \sin (2 \delta 77^{\circ}20') + 2,229 \sin (4 \delta 58^{\circ}58') + 2,32 \sin (6 \delta + \pi + 53^{\circ}28') + 1,625 \sin (8 \delta 69^{\circ}09') + 12,02 \sin (10 \delta 26^{\circ}50') \text{ (vergl. S. 105).}$ Somit ist dann:

$$W_{3} = 7,07 \cdot 102,7 + \frac{3,008 \cdot 44,7}{2} \cdot \cos 1^{0}03' + \frac{0,182 \cdot 2,229}{2} \cdot \cos 2^{0}25' + \frac{0,157 \cdot 2,32}{2} \cdot \cos 12^{0}42' + \frac{0,0958 \cdot 1,625}{2} \cos 25^{0}40' + \frac{0,196 \cdot 12,02}{2} \cos (51^{0}48').$$

Die einzelnen Produkte ausgerechnet, gibt:

1.
$$f_0 \cdot P_0 = 727, 0.$$

2. $\frac{f_2 \cdot P_2}{2} \cos a_2 = 67, 2.$
3. $\frac{f_4 \cdot P_4}{2} \cos a_4 = 0, 20.$
4. $\frac{f_6 \cdot P_6}{2} \cos a_6 = 0, 18.$
5. $\frac{f_8 \cdot P_8}{2} \cos a_8 = 0, 07.$
6. $\frac{f_{10} \cdot P_{10}}{2} \cos a_{10} = 0, 73.$
795, 38. $E_3 \simeq 795$ Watt.

Aus der Zusammenstellung der einzelnen Produkte geht hervor, dass nur noch das 2. Glied die Leistung beeinflusst und zwar beträgt dasselbe $8,5^{\circ}/_{\circ}$ vom Gesamteffekt.

Man kann also für den Effekt schreiben:

$$E_3 = J_0 \cdot P_0 + \frac{J_2 \cdot P_2}{2} \cos \alpha_2.$$

Es sei nun im Folgenden der Effekt, der in einem Zweig des Glaskolbens verbraucht wird, aus der Spannungs- und Stromkurve bestimmt.

Sind die Kurven i_2 und p_2 gegeben, so stellt sich der Effekt dar:

$$\frac{W_{\rm G}}{2}=\frac{1}{T}\int_0^T i_2 p_2 dt.$$

wobei i_2 und p_2 die Momentanwerte bedeuten.

Teilt man also die Strecke T in eine Anzahl gleiche Teile, bestimmt für die einzelnen Teilpunkte i_2 und p_2 und bildet die Produkte, so kann man die so erhaltenen Werte in Funktion der Winkelgrade auftragen. Auf diese Weise ergibt sich die in Fig. 32 aufgezeichnete Kurve.

Wird die Fläche in Abb. 32 planimetriert, so erhält man:

$$W = 418,5 \ cm^2$$
.

Da der Maßstab so gewählt worden ist, dass zwei Millimeter gleich ein Watt sind und T in Zentimetern ausgedrückt 44,5 cm beträgt, so hat der Effektverbrauch im Glaskolben für einen Stromzweig die Grösse:

$$\frac{W_{\rm G}'}{2} = \frac{418,5}{44,5.2} = 47,3$$
 Watt.

Die Kurven I_2 und P_2 sind für eine Belastung des Gleichrichters von 7 Glühlampen aufgenommen worden; vergleicht man nun diesen aus den Kurven berechneten Verbrauch im Glaskolben in einem Stromzweig mit dem gemessenen Effekt (48 Watt; vergl. S. 109), so ergibt sich eine Abweichung von 1,45 °/₀, die. aber im Bereich der Beobachtungsfehler liegt.

Es sollen nun im folgenden Abschnitt die Effektivwerte von P_1 , I_1 , P_2 , I_2 , P_3 und I_3 aus den durch die Analyse der Kurven gewonnenen Gleichungen berechnet werden, um eine Vergleichung mit den experimentell ermittelten Grössen anstellen zu können. Man erhält dadurch eine Kontrolle der Rechnung.

konstante Spannung $P_1 = 110$ Volt, 50 Perioden und induktionslose Belastung (7 Glühlampen).

Bekanntlich ist der Effektivwert des Stromes für eine zur Zeit-Achse symmetrisch verlaufende Kurve :

$$I_1 = \sqrt{\frac{J_1^2 + J_3^2 + J_5^2 + \dots}{2}}$$
.

wo mit J_1 die Amplitude der Grundwelle, mit J_3 , J_5 etc. diejenigen der Oberwellen bezeichnet werden. Entsprechend ist der Ausdruck für den Effektivwert der Spannungsdifferenz:

$$P_1 = \sqrt{\frac{P_1^2 + P_3^2 + P_5^2 + \dots}{2}}$$

Mit Hilfe der auf Seite 109 ermittelten Gleichungen für i_1 und p_1 ergibt sich:

 $I_1 = 11,22$ Ampère; gemessen wurde $I_1 = 11,30$ Ampère

und für

 $P_1 = 108,9$ Volt; gemessen wurde $P_1 = 109,5$ Volt.

Für die folgenden Kurven müssen zunächst die Ausdrücke zur Berechnung der effektiven Spannung und des effektiven Stromes noch abgeleitet werden.

Ist die Gleichung für den Momentanwert des Stromes gegeben in der Form:

 $i = J_0 + J_2 \sin (4 \pi nt - a_2) + J_4 \sin (8 \pi nt - a_4) + \dots$ oder allgemein

 $i = J_0 = \Sigma J_k \sin [k \cdot 2 \pi nt - a_k]$ wo $k = 2, 4, 6 \dots$ etc. ist, so hat das Quadrat des Effektivwertes die Form :

$$T^2 = \frac{1}{T} \int_0^T i^2 dt = \frac{1}{T} \int_0^T [J_0 + \Sigma J_k \sin (k \cdot 2 \pi nt - a_k)]^2 dt.$$

Oder

1

 $I^{2} = \frac{1}{T} \int_{0} \left[J_{0}^{2} + \Sigma J_{k}^{2} \sin^{2} (k \cdot 2 \pi nt - a_{k}) + 2 J_{0} \Sigma J_{k} \sin (k \cdot 2 \pi nt - a_{k}) \right] dt.$ Somit

$$I^{2} = \frac{1}{T} \int_{0}^{T} f_{0}^{2} dt + \frac{\Sigma f_{k}}{T} \int_{0}^{T} sin^{2} (k \ 2 \ \pi nt - a_{k}) dt + \frac{2f_{0} \ \Sigma f_{k}}{T} \int_{0}^{T} sin (k \ 2 \ \pi nt - a_{k}) dt.$$

Es ist nun:

$$\frac{1}{T} \int_0^T J_0^2 dt = J_0^2 \text{ und}$$

$$\frac{\sum f_k^2}{T} \int_0^T \sin^2 (k \cdot 2 \pi nt - a_k) dt = \frac{\sum f_k^2}{2T} \int_0^T \left[\frac{1}{2} - \frac{1}{2} \cos 2 \cdot (k \cdot 2 \pi nt - a_k)\right] dt = \frac{\sum f_k^2}{2}; \text{ fermer}$$

$$\frac{2 J_0 \Sigma J_k}{T} \int_0^t \sin (k \cdot 2 \pi nt - a_k) dt = \frac{2 J_0 \Sigma J_k}{T \cdot k \cdot 2 \pi n} \cos (k \cdot 2 \pi nt - a_k)_0^T = 0.$$

Man gewinnt also für das Quadrat des Effektivwertes der Stromstärke den Ausdruck:

$$I^{2} = J_{0}^{2} + \Sigma \frac{J_{k}^{2}}{2} = J_{0}^{2} + \frac{J_{2}^{2}}{2} + \frac{J_{4}^{2}}{2} + \frac{J_{6}^{2}}{2} + \dots$$

Entsprechend gilt für die Spannungsdifferenz:

$$P^{2} = P_{0}^{2} + \frac{\Sigma P_{k}^{2}}{2} = P_{0}^{2} + \frac{P_{2}^{2}}{2} + \frac{P_{4}^{2}}{2} + \frac{P_{6}^{2}}{2} + \dots$$

Der Effektivwert des Stromes im Gleichstromkreis kann also berechnet werden nach:

$$I_3 = \sqrt{J_0^2 + \frac{J_2^2 + J_4^2 + J_6^2}{2}}$$

Der Effektivwert der Spannung wird erhalten aus der Beziehung:

$$P_{3} = \sqrt{P_{0}^{2} + \frac{P_{2}^{2} + P_{4}^{2} + P_{6}^{2}}{2}}$$

 J_0 und P_0 sind Mittelwerte. Diese Werte können durch ein Siemens-Milliampèremeter (respekt. Millivoltmeter) ermittelt werden. Dagegen werden die Beträge der weitern Glieder nicht angegeben.

Es müssen also im Gleichstromkreis Instrumente genommen werden, die Effektivwerte anzeigen.

Mit Hilfe der auf Seite 109 ermittelten Gleichungen für i_3 und p_3 ergibt sich:

 $I_3 = 7,30$ Ampère; gemessen wurde $I_3 = 7,39$ Ampère,

und für:

$$P_3 = 108,7$$
 Volt; gemessen wurde $P_3 = 109,5$ Volt.

Liegt eine Gleichung vor von der Form:

 $i = J_0 + J_1 \sin (2 \pi nt - \varphi_1) + J_2 \sin (4 \pi nt - \varphi_2) + \ldots$

so ist, wenn der Effektivwert in gleicher Weise abgeleitet wird wie vorhin erörtert wurde:

$$I_2 = \sqrt{J_0^2 + \frac{J_1^2 + J_2^2 + J_3^2 + \dots}{2}}$$

und entsprechend die Spannung:

$$P_2 = \sqrt{P_0^2 + \frac{P_1^2 + P_2^2 + P_3^2 + \dots}{2}}$$

Rechnet man mit Hilfe dieser Formeln unter Benützung der auf Seite 109 angegebenen Gleichungen von i_2 und p_2 die Effektivwerte aus, so ergibt sich:

 $I_2 = 5,27$ Ampère; gemessen wurde $I_2 = 5,32$ Ampère,

und

 $P_2 = 215,0$ Volt; gemessen wurde $P_2 = 213,5$ Volt.

Es ist auch in diesem Falle zu sagen, dass I_2 und P_2 mit Instrumenten zu messen sind, die Effektivwerte angeben; also entweder Dynamometer oder Hitzdrahtinstrumente für den Strom I_2 und elektrostatische Voltmeter oder Hitzdrahtinstrumente für die Spannung P_2 .

Somit ist nun auch mit diesen Erörterungen begründet, warum bei den auf Seite 86-89 angeführten Versuchen die dort erklärten Instrumente benutzt wurden.

Es seien nun noch einige Bemerkungen über den Verlauf der Kurven gemacht. In Abb. 33 ist die Stromkurve I_2 " eingezeichnet. Von der Federstellung 44 bis 20 sind die Momentanwerte null; ganz kleine negative Beträge der Momentanwerte ergeben sich von Stellung 20 bis 11, die jedoch praktisch gar nicht in Betracht kommen, so dass also die Momentanwerte i_2 " von Punkt 44 bis 11 null sind; dies entspricht einem Intervall von 4.33 = 132⁰.

Um die gegenseitige Lage der beiden Ströme I_2 ['] und I_2 ^{''} zu kennzeichnen, ist in Abb. 33 noch ein Teil der Kurve I_2 ['] aufgezeichnet worden.

Die Kurve I_2' beginnt bei der Federstellung 58, während der Momentanwert von I_2'' erst bei 44 null wird (s. Abb. 33).

Von 58 bis 44 oder im Intervall¹) $x = 4 . 14 = 56^{\circ}$ sind für beide Kurven die Momentanwerte von null verschieden. Bei der Federstellung 49,2 ist der Schnittpunkt der beiden Kurven (vergl. Abb. 33). In diesem Punkte ist der Momentanwert 2,3 Ampère.

Über die gegenseitige Verschiebung der beiden Ströme wäre Folgendes zu sagen:

¹) Um den Verlauf der Kurve während einer Periode zu erhalten, sind 90 Winkelgrade an der Kurvenscheibe einzustellen (vergl. Seite 100).

 $I_{2}^{\prime\prime}$ beginnt bei der Federstellung 101, während I_{2}^{\prime} seinen Anfang bei 58 hat (siehe Abb. 33). Die beiden Ströme sind also um $4 \times 43 = 172^{\circ}$ von einander verschoben.

Über den Verlauf der Spannungskurven im Lichtbogen wäre Folgendes zu bemerken: Die Kurve P_2 " (siehe Abb. 25) beginnt bei der Federstellung 102; bis zur Stellung 46,6 also während einem Intervall von $4 \times 55, 4 = 221, 6^0$ sind die Momentanwerte relativ sehr klein; nur in der Nähe der Nullpunkte treten grössere Schwankungen in den Werten auf, sonst sind sie ziemlich konstant, indem sie innerhalb den Grenzen 13 und 14 Volt variabel sind.

Während der Periode, da die Momentanwerte von $I_2^{\prime\prime}$ grösser als null sind, haben diejenigen von $P_2^{\prime\prime}$ nur kleine Beträge (vergl. Abb. 25 und 26). Sobald jedoch die Werte von $I_2^{\prime\prime}$ null werden, weisen die Momentanwerte der Spannungskurve beträchtliche Werte auf; die maximale Grösse ist 502 Volt.

Es ist bereits auf Seite 102 darauf aufmerksam gemacht worden, in welchem Maasse der Maximalwert vom stationären Zustand des Apparates abhängig ist. Dieser Umstand lässt auf jeden Fall darauf schliessen, dass die Kurvenform in hohem Grade von Druck und Temperatur im Glaskolben abhängig ist, und dass dadurch auch der Wirkungsgrad beeinflusst wird.

Die Kurve P_2' verläuft in gleicher Weise wie P_2'' , nur dass zwischen beiden Kurven eine Verschiebung von $4 \times 44, 4 = 177, 6^0$ besteht.

Die in Abbildung 27 gezeichneten Strom- und Spannungskurven im Gleichstromkreis zeigen keine Verschiebung gegeneinander, da die Belastung bei der Kurvenaufnahme induktionslos war.

Die Maxima und Minima der beiden Kurven fallen zusammen.

Der kleinste Momentanwert der Stromkurve ist 3,5 Ampère, während der grösste 9,8 Ampère beträgt. Die Änderung ist also $c. 64^{0}/_{0}$.

Die Momentanwerte der Spannungskurve ändern sich in folgenden Grenzen:

Der minimale Wert ist 53 Volt; das Maximum erreicht einen Betrag von 145 Volt. Der Unterschied ist in diesem Falle etwa $64^{0}/_{0}$.

Zusammenfassung der Ergebnisse.

Die Untersuchung hat gezeigt, dass der Wirkungsgrad η_2 des Gleichrichters (ohne Spannungsteiler gerechnet) von der Periodenzahl stark abhängig ist und zwar in der Weise, dass derselbe von etwa 30 Perioden an mit zunehmender Periodenzahl abnimmt. Dies steht damit in Zusammenhang, dass der Effektverlust im Glaskolben des Gleich-

richters mit Erhöhung der Periodenzahl wächst für dieselbe Nutzleistung. Es ist ferner gezeigt worden, dass die Effektverluste im Spannungsteiler von 100

Perioden bis etwa 35 Perioden abnehmen, dann aber wieder beträchtlich grösser werden, so dass der Wirkungsgrad des Spannungsteilers unterhalb 35 Perioden schlechter wird. Es ist infolgedessen auch der Gesamtwirkungsgrad in diesem Bereich wieder ungünstiger.

Bemerkenswert ist die Tatsache, dass der Wirkungsgrad der Gleichrichtung (ohne Spannungsteiler gerechnet) einen hohen Wert erreicht (bei 26 Perioden $89,5 \, ^{\circ}/_{\circ}$), dass aber durch den Spannungsteiler der Wirkungsgrad um etwa 13 $^{\circ}/_{\circ}$ heruntergedrückt wird.

Der Gleichrichter ist beim Betrieb mit hoher Periodenzahl auch insofern ungünstig, als der Spannungsabfall im Gleichstromkreis mit wachsender Periodenzahl zunimmt, so dass z. B. bei 100 Perioden bereits ein Spannungsabfall von etwa 28,6 % vorhanden ist.

Es hat sich gezeigt, dass der Effektverbrauch im Glaskolben von der Stromstärke I_2 in folgender Weise abhängig ist:

$$\frac{W_{\rm G}}{2} = A I_2^2 + B I_2,$$

wenn $\frac{W_{G}}{2}$ den Effektverlust im Glaskolben für einen Stromzweig, der vom Strome I_{2} durchflossen wird, darstellt, und wenn A und B zwei Konstante sind, deren Grössen mit der Periodenzahl variieren.

Aus der Analyse der Spannungs- und Stromkurven hat sich ergeben, dass der Wirkungsgrad τ_{12} abhängig ist von der Kurvenform, da dieselbe den Effektverbrauch im Glaskolben beeinflusst, wie aus dem abgeleiteten Ausdruck für den Effektverlust zu ersehen war. Es wäre nun noch der Einfluss der Kurvenform auf den Effektverbrauch im Glaskolben näher festzustellen, was aber einer späteren Untersuchung vorbehalten werden soll.

Die äusserst einfache Konstruktion des Quecksilberdampf-Gleichrichters und der günstige Wirkungsgrad dieses Apparates machen es wahrscheinlich, dass letzterer grössere Verbreitung finden wird. Zudem ist dieser Gleichrichter noch sehr entwicklungsfähig und wenn er bis jetzt relativ nur wenig in Anwendung kam, so liegt dies in dem Umstand, dass nur kleine Leistungen erzielt werden konnten, weil die Elektrodeneinführung bei Verwendung von Glasgefässen sich sehr schwierig gestaltete.

Nun ist es Bela B. Schäfer gelungen, wie schon in der Einleitung bemerkt wurde, Stahlgefässe zu verwenden, so dass dann der Gleichrichter für grössere Leistungen verwendet werden kann. Die Gefässe werden durch Wasser gekühlt, sodass dann ein Lichtbogenstrom von etwa 250 Ampère möglich ist.

An Hand der Formel für den Effektverlust in einem Gleichrichtergefäss

$$\frac{W_{\rm G}}{2} = A \ I_2{}^2 + B \ I_2$$

ist ersichtlich, dass für einen Lichtbogenstrom von 250 Ampère beträchtliche Effektverluste auftreten müssen.

Aus dieser Formel ist auch ohne weiteres einzusehen, warum der Wirkungsgrad eines Gleichrichters für denselben nutzbaren Effekt mit wachsender Betriebsspannung grösser wird; denn es wird der Lichtbogenstrom I_2 kleiner und somit auch der Effektverlust.

Wir haben ferner gesehen, dass der Lichtbogenstrom I_2 und der Gleichstrom I_3 in linearem Zusammenhang zueinander stehen, nämlich $I_2 = CI_3$.

Es ist also der Effektverlust im Gefäss vom Gleichstrom I_3 abhängig nach der Gleichung :

$$\frac{W_{\rm G}}{2} = A' I_3^2 + B' I_3$$

Sobald also grosse Ströme im Gleichstromkreis auftreten, werden die Verluste im Gefäss stark anwachsen.

Für die Konstruktion des Gleichrichters wird die Formel für den Effektverlust wesentliche Dienste leisten.

Die Hauptschwierigkeit, die bei Gleichrichtern für grosse Leistungen auftritt, liegt in der Herstellung einer guten Dichtung der Stahlgefässe. Wie weit dies für die praktischen Verhältnisse möglich ist, muss erst durch grössere Versuchsanlagen bestimmt werden, wie dies auch von der Firma Hartmann & Braun gemacht worden ist.

Da der Gleichrichter wegen seiner gedrängten Bauart auch für die elektrische Traktion von Bedeutung werden kann, so ist auch in diesem Falle die Frage von Interesse, wie sich der Apparat für die verschiedenen Periodenzahlen verhält. Wir haben bereits erwähnt, in welcher Weise sich der Wirkungsgrad und die Effektverluste mit Variation der Periodenzahl verhalten.

Was die andern Gleichrichter anbetrifft, die etwa noch praktische Anwendung finden, so wären noch zu nennen: Der elektrolytische Aluminium-Gleichrichter von Grätz, der Relais-Gleichrichter der Firma Koch & Sterzel und der Drehstrom-Gleichrichter der S.S.W. Alle drei Typen sind jedoch nur für kleinere Leistungen brauchbar und finden deshalb etwa Anwendung in Telephonzentralen zum Laden von Akkumulatoren. Der Wirkungsgrad des Aluminium-Gleichrichters ist sehr gering (zirka 60 %) und es ist nach dem jetzigen Stand der Forschung kaum möglich, einen höheren Nutzeffekt zu erzielen. Der Relais-Gleichrichter lässt sich nicht für grössere Leistungen bauen, sein Anwendungsgebiet ist somit beschränkt. Der Drehstrom-Gleichrichter hat eine komplizierte Schaltung und ist bis jetzt nur für kleine Effekte gebaut worden. Demnach zu schliessen, hat der Quecksilberdampf-Gleichrichter die grösste Aussicht, mit den Motor-Generatoren in Konkurrenz zu treten und dadurch sein Anwendungsgebiet zu vergrössern.