Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 20 (1929)

Heft: 16

Artikel: Die Übertragung grosser Leistungen [Fortsetzung und Schluss]

Autor: Keller, Max Leo

DOI: https://doi.org/10.5169/seals-1056825

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 17.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZ. ELEKTROTECHNISCHER VEREIN

BULLETIN

ASSOCIATION SUISSE DES ÉLECTRICIENS

Generalsekretariat des Schweiz. Elektrotechnischen Vereins und des Verbandes Schweizerischer Elektrizitätswerke

REDAKTION Zürich 8, Seefeldstr. 301

Secrétariat général de l'Association Suisse des Electriciens et de l'Union de Centrales Suisses d'électricité

Verlag und Administration { Fachschriften-Verlag & Buchdruckerei A.-G. Zürich 4, Stauffacherquai 36/38

Editeur et Administration

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XX. Jahrgang XXe Année

Bulletin No. 16

August II Août II

Die Uebertragung grosser Leistungen.

(Fortsetzung von S. 506 und Schluss.) Von Max Leo Keller, Ingenieur, Aarau.

621.319(004)+621.311(7)

II. Teil.

Die Grosskraftübertragung Conowingo.

Inhaltsverzeichnis: — Tables des matières:

II. TEIL.

Die Grosskraftübertragung Conowingo.

A. Die Anlagen.

B. Die technischen Daten.

C. Die Kreisdiagramme der 220-kV-Leitung.

D. Die Arbeitsweise der Kraftübertragung.

- Die Betriebsbedingungen.
 Die Strom- und Spannungsverhältnisse bei verschiedenen Belastungen und die Bestimmung der benötigten Synchronkondensatoren.
- E. Die Grenzleistungen.

F. Das Verhalten bei Störungen.

Die Methode der symmetrischen Kompo-

Die Bestimmung der Ströme zum Relais-schutz und zur Schalterwahl und der Einfluss der Reaktanz von Kondensatoren und Transformatoren auf die Stabilität.

G. Besondere Eigenschaften der Conowingo Lei-

H. Bemerkungen zur Wirtschaftlichkeit. Schlussbetrachtung.

Literaturverzeichnis zum II. Teil.

2e PARTIE.

Le transport d'énergie de Conowingo.

A. Les installations.

B. Les données techniques.

C. Les diagrammes circulaires de la ligne à 220 kV.

D. Le fonctionnement du transport d'énergie. Les conditions d'exploitation.

Le courant et la tension sous différentes charges; choix des condensateurs synchrones nécessaires.

E. Les puissances-limites.

F. Les conditions en régime troublé.

La méthode des composantes symétriques.

La détermination des courants pour la protection sélective et pour le choix des interrupteurs; influence de la réactance des condensateurs et transformateurs sur la stabilité.

G. Propriétés particulières de la ligne de Conowingo.

H. Remarques concernant la rentabilité. Considération finale. Bibliographie.

Das nachstehende Ausführungsbeispiel soll einige praktische Anwendungen der gegebenen Theorie zeigen und sie in manchen Punkten, insbesondere nach der betriebstechnischen Seite hin, ergänzen und vervollständigen. Wir wählen dazu das Uebertragungssystem Conowingo der Philadelphia Electric Company.

A. Die Anlagen 29).

Die 220 000 V-Kraftübertragung "Conowingo" ist gegenwärtig die leistungsfähigste Anlage ihrer Art. Diese Leitungen übertragen die im hydroelektrischen

²⁹) Für Beschreibungen von Conowingo s. Literatur 63 bis 67 (S. 544).

Kraftwerk Conowingo der Susquehanna Power Company im Staate Maryland (U.S.A.) gewonnene Energie in das Netz der Philadelphia Electric Company im Staate Pennsylvania. Zugleich bilden sie ein Glied des grossen 220000 V Koppelungsnetzes im Osten der Vereinigten Staaten, welches die Kraftwerke im Kohlenbergwerkgebiet mit denjenigen an der atlantischen Küste verbindet. Gegenüber den beiden 330 bzw. 400 km langen Kraftübertragungen in Kalifornien, zeichnet sich die Conowingo-Leitung bei einer Länge von kaum 100 km durch die weit grössere Leistung aus.

Das Kraftwerk Conowingo (Fig. 22 bis 26) besitzt gegenwärtig eine Leistung von 280 000 kW (378 000 PS), die in 7 Einheiten erzeugt wird. Die Turbinen sind von der

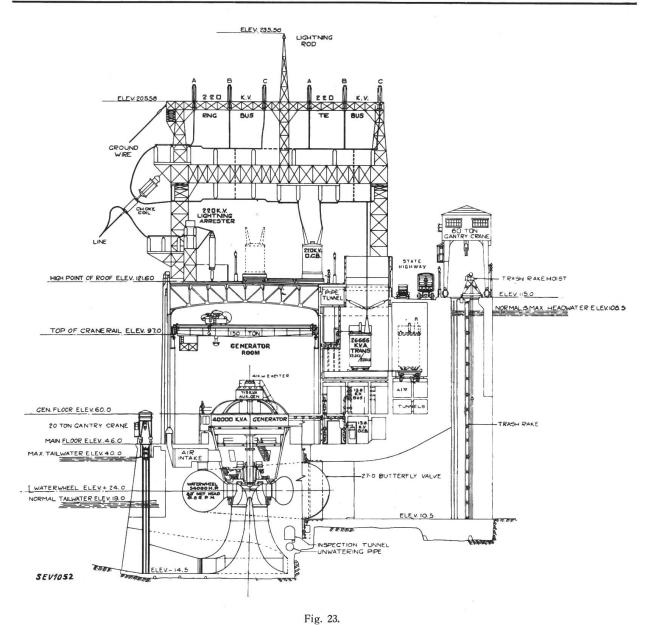


Fig. 22. Stausee, Damm und Maschinenhaus Conowingo, U.S.A.

Statisee, Darim und Maschinenhaus Conowingo, C.S.A.

Installierte Leistung 1928: 280 000 kW, im Vollausbau 450 000 kW an den Turbinenwellen. – Durchschnittliche Jahresproduktion im ersten Ausbau 1250×106 kWh.

Stausee: Länge 23,25 km; grösste Breite 1,76 km; Fläche 36,4 km²; Inhalt 400×106 m³; Energieinhalt bei Entzug von 70×106 m³, entsprechend einer Absenkung von 2,1 m, 5×106 kWh.


Wasserführung des Susquehanna: Jahresmittel 1891 bis 1926 610 bis 1490 m³/sec; Mittel der Periode von 35 Jahren 1000 m³/sec gemessene Grenzwerte min. 62 m³/sec, max. 20600 m³/sec.

Durchschnittliche min. Leistung entsprechend der zufliessenden Wassermenge 30 000 kW.

Min. jederzeit verfügbare Leistung zur Spitzendeckung, infolge Stausee 180 000 kW.

konventionellen, vertikalen Bauart der Francis-Typen und besitzen bei einem Gefälle von 27 m und 81,8 U/m eine Leistung von je 40000 kW. Sie sind direkt gekuppelt mit einem Dreiphasengenerator von 40 000 kVA, 60 Per/sec, 13 800 V und $\cos \varphi = 0.9$, über dem sich noch ein Hilfsgenerator von 715 kW mit angebautem Erreger erhebt. Nicht nach der Leistung, wohl aber nach den Dimensionen stellen diese Maschinen, infolge der niedrigen Umdrehzahl, die grössten bisher gebauten Einheiten dar. Die Zentrale selbst wird z. Z. in der Grösse nur von den Kraftwerken des Niagara-Fall³⁰) überboten und wird beim vorgesehenen Vollausbau von 11 Einheiten, ca. 450 000 kW (600 000 PS), sogar dieses Werk übertreffen.

^{30) 315 000} kW (425 500 PS) an den Turbinenwellen.

Querschnitt durch Maschinenhaus und Schaltanlage Conowingo.

Für die Vermittlung der erzeugten Energie nach Pennsylvania sind drei 220 kV-Leitungen projektiert, wovon zwei erstellt worden sind. Jede einzelne dieser Leitungen muss imstande sein, die gesamte Energie des ersten Ausbaues, also 252 000 kW allein zu übertragen.

Die Kraft wird von der Zentrale bis zum 93 km entfernten Unterwerk "Plymouth-Meeting" (Fig. 27) ausserhalb der Stadtgrenze von Philadelphia, mit 220 kV übertragen, dort auf ungefähr 70 kV herabtransformiert und mit dieser Spannung durch eine 17 km lange Uebertragung dem 66 kV Verteilnetz der Philadelphia Electric Company zugeführt. Diese 66 kV-Leitungen sind als ein Glied der Kraftübertragung zu betrachten und sind vor allem zu Vergleichszwecken in unsere Untersuchung eingeschlossen. "Plymouth-Meeting" ist zugleich ein Knotenpunkt des Koppelungsnetzes. Es treffen hier je eine 220 kV-Leitung von der Pennsylvania Power and Light Company in Siegfried, Pennsylvania und eine von der Public Service Electric and Gas Company in Newark, New Jersey (Nähe von New York) ein. Das Wasserkraftwerk Conowingo ist ein ausgesprochenes Saisonwerk, das nur für eine verhältnismässig kurze Zeit des Jahres mit der vollen Leistung verfügbar ist. Je nach der Jahres-

zeit und den Leistungsverhältnissen werden via Plymouth-Meeting Energieschiebungen in den verschiedenen Richtungen vorgenommen. Die gesamte an dieses Unterwerk angeschlossene Generatorenleistung beträgt etwa 2,2 Millionen kW. Es

Fig. 24. Blick in den Generatorsaal des Kraftwerkes Conowingo.

wird von ihm aus eine Bevölkerung von 6 Millionen Menschen bedient. Dieser Zusammenschluss ermöglicht eine berechnete, minimale Ersparnis an Generatorenleistung von 330 000 kW.

Das geographische Leitungsbild des Kuppelungsnetzes ist in Fig. 28 gegeben. Fig. 29 zeigt die hauptsächlichen Kraft- und Unterwerke und Uebertragungsleitungen der Philadelphia Electric Company. Für die Conowingo-Leitung siehe auch Fig. 45.

B. Die technischen Daten.

Als Ausgangspunkt für unsere Betrachtung nehmen wir an, dass die mechanische Konstruktion der Leitungen bereits festgelegt worden ist und dass aus den Vorarbeiten auch der effektive Wechselstromwiderstand, die Induktivität, Kapazität und Ableitung bestimmt sind, und die Zulässigkeit des Leiterseildurchmessers mit Bezug auf die Koronaverluste und die Erwärmung geprüft wurde.

Es sind hiermiet folgende Daten gegeben:

1. 220 kV-Leitung (Fig. 30-35).

Anordnung der Leiter und Erdseile nach Fig. 30. Abstand zweier benachbarter Leitungen, Mitte zu Mitte ca. 25 m.

Leiter: Aluminium-Stahlseil (Spezialausführung); Querschnitt 402,8 mm² (795 000 C. M. ³¹), bestehend aus 30 Aluminiumdrähten von je 4,14 mm Durchmesser und einer Stahlseele aus 19 Drähten von je 2,48 mm Durchmesser. Totaler Seildurchmesser 2,9 cm.

Erdseil: Aluminium-Stahlseil; Querschnitt 93 mm² (184000 C.M.), bestehend aus 18 Aluminiumdrähten von je 2,57 mm Durchmesser und einer Stahlseele aus 12 Drähten von je 3,1 mm Durchmesser. Totaler Seildurchmesser 1,8 cm.

Nennleistung einer Leitung 250	000	kW
Spannung	000	V
Frequenz	60	Per/sec
Länge der Leitung	93	km
Ohmscher Widerstand (effekt., 60°C)	7,963	Ohm/Phase
Reaktanz (ωL für 60 Per/sec) .	45,304	Ohm/Phase
Kapazitanz (ωC für 60 Per/sec).	0,000 300	Siemens/Phase
Ableitung (zu vernachlässigen) .	0	Siemens/Phase
Impedanz: $Z = 7,963 + j45,304$ Ohr	n	
Admittanz: $Y = 0 + i 0.000300$ Siem		

 $[\]overline{\text{31}}$ C. M. ist die Abkürzung für Circular Mil; 1 C. M. $=\frac{\pi}{4}$ d^2 , wobei d=0.001 inches.

2. 66 kV-Leitung (Fig. 36-38).

Die Leiteranordnung ergibt sich aus dem Gestängebild Fig. 36. Jeder Gittermast trägt zwei Drehstromkreise. Abstand zweier benachbarter Leitungen, Mitte zu Mitte, ca. 15 m.



Fig. 25. Kraftwerk Conowingo bei Nacht.

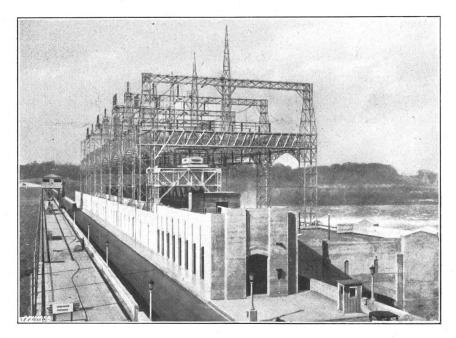


Fig. 26. Schaltanlage Conowingo auf dem Dach des Maschinenhauses.

Leiter: Kupferdraht, Querschnitt 253,3 mm² (500 000 C. M.), Durchmesser 2,06 cm. *Erdseil:* $30^{0}/_{0}$ ige Kupferlegierung, Draht von 1,4 cm Durchmesser.

Nennleistung ein	er Leitı	ing .					100 000	kW
Spannung							66 000	V
Frequenz							60	Per/sec
Länge der Leitur	1g .						16,5	
Ohmscher Wider	stand ((effekt	tiv,	84	0 (C)		Ohm/Phase
Reaktanz							7,82	Ohm/Phase
Impedanz: 7 =							15.	

3. Transformatoren.

a) Conowingo. Vier, später sechs, 80 000 kVA Transformatorengruppen. Je zwei 40 000 kVA - Generatoren arbeiten gemeinsam mit einer 80 000 kVA - Dreiphasentransformatorengruppe, bestehend aus 3 Einphasentransformatoren mit folgenden Daten:

26 667 kVA, 60 Per/sec, 13800/127000 V für Sternschaltung und geerdeten Nullpunkt, Freiluft-Kerntransformator, mit innerer Wasserkühlung. Anzapfung auf der Oberspannungsseite $+7^{1/2}_{2}^{0}/_{0}$.

Ohmscher Widerstand 0,495 % der Nennspannung, Reaktanz 10,0 % der Nennspannung, Impedanz 10,012 % der Nennspannung,

Der Magnetisierungsstrom beträgt 3,1 % des Normalstromes, cos $\varphi = 0.093$,

die Leerlaufverluste 77 kW, die Kupferverluste 132,5 kW.

Es berechnen sich damit die Verluste für eine 80 000 kVA Dreiphasengruppe zu:

Leerlaufverluste Belastungsverlust 231 + j2484 kVA398 + j8000 kVA

Totaler Verlust

 $629 + i \cdot 10484$ kVA (bei Nennlast).

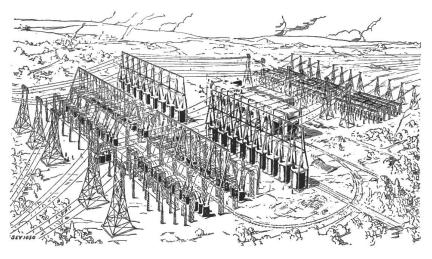


Fig. 27.
Freiluft-Unterwerk Plymouth-Meeting.

b) Plymouth-Meeting Transformatoren (Fig. 39). Zwei, eventuell drei, später sechs, 100000 kVA, 220 y / 13,3 △ / 69 y kV, Dreiphasentransformatorengruppen, bestehend aus je drei Einphasentransformatoren mit den folgenden Daten:

3333 kVA, 60 Per/sec, 127000/39800 V, Freiluft - Manteltransformator für natürliche Luftkühlung. Das Spannungsverhältnis kann geändert werden durch: zwei Anzapfungen zu je 5 % auf der Hochspannungsseite

entsprechend 220, 209 und 198 kV und sechs Anzapfungen zu je $2^1\hat{l}_2$ % regulierbar unter Belastung auf der Mittelspannungsseite. Der Transformator besitzt eine Tertiärwicklung für 15000 kVA und 13300 V in Dreieckschaltung zum Anschluss von Synchronkondensatoren.

												Hochspannung zu Unterspannung	Hochspannung zu Tertiärwicklung	Unterspannung zu Tertiärwicklung
Ohmscher	Wi	dei	rst	and	1							0,45 %	0,72 º/0	0,73 º/o
Reaktanz												9,5 %	10,1 º/o	16,0 º/o
Impedanz		•		•			•	٠	·	•	٠	9,5 º/o	10,1 º/o	16,0 º/o

In Fig. 40 sind die Impedanzen eines Plymouth-Meeting-Transformators graphisch dargestellt.

Der Magnetisierungsstrom beträgt 2,5 %, $\cos\varphi=0,15$, bei 110 % Nennspannung 6 %, die Eisenverluste 106 kW bei 100 % Nennspannung, 139 kW bei 110 % Nennspannung.

Die Leerlaufverluste betragen also für eine $100\,000\,\mathrm{kVA}$ Dreiphasengruppe: $318 + i\,2500\,\mathrm{kVA}$.

Diese Transformatoren sind inzwischen mit Ventilatoren für künstliche Luftkühlung ausgerüstet worden. Ihre Leistung beträgt damit 43 333 kVA pro Einphaseneinheit und 130 000 kVA für die Dreiphasengruppe.

C. Die Kreisdiagramme der 220 kV-Leitung.

Für die Berechnung der Leitungskonstanten A, B, C, D und der Kreiskonstanten (ausschliesslich der Transformatoren) gehen wir von der Impedanz und Admittanz der Leitung aus.

$$Z = 7,96 + j45,304$$

 $Y = 0 + j0,000300$

Damit werden nach Gleichung 20, bzw. 21 und 22 (s. No. 15, S. 481):

$$A = \left(1 + \frac{ZY}{2} + \frac{Z^2Y^2}{24}\right) = a_1 + j \, a_2 = 0,993212 + j \, 0,001187$$

$$B = Z\left(1 + \frac{ZY}{6} + \frac{Z^2Y^2}{120}\right) = b_1 + j \, b_2 = 7,926 + j \, 45,194$$

$$C = Y\left(1 + \frac{ZY}{6} + \frac{Z^2Y^2}{120}\right) = c_1 + j \, c_2 = -0,0000002 + j \, 0,000300.$$

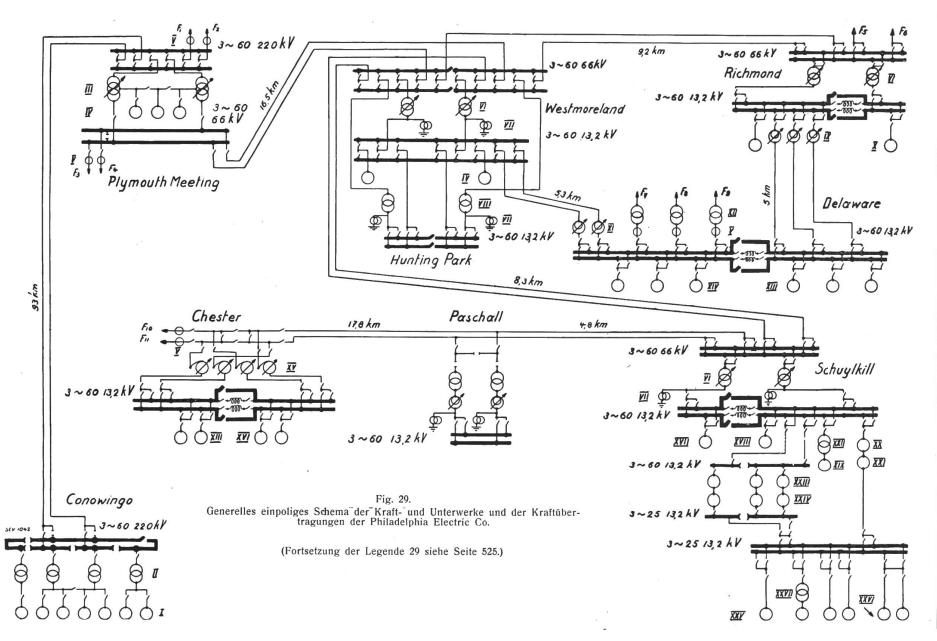
Da die Leitung symmetrisch ist, wird D = A.

Die Prüfung nach Gleichung 24 ergibt eine Abweichung von 1 von: $0,000008 - j\,0,000\,013$.

Die Kreiskonstanten sind damit aus Gleichung 32 bzw. 33.

$$l = l_{a} = l_{e} = \frac{a_{1} b_{1} + a_{2} b_{2}}{b_{1}^{2} + b_{2}^{2}} = 0,003764$$

$$m = m_{a} = m_{e} = \frac{a_{1} b_{1} - a_{2} b_{1}}{b_{1}^{2} + b_{2}^{2}} = 0,021366$$


$$n = \frac{1}{\sqrt{b_{1}^{2} + b_{2}^{2}}} = 0,021796.$$

Hiermit lassen sich ebenfalls nach Gleichung 32 bzw. 33 die Mittelpunkte und Radien der Sende- bezw. Empfangskreise für jedes Spannungsverhältnis finden. Bezeichnen wir mit U und V die Koordinaten der Mittelpunkte und mit W die Radien der Kreise, so ist:

$$U_{\rm a}=rac{l_{\rm a}~E_{\rm a}^2}{1000}$$
 im kW Masstab in der $+$ Richtung der P Achse, $V_{\rm a}=rac{m_{\rm a}~E_{\rm a}^2}{1000}$ im kVA Masstab in der $+$ Richtung der Q Achse, $U_{\rm e}=rac{l_{\rm e}~E_{\rm e}^2}{1000}$ im kW Masstab in der $-$ Richtung der P Achse, $V_{\rm e}=rac{l~E_{\rm e}^2}{1000}$ im kVA Masstab in der $-$ Richtung der Q Achse.

Die Radien sind für Sende- und Empfangskreise dieselben, nämlich:

$$W = \frac{n E_a E_e}{1000}$$
 im kVA Masstab.

No.

16

Fortsetzung der Legende zu Fig. 29.

- 1 Generatoren, je 40 000 kVA, $\cos \varphi = 0.9$.
- II Transformatorengruppen, je 80 000 kVA.
- III Dreiwicklungs Transformatorengruppen, je 130 000 kVA, mit Anzapischalter $\pm 7^1/2^0/0$, unter Last regelbar.
- IV Synchronkondensatoren, je 30 000 kVA.
- V Zähler bezw. Messwandlereinheit.
- VI Transformatorengruppen, je 60 000 kVA, mit Anzapfschalter ± 5%, unter Last regelbar.
- VII Erdungstransformatoren.
- VIII Transformatorengruppen 18750 kVA.
- IX Induktionsregler $\pm 5^{\circ}/_{0}$.
- X Generatoren, je 72 222 kVA $\cos \varphi = 0.9$.
- XI Induktionsregler $\pm 9^{\circ}/_{0}$.
- XII Transformatorengruppen, je 12 000 kVA.
- XIII Generatoren, je 37 500 kVA, $\cos \varphi = 0.8$.
- XIV Generatoren, je 33 333 kVA, $\cos \varphi = 0.9$.
- F₁ Leitung nach Siegfried.
- F_2 , Roseland.
- F_3 , Barbados Island.
- F₄ , Barbados Island.
- F_5 , Emilie und Trenton.
- 25 " " Ellinic and Trenton
- F_6 , Emilie und Trenton.
- F₇ Leitung nach dem Verteilnetz Camden (New Jersey).

- XV Autotransformatoren, je 20 000 kVA, mit Anzapfschalter ± 5%, unter Last regelbar.
- XVI Generatoren, je 36 667 kVA, $\cos \varphi = 0.9$.
- XVII Generator, 35 000 kVA, $\cos \varphi = 1$.
- XVIII Generator, 15 000 kVA, $\cos \varphi = 1$.
- XIX Generator, 14 000 kVA, $\cos \varphi = 1$.
- XX Generator, 45 000 kVA, $\cos \varphi = 0.7$; als Synchronkondensator bei $\cos \varphi = 0$ 38 000 kVA.
- XXI Frequenzumformer 35 300 kVA, $\cos \varphi = 0.85$.
- XXII Transformator 15 000 kVA.
- XXIII Generator, 9500 kVA, $\cos \varphi = 1$.
- XXIV Frequenzumformer, 9000 kVA, $\cos \varphi = 1$.
- XXV Generatoren, 15000, 20000 und 30000 kVA, $\cos \varphi = 0.9$ bis 1.
- XXVI Belastungsschieber¹), 5000 kVA, $\cos \varphi = 1$.
- XXVII Transformatorengruppe 15 000 kVA.
- F₈ Leitung nach dem Verteilnetz Camden (New Jersey).
- F₉ Leitung nach dem Verteilnetz Camden (New Jersey).
- F₁₀ Leitung nach Wilmington (Delaware).
- F₁₁ , , Wilmington (Delaware).

Die Leitungen von Westmoreland nach Richmond, Delaware und Schuylkill sind Kabelleitungen. Die 66 kV Kabelleitungen sind für eine Nennleistung von je 50 000 kVA, die 13,2 kV Kabelleitungen für eine solche von je 12 000 kVA gebaut.

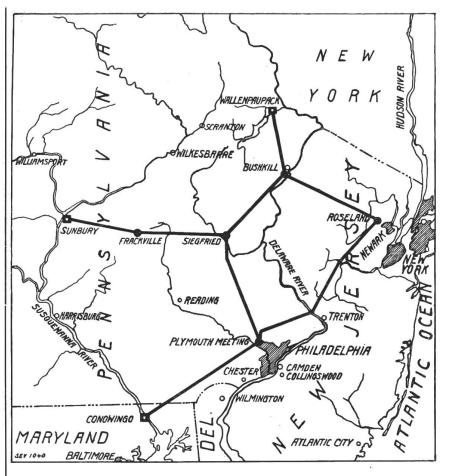


Fig. 28.

220 kV Koppelungsnetz der Staaten Pennsylvania und New-Jersy.

Conowingo und Wallenpaupack sind Wasserkraftwerke; Sunbury ist grosses Dampfkraftwerk; Bushkill ist eine Schaltstation; die übrigen sind Unterwerke zu den jeweiligen Verteilnetzen.

Conowingo-Plymouth Meeting	93 km	Siegfried-Bushkill	61 km
Plymouth Meeting-Siegfried	77 "	Bushill-Wallenpaupack	45 "
Plymouth Meeting-Roseland	125 "	Siegfried-Frackville	66 "
Roseland-Siegfried	132 "	Frackville-Sunbury	50 "
Roseland-Bushkill	41		

^{1) &}quot;Belastungsschieber" werden zum Ausgleich der Belastung und der Spannung in ungleichmässig belasteten Mehrphasennetzen verwendet, indem sie von der unterbelasteten Phase Energie als Motor aufnehmen und an die überbelastete Phase als Generator abgeben und ausserdem der Phasenspannung solche Komponenten zuführen, dass die resultierende Spannung ausgeglichen wird. Es ist also eine Maschine, deren Spannungs-Vektoren eine negative Drehrichtung haben, während die Netzspannung sich in positivem Sinne dreht. Sie sind, Irrtum vorbehalten, einem Gedanken von Steinmetz entsprungen (1916) und zum Ausgangspunkt der Berechnungsmethode der symmetrischen Komponenten geworden, deren Theorie auf Seite 535 dargestellt ist.

Als Spannung ist der verkettete Wert in kV einzusetzen. Wird die Phasenspannung benützt, so sind die rechten Seiten der Gleichungen mit 3 zu multiplizieren.

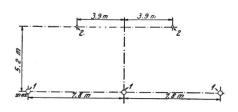


Fig. 30. Leiteranordnung der 220 kV-Leitung. 1 = Leiter 2 = Erdseile.

Als Bereich der Spannungen kommen in unserem Fall etwa $E_a=220\,$ bis $230\,\mathrm{kV},~E_e=205\,$ bis $225\,\mathrm{kV}$ in Frage. Es wird deshalb zweckmässig sein, die Kreise für folgende Sende- bzw. Empfangsspannungen aufzustellen und für Zwischenwerte zu interpolieren.

 $E_{\rm a} = 220$, 225, 230 kV, $E_{\rm e} = 205$, 210, 215, 220, 225 kV.

Die betreffenden Grössen sind in Tabelle II ausgerechnet und die Kreisdiagramme in Fig. 41 dargestellt.

Kreischarakteristik für die Leitung Conowingo-Plymouth-Meeting.

Tabelle II.

E_{a}	Sendekreismittelpunkte		E_{e}		kreismittel- nkte	E _e	Sende- und	1 Empfangskreisradien W kVA		
kV	U _a kW	V _a j kVA	kV	Ue kW	V₀ j kVA	kV	$E_{a} = 220 \text{ kV}$	$E_{\rm a}=225~{\rm kV}$	$E_{\rm a}=230~{\rm kV}$	
220 225 230	182 200 190 550 199 120	1 034 000 1 081 650 1 130 300	205 210 215 220 225	158 200 166 000 174 000 182 200 190 550	897 060 942 240 987 640 1 034 000 1 081 650	205 210 215 220 225	983 000 1 006 970 1 030 950 1 054 930 1 078 900	1 005 300 1 029 900 1 054 400 1 078 900 1 103 400	1 027 700 1 052 750 1 077 800 1 102 900 1 127 900	

D. Die Arbeitsweise der Kraftübertragung.

Die Kreisdiagramme veranschaulichen in klarer Weise die Beziehungen zwischen den Endspannungen und den dazugehörenden Belastungen in ihren Wirk- und

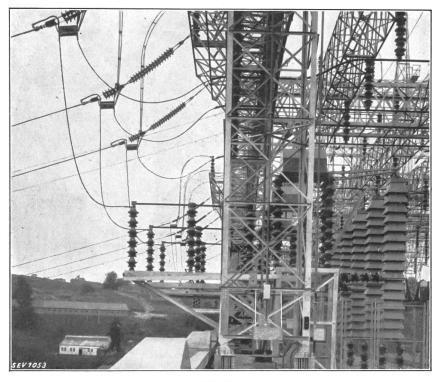


Fig. 31.

Abgehende 220 kV-Linien (Conowingo Leitung) im Kraftwerk Conowingo.

Blindleistungskomponenten. Sie zeigen das Verhalten der Leitung unter den verschiedenen Betriebszuständen und ermöglichen rasch und einfach, wie gezeigt werden soll z. B. die Bestimmung der Grösse der benötigten Synchronkondensatorenleistungen.

Die Betriebsbedingungen.

Die Betriebsbedingungen für die Conowingo-Leitung sind wie folgt festgelegt worden:

In der Zentrale Conowingo wird als normale von den Spannungsreglern konstant zu haltende Spannung 220 kV auf der Hochvoltseite gewählt. Unter abnormalen Zuständen, beispielsweise wenn nur eine Leitung die gesamte Leistung von 252000 kW übertragen muss, wird eine vorüber-

gehende Erhöhung der Sendespannung auf 230 kV maximal zugelassen. Im Unterwerk "Plymouth-Meeting" darf mit Rücksicht auf die Koppelung die Spannung bei keinem Belastungszustand unter 210 kV sinken. Sie ist bei diesem Wert durch die Wahl der Blindleistung – Generatoren cos φ, Synchronkondensatoren – konstant zu halten. Eine höhere Spannung, bis 220 kV, ist ohne weiteres zulässig. Die Spannung im Unterwerk "Westmoreland" Philadelphia ist bei 68 kV

möglichst konstant zu halten. Sie soll durch Einstellung des Anzapfschalters der

Plymouth-Meeting-Transformatoren reguliert werden.

Es wird ferner bestimmt, dass alle Synchronkondensatoren für den normalen Betriebszustand, d. h. zwei 220 kV-Leitungen zwischen Conowingo und Plymouth-Meeting in Betrieb, im Unterwerk "Westmoreland" oder im Netz des Philadelphia Electric Systems selbst unterzubringen sind. Ueber die für den Notbetrieb - eine 220 kV-Leitung – notwendigen zusätzlichen Kondensatoren wird die Entscheidung vorbehalten. Je nach dem Ergebnis der Rechnung werden sie ganz oder teilweise im Unterwerk "Plymouth-Meeting" installiert.

Der Einfluss der Kondensatoren auf die Stabilität bei Störungen und Erdschlüssen ist festzustellen.

Die Kondensatoren müssen ebenfalls genügen, um die Spannungen bei den gegebenen Werten zu halten, wenn Energie über das Koppelungsnetz in irgendwelcher Richtung vermittelt wird. Die Spannung an den Knotenpunkten des Koppelungsnetzes ist in den Unterwerken "Siegfried" und "Roseland" bei Newark zu 210 kV anzunehmen.

Der Leistungsfaktor der Belastung in Westmoreland ist entsprechend Höchstlast des Philadelphia-Netzes zu 85 % bestimmt worden.

Die Strom- und Spannungsverhältnisse bei verschiedenen Belastungen und die Bestimmung der benötigten Synchronkondensatoren.

Da es nicht angängig ist, die vollständige Durchrechnung zu geben, so sei der Rechnungsgang wenigstens an einem einfachen Fall dargestellt. Es sei dazu angenommen, dass im Kraftwerk Conowingo vier 40 000 kVA-Einheiten in Betrieb sind.

Es ist dann:

Generatorenleistung . . . 144000 + j69000, entsprechend 160000 kVA, Sendetransformatoren-Verluste 1258 + j20968 (Total 2×80000 kVA Transf.) Sendeleistung bei 220 kV . =142742+j48632 oder

bei zwei Leitungen 71371 + j24316 pro Leitung.

Aus dem Sendekreisdiagramm (Fig. 41) finden wir durch Interpolation, dass dieser Scheinleistung bei einer Sendespannung von 220 kV, eine Empfangsspannung

in "Plymouth-Meeting" von 211,8 kV entspricht.

Die empfangene Wirkleistung ist um die kW-Verluste der Leitung geringer. Statt der genauen Rechnung derselben dürfen wir, da die Leitung verhältnismässig kurz ist und selbst eine grosse Ungenauigkeit der Verluste im normalen Arbeitsbereich der Kraftübertragung das gesuchte Ergebnis nicht merklich beeinflusst, sie nach der üblichen Jouleschen Formel, I² R, berechnen.

Sendestrom
$$I_a = \frac{(142742 - j48632) \cdot 10^3}{\sqrt{3} \cdot 220 \cdot 10^3} = \frac{650}{\sqrt{3}} - j\frac{220,5}{\sqrt{3}} = 375 - j127,5 \text{ A}$$

kW-Verluste, zwei Leitungen parallel: = $3 (375^2 + 127,5^2) \frac{7,96}{2} \cdot 10^{-3} = 1870 \text{ kW}.$

Ankommende Wirkleistung in "Plymouth-Meeting":

 $P_{\rm e} = 142742 - 1870 = 140872$ kW, bzw. 70436 kW pro Leitung.

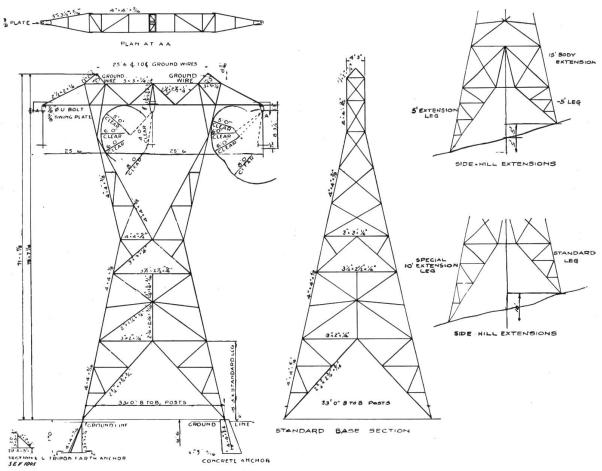


Fig. 32. Conowingo Leitung. 220 kV-Tragmast.

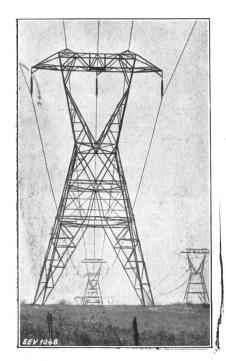


Fig. 33. Conowingo Leitung, 220 kV-Tragmast,

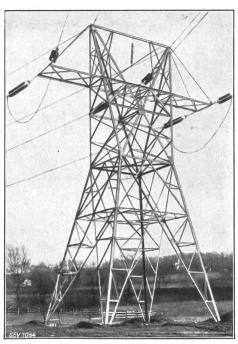


Fig. 34. Conowingo Leitung. 220 kV-Abspannmast.

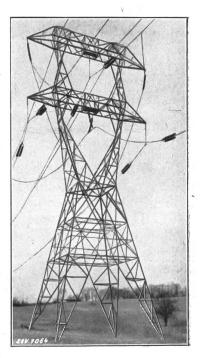


Fig. 35.
Conowingo Leitung.

220 kV Verdrillungsmast. Dieser Masttyp kann als Normalmast für das Gestänge einer 220 kV-Doppelleitung verwendet werden.

Damit finden wir aus dem Empfangsdiagramm für $E_{\rm a}=220~{\rm kV}$ und $E_{\rm e}=211.8~{\rm kV}$, durch Interpolation zwischen den Kreisen für $E_{\rm e}=210~{\rm und}~215~{\rm kV}$, die ankommende Blindleistung zu 30000 kVA, nacheilend, pro Leitung oder +~j60000 kVA total.

Zum Vergleich sei die Rechnung ohne Kreisdiagramm, rein analytisch durchgeführt. Gegeben ist die Spannung und der Strom am Sendeende, $E_a = 220$ kV, $I_a = (650-220,5)$ A ³²).

Daraus folgt nach Gleichung 10: $E_e = E_a A - I_a B$.

$$E_e = 220\,000 \, (0,993\,212 + j\,0,001\,187) - \frac{1}{2} \, (650 - j\,220,5) \, (7,926 + j\,45,194)$$

= $(218\,500 + j\,261) - (7\,558 + j\,13\,815)$
= $210,94 - j\,13,55 = 211,4 \, \text{kV}.$

Die aus dem Kreisdiagramm erhaltene Spannung war 211,8 kV; die Abweichung beträgt also weniger als 2 $^0/_{00}$.

Der Empfangsstrom wird nach Gleichung 11: $I_e = I_a A - E_a C$.

$$I_{\text{eL}} = \frac{1}{2}(650 - j\,220,5) \,(0,993\,212 + j\,0,001\,187) - 220\,000 \,(0 + j\,0,000\,300)$$

= 322,925 - $j\,109,11 - j\,66$ pro Leitung,
 $I_{\text{e}} = (645,85 - j\,350,2) \,\text{A}^{32})$ total.

Aus Strom und Spannung wird die Leistung:

$$P_e + j Q_e = (210,94 - j 13,55) (645,85 - j 350,2)$$

= 140 980 + j 65 120 kVA.

Die Abweichung dieses Rechnungsergebnisses von demjenigen aus den Kreisdiagrammen beträgt in der Wirkleistung weniger als 1 $^0/_{00}$; dagegen ist sie recht ausgesprochen — beinahe 8% — in der Blindleistungskomponente. Bei genauerer Prüfung zeigt sich, dass der geringe Spannungsunterschied von 2% in den beiden erhaltenen Endspannungen 6 % der Blindleistung ausmacht. Die Leitung ist also sehr blindstromempfindlich in bezug auf Spannung. Auch geht hervor, dass sich bei den Kreisdiagrammen mit grösserer prozentuellen Genauigkeit von der Blindleistung auf die Spannung schliessen lässt als umgekehrt.

Es sei nun angenommen, dass keine Energie ins Koppelungsnetz abgegeben, noch solche daraus erhalten wird. Es steht somit im Unterwerk "Plymouth-Meeting" eine Leistung von $140\,872 + j\,60\,000$ kVA zur Lieferung nach Westmoreland (Philadelphia) zur Verfügung. Sie werde mit zwei 66 kV-Leitungen dorthin vermittelt.

Bemerkung zu den Fig. 32 bis 35.

Das Gestänge der Conowingo Leitung enthält folgende 5 Masttypen:

- Typ A: Normaler Tragmast, verwendet für Spannweiten bis 1100 Fuss und Winkel bis $1^{1}/_{2}$ (Fig. 32 und 33).
- Typ B: Verstärkter Tragmast, für Spannweiten bis 2000 Fuss und Winkel bis 6°. Dieser Typ wird auch für (Bahn)-Kreuzungen und mit besonderem Aufbau als Verdrillungsmast (Fig. 35) verwendet. Typ C: Eckmast für Spannweiten bis 1100 Fuss und Winkel von 6° bis 10°. Typ D: Abspannmast und für Spannweiten bis 2500 Fuss und Winkel von 15° bis 60° (Fig. 34).
- Die Masten für die Kreuzung des Susquehanna-Flusses haben eine Höhe von 228 Fuss und ein Gewicht von 113 t. Die Spannweite beträgt 2200 Fuss.
- PS. Die normalen Masten, Type A, haben eine Höhe von 75 bis 120 Fuss, und ein Gewicht von nur 7 t bei 80 Fuss Höhe. Alle Mastentypen halten den Zug bei Bruch eines Leiters aus, was durch Versuche erwiesen ist. Mit einem Bruch eines Leiters wird jedoch nicht gerechnet, denn die Leiter haben $40\,^{\rm o}/_{\rm o}$ Stahl und werden ausserdem vorgestreckt.

 $^{^{32}}$) Bei Dreiphasenleitungen ist es bequemer, den $\sqrt{3}$ fachen Leitungsstrom zu verwenden. Man erhält dann bei Einführung des Widerstandes bzw. Impedanz einer Phase sogleich den Spannungsabfall im Verhältnis zur verketteten Spannung und den gesamten Verlust aller drei Leitungen. Die Zahlenwerte der Ströme I_a , I_e , I' (S. 530) usw. (in A) sind also $\sqrt{3}$ mal grösser eingeführt, als sie in Wirklichkeit betragen.

Nach Abzug der Leerlaufverluste von $(636+j\,5000)$ kVA für die beiden $100\,000$ kVA-Transformatorengruppen verbleiben $(140\,246+j\,55\,000)$ kVA. Die Impedanz der 66 kV-Uebertragung setzt sich zusammen aus derjenigen

des Transformators

0.214 + i4.518 Ohm und

der Freileitung

$$1,50 + j7,818$$
 Ohm

Total

$$Z_{66} = 1,714 + j$$
 12,336 Ohm für eine Leitung inkl. Transformator.

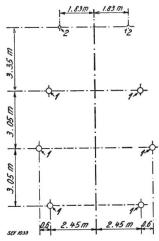


Fig. 36.
Leiteranordnung der 66 kVLeitung.
1 = Leiter.
2 = Erdseile.

Die Transformatorenspannung ist oberspannungsseitig bestimmt, 211,8 kV, und unterspannungsseitig im Unterwerk "Westmoreland" zu 68 kV gegeben. Die Sekundärspannung der Transformatoren ist je nach der Belastung für dieses Spannungsverhältnis mit Hilfe des Anzapfschalters einzustellen. — Wir nehmen sie in unserem Beispiel vorerst zu 74 kV an und berechnen die Empfangsspannung, die sich nach folgender Gleichung ergibt:

$$E_{\rm eW} = E_{\rm aP} - I Z_{\rm 66}.$$

Für 74 kV wird der Strom:

$$I' = \frac{140246 - j55000}{74} = (1900 - j740) \text{ A}^{32})$$

und die Impedanzspannung:

$$I = \frac{Z_{66}}{2} = (1900 - j740) (0.857 + j6.168) = (6190 + j11066) \text{ V},$$

also

$$E'_{aP} = 74$$

 $IZ = 6,19 + j11,066$

 $E'_{\text{ew}} = 67.81 - j11.06 = 68.71 \text{ kV}$ und der

Spannungsabfall = 74 - 68,71 = 5,29 kV. Beide sind also etwas zu hoch. Wir finden nun den korrigierten Spannungsabfall mit genügender Genauigkeit in der ersten Annäherung zu:

$$e = \frac{74}{68 + 5,29} \cdot 5,29 = 5,34 \text{ kV}$$

und damit die Sendespannung im Unterwerk "Plymouth-Meeting" zu:

$$E_{\rm ap} = 68 + 5{,}34 = 73{,}34 \text{ kV}.$$

Bei Anschluss der Transformatoren auf der 220 kV - Seite an die zweite Anzapfstufe (209 kV) wird die benötigte sekundäre Zusatzspannung beim Ueber-

setzungsverhältnis von $\frac{69}{209}$:

$$73,34 - \frac{69}{209} \cdot 211,8 = 73,34 - 70 = 3,34 \text{ kV}$$
oder: $\frac{3,34}{70} = 4,77 \%$.

SEV 1046.

Fig. 37.

Leitung Plymouth-Meeting-Westmoreland.
66 kV-Tragmast.

Da der Anzapfschalter nur in Stufen von $2^{1}/_{2}^{0}/_{0}$ einstellbar ist, wird die zweite Stufe für eine Spannungserhöhung von 5 % in Frage kommen.

Der korrigierte Strom ist
$$\frac{140246 - j55000}{73,34} = (1915 - j750) A^{32}$$
).

Damit ergeben sich die Uebertragungsverluste der 66 kV-Leitung, einschliesslich der Transformatorenverluste, zu

$$I^2 \frac{Z_{66}}{2} = (1915^2 + 750^2) (0.857 + j6.168) = 3615 + j26100 \text{ kVA}.$$

Die in Philadelphia-Westmoreland eintreffende Leistung beträgt demnach:

Sendeleistung I^2 Z Verluste I^2 Z Verluste I^2 Z Verluste I^3 3615 I^2 26 100 kVA Empfangene Leistung I^3 136631 I^2 28 900 kVA

Die Wirkleistung von 136631 kW wird vom Philadelphia Electric System mit einem Leistungsfaktor von 85 % abgenommen. Die notwendige Kapazität der Synchronkondensatoren ergibt sich aus der Differenz der ankommenden Scheinleistung und der Netzlast, also:

$$- \underbrace{\frac{136631 + j28900}{(136631 + j84900),}_{-j56000}}_{\text{entsprechend}} \underbrace{\frac{161000 \text{ kVA und } \cos \varphi}{161000 \text{ kVA Synchronkondensatorenleistung.}}_{\text{entsprechend}} = 0.85$$

Spannungs- und Leistungsverhältnisse bei normalem Betrieb. (Zwei Leitungen zwischen Kraftwerk Conowingo und Unterwerk Plymouth-Meeting.) Tabelle III.

	Cone Sendespa	owingo; nnung 22				Pl Hochspa	ymou nnung	<i>th-Mee</i> 210 k	<i>ting</i> , V mi	; nimuı	m	Spann	Philade ung 68 k		
Anzahl Genera- toren in Betrieb	Generatorenleistung Mazil 80000			zahl 80 Transf	Empfang	ene Leist	ung	satz-Sahl Janung Tran			Ins Koppe- lungsnetz	Empfangene Leistung		tung	Synchron- konden- satoren
An	kW	j kVA	$\cos \varphi$		kW	jkVA	$\cos \varphi$	kV	Σr	An kV/	kW + jkVA	kW	j kVA	cos φ	kVA
1 2 3 4 5 6 6 7 7	36 000 72 000 108 000 144 000 180 000 216 000 216 000 252 000 252 000	34 800 52 200 69 600 87 500 91 500 91 500 91 900	0,90 0,90 0,90 0,9 0,92 0,92 0,94	1 2 2 3 3 4	35 500 71 000 106 000 141 000 175 500 210 000 210 000 244 400 244 400	36 000 43 000 54 500 60 000 65 000 58 000 58 000 50 000	0,86 0,89 0,92 0,94 0,97 0,97	215,1 213,4 211,8 210 210 210 210	3,4	2 2 2	15 000 + <i>j</i> 6 500 	202 0001)	26 000 26 000 34 000 29 000 21 000 -1 000 -1 400 -9 200 -29 000	0,94 0,95 0,98 0,99 1 1	16 500 30 000 56 000 84 000 118 000 126 500 126 500
	¹) Die	Transfo	rmato	ren ir	ı 1 Plymouth	-Meeting	werde	n über	laste	t; die	ese Ueberlasti	ing ist im	ı Winter be	ı ei nied	riger

Lufttemperatur oder bei Verwendung von künstlicher Ventilatorenkühlung dauernd zulässig.

In Tabelle III sind die wichtigsten Daten über das Verhalten der Kraftübertragung im normalen Betriebszustand zusammengestellt. Es zeigt sich, dass die Generatoren nur bis zu fünf Einheiten, 200 000 kVA, elektrisch voll ausgenützt werden können. Darüber hinaus muss die Blindleistung verringert, d. h. der Leistungsfaktor für die gegebenen Spannungsverhältnisse erhöht werden. Der Ladestrom kommt nur bei Betrieb mit einer Einheit ausgesprochen zur Geltung, in welchem Fall die Synchronkondensatoren am Leitungsende Magnetisierungsstrom aufnehmen müssen. Mit zunehmender Belastung erhöht sich der Leistungsfaktor am Empfangsende und beim Betrieb von sechs Einheiten an zieht sich der Punkt für $\cos\varphi=1$ in die Uebertragung zurück. — Die Regulierung der Spannung in Philadelphia durch den Transformatorenanzapfschalter im Unterwerk "Plymouth-Meeting" genügt unter allen Belastungszuständen, so dass eine Umschaltung auf der 220 kV-Seite nicht notwendig ist. Die maximal benötigte Synchronkondensa-

torenleistung von 174000 kVA beträgt 65 % der ausgenützten Generatorenkapazität. Sie nimmt mit zunehmender Wirklast stark zu (siehe Fig. 42).

Zusätzliche Synchronkondensatorenleistung bei Betrieb mit nur einer 220 kV-Leitung zwischen Conowingo und Plymouth-Meeting. Tabelle IV.

	Hoch-	Fall A.1) Sendespannung		Sendespannung		erkes wird b en bleiben u			orige Span-
Anzahl Genera-	coon-	Encliso Dela-	Conowingo	Fall B.¹) Alle zusätzlichen Kondensatoren	Alle Konde	nsatoren, au "Westmor			unterwerk
toren in Betrieb	werk Ply- mouth	stungen unge- ändert. Alle zu- sätzlichen Kon- densatoren in	erhöht bis 230 kV maximum	im Unterwerk Plymouth. Keine Aenderung der Transformat	Kondensato-		Zusatz- span- nung der Trans-	in West	ene Energie moreland- lelphia
	kV	Plymouth kVA	kV	anzapf. nötig kVA	renleistung kVA	leistung kVA	format.	kW	j kVA
1	217	16 600	221,8	8 600	5 000	9 500	0,7	34 600	16 550 ³)
2	215,1	28 000	223	12 000	28 000	11 500	3,2	68 300	14500^3)
3	213,4	41 500	225	20 000	48 000	18 000	1,1	102 400	15 800
4	211,8	50 000	226	21 500	75 000	19 000	2,2	135 200	8 800
5	210	60 000	227	23 000	104 000	20 000	3,5	167 000	_ 500
6	210	65 000	229,4	18 000	137 0002)	19 000	2,1	189 000	$-20\ 000$
6	210	65 000	229,4	18 000	140 000	14 000	2,9	198 500	-17600
7	210	72 000	230	19 000	118 0002)	22 000	1,0	190 500	-30 000
7	210	72 000	230	19 000	188 500	14 500	1,1	288 800	-46000

Die Generatoren in Conowingo decken die zusätzlichen kW-Verluste der Leitung.
 Nur 200 000 kVA werden ins Philadelphia-Netz aufgenommen; der Ueberschuss wird ins Koppelungsnetz abgegeben.
 Ein, statt zwei 100 000 kVA-Transformatoren im Unterwerk Plymouth-Meeting.

Die Tabelle IV zeigt die Verhältnisse und zusätzlichen Kondensatoren, wenn die gesamte Leistung nur von einer 220 kV-Leitung übertragen werden muss, wie das beispielsweise im Notbetrieb der Fall sein wird. Dabei wurden u. a. folgende Fälle vorgesehen:

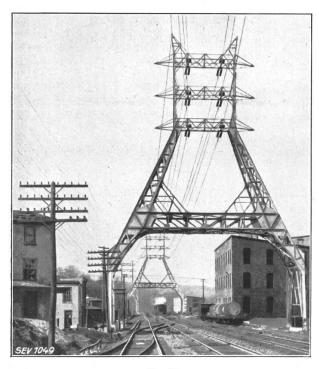


Fig. 38. Leitung Plymouth-Meeting-Westmoreland. 66 kV-Spezialmast für vier Leitungen zu je 100 000 kVA.

- A) Die Spannungsverhältnisse im Kraftwerk und in den Unterwerken, sowie die abgegebene Leistung sollen ungeändert bleiben. Die zusätzlichen Kondensatoren sind im Unterwerk "Plymouth-Meeting" unterzubringen. Die Deckung der vermehrten kW-Verluste der 220 kV-Leitung muss von den Generatoren übernommen werden. Die Verluste der Kondensatoren sind nicht zu berücksichtigen.
- B) Wie unter A); nur darf die Spannung im Kraftwerk Conowingo auf der Hochspannungsseite bis zu 230 kV erhöht werden.
- C) Die zusätzlichen Kondensatoren sind nicht in "Plymouth-Meeting" anzuschliessen, sondern im Unterwerk in Philadelphia mit den andern unterzubringen. Die Spannung in Conowingo wird bis maximal 230 kV erhöht, in "Plymouth-Meeting" und Westmoreland dagegen gleich wie unter normalen Umständen gehalten.

Der Fall A) verlangt die grösste Leistung an zusätzlichen Kondensatoren. Sie steigt von 174000 kVA auf 246000 kVA und kommt so beinahe der Generatorenleistung gleich. Demgegenüber erreicht man bei einer Erhöhung der Sendespannung auf 230 kV, also keine 5 %, eine Ersparnis von 50000 kVA. Die zusätzliche Kondensatorengrösse in den Fällen B) und C) ist ungefähr von derselben

Höhe. Mit Rücksicht auf die kleineren Verluste und den Einfluss auf die Stabilität wird man sie im Unterwerk "Plymouth - Meeting" installieren, sofern sich aus dem Unterwerk "Westmoreland" oder dem Netz der Philadelphia Electric keine

Blindleistung mehr ziehen lässt. Bemerkenswert ist der Betrieb mit nur einer Einheit, wobei die empfangene Wirkleistung im Fall C) gleich wie unter normalen Verhältnissen bleibt, indem die vermehrten Verluste in der 220 kV-

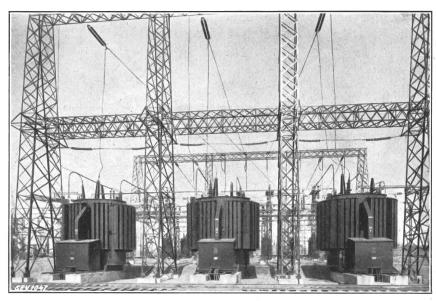
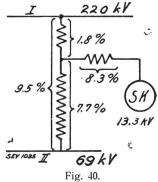



Fig. 39.
Unterwerk Plymouth-Meeting. Dreiphasen-Dreiwicklungstransformatorengruppe.
220/13,2/66 kV, 130 000 kVA, 60 Per/sec, mit Anzapfschalter.

Leitung durch die geringen kW-Verluste in der 66 kV-Leitung aufgehoben werden. – Infolge der kleineren Scheinleistungen wird die benötigte Zusatzspannung der Transformatoren kleiner, wenn alle Kondensatoren im Unterwerk "Westmoreland", Fall *C*), untergebracht werden (siehe dazu auch Fig. 42b).

In Tabelle V sind die Verluste für den normalen Betrieb mit zwei Leitungen zusammengestellt. Es ist dabei interessant, die einzelnen Glieder der Uebertragung miteinander zu vergleichen. So weist z.B. die 93 km lange 220 kV-Leitung nur etwas mehr als die Hälfte der Verluste der bloss 16,5 km langen 66 kV-Leitung auf. Der Wirkungsgrad beträgt etwa 93 %, ohne Einschluss der Synchron-

1) Rückgang infolge des höheren Leistungsfaktors.

Impedanzen eines 100000 kVA-Dreiwicklungstransformators in Plymouth-Meeting.

Verluste der Kraftübertragung bei normalem Betrieb mit zwei 220 kV-Leitungen.

Tabelle V.

Anzahl Genera-	Conowingo-Ge	eneratoren	Energie in Ph	iladelphia	Uebertragung	sverluste	Verlustverteilung in ⁰ / ₀			
toren in Betrieb	Leistung kW	cos φ	kW	$\cos \varphi$	kW	0/0	Conow. Transform.	220 kV Leitung	Plym. Transf.	66 kV Leitung
1 2 3 4 5 6 7	36 000 72 000 108 000 144 000 180 000 216 000 252 000	0,90 0,90 0,90 0,90 0,90 0,92 0,94	34 600 68 600 103 200 136 600 169 400 202 000 234 000	0,80 0,94 0,95 0,98 0,99 1 - 0,99	1 400 3 400 4 800 7 400 10 600 14 000 18 000	3,9 4,7 4,5 5,1 5,6 6,5 7,3	23 18,5 20 17 15 14 12	8 13,5 22 25 28 27 ¹⁾	27 18 19 16 14 14	42 50 39 42 43 45 49

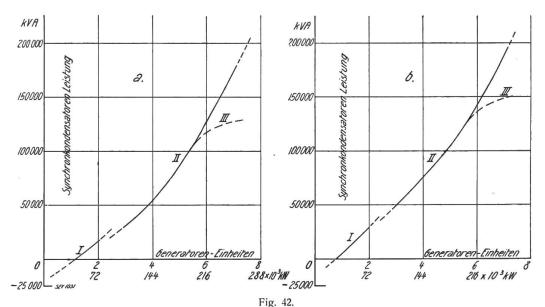
kondensatoren. Die Verluste der Kondensatoren belaufen sich, je nach der Grösse und verwendeten Konstruktion, bei der maximalen Belastung von 174000 kVA auf etwa 3000 kW. Der Gesamt-Wirkungsgrad der Kraftübertragung beträgt also ungefähr $91^{1/2}$ %.

E. Die Grenzleistungen.

Die maximale, stabile Leistung, welche die Kraftübertragung bei 220 kV Endspannung liefern könnte, ergibt sich aus Gleichung 37 zu: $P_{e \text{ max}} = (n - l)$ $E^2 = (0.021796 - 0.003764) \cdot 220000^2 = 870000$ kW pro Leitung.

Q (voreilend) ×103-jkVA 100 50 500x103kW 0 100 100 Q(nacheilend) Q (voreilend) x10 - jkVA B 100 50 500 103 KW P 50 100 Q(nacheilend) 22021521005 Q (voreilend) x103-jKVA 500 × 103 KW 0 400 50 100 150 x 103+1 avms Q inacheilend

Fig. 41. Sende-"(konkav nach oben) und Empfangskreise (konkav nach unten) der 220 kV-Leitung Conowingo-Plymouth-Meeting.


 $E_a = 220 \text{ kV konstant.}$ $E_e = \text{veränderlich.}$ $E_a = 225 \text{ kV konstant},$ $E_e = \text{veränderlich},$ $E_a = 230 \text{ kV konstant},$

= veränderlich.

Diese Leistung bezieht sich nur auf die Hochspannungsleitung allein. Für die Energielieferung nach Philadelphia sind aber die Impedanzen der Transformatoren und Synchronmaschinen miteinzuschlies-Ausserdem ist es infolge der Ungleichförmigkeit des Betriebes und der vorkommenden Störungen, wie wir gesehen haben, nicht angängig, die Leitung bis zur Stabilitätsgrenze zu belasten. Die verschiedenen Faktoren, die hier hineinspielen, wurden im Abschnitt über die dynamische Stabilität eingehend diskutiert. Bei der Projektierung von "Conowingo" wurde denn auch auf dieselben Rücksicht genommen und die Generatoren, das Erregersystem, die Transformatoren und der Relaisschutz entsprechend ausgeführt. Bei der Erwägung des zulässigen Betriebswinkels der Endspannungen, für die Bestimmung der Nennleistung, wurden zudem auch die Arten der voraussichtlichen Störungen, die lokalen Erdverhältnisse und vor allem der Grad der gewünschten Betriebszuverlässigkeitin Rechnung gebracht. Auf Grund dieser Vorstudien schien die Wahl eines Spannungswinkels zwischen dem 66 kV-Vektor im Unterwerk "Plymouth-Meeting" und der internen Generatorenspannung in Conowingo von 40° angezeigt.

Die zulässige Betriebsleistung wird damit bei 220 kV Endspannung und der Generatorenreaktanz von $X_{\text{streuung}} = 21 \%$, 300 000 kW. – Vergleiche dazu Fig. 12.

Die Uebertragung der Generatorenleistung von 7 Maschinen, 252 000 kW über eine einzige Leitung ist somit ohne weitere Massnahmen zulässig.

Abhängigkeit der Kondensatorenleistung am Empfangsende (Philadelphia) von der Belastung. (Leistungsfaktor des Netzes $\cos \varphi = 0.85$.)

a Zwei 220 kV-Leitungen in Betrieb.

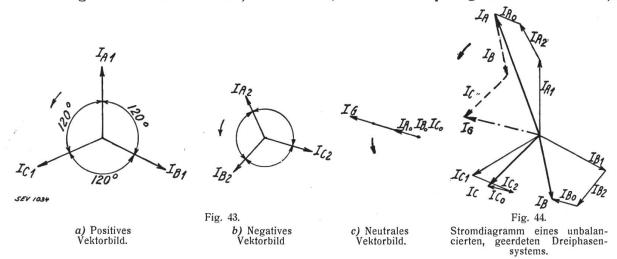
b Eine 220 kV Leitung in Betrieb (Fall "C").

Kurven I: Ein 100 000 kVA-Dreiphasentransformator in Plymouth-Meeting in Betrieb. Kurven II: Zwei 100 000 kVA-Dreiphasentransformatoren in Plymouth-Meeting in Betrieb. Kurven III: Bei Abgabe der Ueberschussenergie in das Koppelungsnetz.

F. Das Verhalten bei Störungen.

Die Methode der symmetrischen Komponenten. 33)

Ein ausgezeichnetes Mittel zur Berechnung von Strom und Spannung bei Störungserscheinungen bietet die Methode der symmetrischen Komponenten. Diese Methode beruht auf dem von C. L. Fortescue gefundenen Prinzip, dass sich irgend drei Vektoren (Strom oder Spannung) eines Dreiphasensystems in je drei Komponentengruppen zerlegen lassen, von denen zwei immer symmetrisch sind, die dritte aber immer aus drei Vektoren von gleicher Grösse und Phase besteht. Diese Vektorengruppen sind von Fortescue als "die Komponenten der positiven, negativen und neutralen Phasenfolge" bezeichnet worden.


Bei der Annahme der positiven Richtung im Gegenuhrzeigersinn eilt im positiven Vektorbild die Phasenkomponente "B" derjenigen von "A" um den Winkel von 120 o nach; im negativen Vektorbild um 120 vor. Die Bezeichnungsfolge geht aus Fig. 43 hervor, in welcher z. B. die Komponentengruppen für ein Stromdiagramm nach Fig. 44 dargestellt sind.

Auf ein geerdetes oder Vierleiter-Dreiphasensystem bezogen ergibt sich, dass in jedem Augenblick die eine positive bzw. negative Komponente in einer Phase gleich der Summe der positiven bzw. negativen Komponenten in den beiden andern Phasen ist. Jede Gruppe für sich ist balanciert; es fliesst auch kein äusserer Strom,

³³⁾ C. F. Fortescue: "Method of Symmetrical Co-ordinates applied to the Solution of Polyphase Networks", Trans. A. I. E. E. 1918, Part. 2, S. 1027.

V. Karapetoff: "Experimental Electrical Engineering", 2. Aufl. 1927, Bd. II, S. 118 bis 132. L. G. Stokvis, Electrical World 1915, Vol. 65, S. 1111.

aber für die Summe der positiven und negativen Komponenten der einzelnen Phasen resultiert eine Unsymmetrie der einzelnen Phasenströme. Die Verhältnisse ändern sich durch Einführung der neutralen Komponenten. Da dieselben von gleicher Grösse und Phase sind, addieren sie sich arithmetisch und sind gezwungen, als Summenstrom durch den gemeinsamen Nulleiter, bezw. Erde, zu ihrem Ursprung zurückzukehren ³⁴).

Es werden, wie aus obiger Darlegung hervorgeht, deshalb bei Berechnung von dreiphasigen Kurzschlüssen nur die positiven, bei zweiphasigen Kurzschlüssen die positiven und negativen und bei Erdschlüssen die positiven, negativen und neutralen Komponentengruppen benötigt.

Das Netzbild zur Berechnung der positiven Komponenten entspricht genau dem üblichen Bild für die Berechnung von Dreiphasen-Kurzschlüssen. Das negative Netzbild ist mit dem positiven identisch, nur muss die Anfangsimpedanz der Synchronmaschinen zu 73 % des vorherigen Wertes eingesetzt werden. Für die Berechnung der neutralen Komponente müssen nur diejenigen Netzteile in Betracht gezogen werden, durch die ein Erdschlusstrom fliessen kann. Die Anfangsimpedanz der Synchronmaschinen (Generatoren, Kondensatoren usw.) ist hierin ca. 27 %, dagegen muss für eine Freileitung die Impedanz zum drei- bis vierfachen Wert der normalen Impedanz genommen werden, währenddem sie sich für Kabel, je nach deren Konstruktion, oft auf einen Bruchteil reduziert. 35).

35) Symmetrische Reaktanz in % des normalen Wertes für Synchronmaschinen.

für Berechnung	Indepedanzkompone	nte in ⁰ / ₀ des normalen	3-phasigen Wertes
des:	Z ₁ (positive)	Z_2 (negative)	Z_0 (neutrale)
Anfangskurzschlusses	100	73	27
a) Hydroelektrische Generatoren	100	35	15
b) Turbo-Generatoren	100	15	5

Die "positive" und "negative" Reaktanz einer Leitung ist unverändert, d. h. gleich der normalen, dreiphasigen; dagegen hängt die "neutrale" Reaktanz von der Leiteranordnung und dem Abstand (h) der Rückleitung in der Erde bzw. Kabelmantel ab. — Für Freileitungen lässt sie sich nach folgender

Formel berechnen: $X_0 = 0{,}00875 \ f \log_{10} \frac{h}{R_0}$ Ohm/km Phase.

³⁴) Die einzelnen Komponenten verhalten sich so, wie wenn an der Fehlerstelle eine metallische Verbindung zwischen allen drei Phasen bestände. Bei Bildung der Summe heben sie sich jedoch teilweise auf, so dass das Ergebnis den wirklichen Verhältnissen entspricht.

f = Periodenzahl; $R_0 = \text{"aquivalenter}$, mittlerer, geometrischer Radius der Leiter; h = Abstand des ideellen Rückleiters von den Leitern, ist zu 1000 bis 1500 m im Mittel anzunehmen. — Da die Reaktanz mit dem Logarithmus von h dividiert durch R_0 "andert, haben selbst sehr grosse Abweichungen des angenommenen h vom wirklichen Wert nur einen kleinen Einfluss. Meistens ist es genau genug, die neutrale Impedanz einer Freileitung zum Vierfachen der gewöhnlichen Impedanz zu nehmen.

Die Bestimmung der Ströme zum Relaisschutz und zur Schalterwahl und der Einfluss der Reaktanz von Kondensatoren und Transformatoren auf die Stabilität.

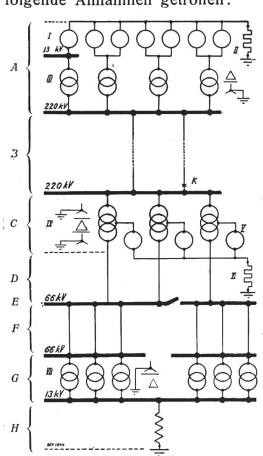

Das Betriebsschema, das unserer Betrachtung zugrunde gelegt wird, ist mit den zugehörenden Angaben in Fig. 45 gegeben. Als Störung ist ein Erdschluss in einer der 220 kV-Leitungen in der Nähe vom Unterwerk "Plymouth-Meeting" angenommen (bei K). Ueberdies werden noch folgende Annahmen getroffen:

Fig. 45. Betriebsschema der Kraftübertragung Conowingo-Philadelphia, für welches die Betrachtungen unter F (Seite 535) durchgeführt wurden. Es sind darin bereits Anlagen berücksichtigt, welche z. Z. noch im Bau oder erst projektiert sind. A Hydroelektrisches Kraftwerk Conowingo. $7{\times}40\,000$ kVA-Generatoren; Reaktanz je 62,5 %. Erdungswiderstand 4 \varOmega . Dimensionierung: 2000 A während 1 min. III 4×80 000 kVA-Transformat. 13,8/220 kV; Reaktanz je 12,5%/0. B Zwei Freileitungen 220 kV. Länge 93 km; Normale Betriebsleistung je 125000 kW; Reaktanz pro Phase 10%. Reaktanz pro Phase für neutrale Komponente 32,8%. Unterwerk Plymouth-Meeting. IV 3×100 000 kVA-Dreiwicklungstransformatoren. Reaktanzen (s. Fig. 40): Oberspannung zu Unterspg. 9,5% Oberspg. zu Tertiärwicklung 10,1%. Unterspg. zu Tertiärwicklg. 16,0%. V 3×(20000 oder 30000) kVA-Synchronkondensatoren; Reaktanz zu 0, 100, 200 und ∞0/₀ angenommen. VI Erdungswiderstand 4Ω, wie II. Drei Freileitungen 66 kV. Länge 16,5 km; Nennleistung je 100 000 kVA; Reaktanz pro Phase 17,2%. Reaktanz pro Phase für neutrale Komponente 100%.

- Reaktanz pro Phase für neutrale Ko

 E Unterwerk Westmoreland.

 F Sechs Kabelleitungen 66 kV.
 - Länge 8,5 km; Nennleistung je 50 000 kVA; Reaktanz pro Phase 4,1%. Reaktanz pro Phase für neutrale Komponente 2,6%.
- G Thermisches Kraftwerk Schuylkill. VII 6×60 000 kVA Transformatoren; Reaktanz je 14,1 %.
- H Philadelphia Electric System, Philadelphia.
 Aequivalent des Systems (Kraftwerke und Verteilnetz);
 Reaktanz bestimmt zu 10,5%.
 Alle Reaktanzen beziehen sich auf 100000 kVA.

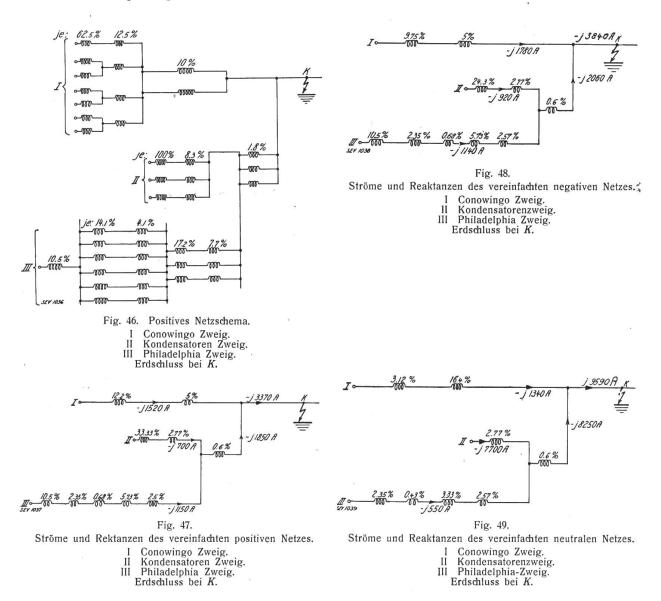
Der Vergleich ist für Synchronkondensatoren mit nachstehenden Reaktanzwerten, auf 100 000 kVA bezogen, durchzuführen: 1.0 %, d.h. unendlicher Leistung; 2.100 %; 3.200 % und 4. ∞ Reaktanz, d.h. keine Kondensatoren in Plymouth-Meeting.

Als Rechnungsbeispiel wählen wir den Fall mit 100 %, entsprechend beispielsweise der Verwendung von drei Synchronkondensatoren von je 20 000 kVA und 20 % Reaktanz. — Bei der Durchrechnung ergeben sich, ausser den gesuchten Werten, auch die Ströme für den dreiphasigen Kurzschluss ohne weiteres.

Der Bezugsstrom wird bei einer Bezugsbasis der Reaktanzen auf 100 000 kVA und 220 kV:

$$I_{\rm n} = \frac{{\rm kVA}}{\sqrt{3} {\rm kV}} = \frac{100000}{\sqrt{3} \cdot 220} = 262 {\rm A}.$$

Aus dem Anlageschema, Fig. 45, ergibt sich zur Berechnung der positiven Stromkomponenten das Netzbild nach Fig. 46.


Die einzelnen Ströme berechnen sich mit Hilfe der resultierenden Reaktanzen zu:

Conowingo Zweig
$$I=\frac{100 \cdot I_n}{Z_{\text{Zweig}}}=\frac{100 \cdot 262}{17,2}=1520 \text{ A.}$$

Kondensatoren und Philadelphia Zweig $I=\frac{100 \cdot 262}{\frac{36,1 \cdot 21,83}{36,1+21,83}+0,6}=1850 \text{ A.}$

Totaler positiver Kurzschlusstrom $1520+1850=3370 \text{ A.}$

Der Gesamtstrom und die Zweigströme sind in Fig. 47 eingezeichnet. Sie haben alle eine Nacheilung von $90^{\,0}$ und sind deshalb mit dem -j Vorzeichen zu versehen. Diese "positiven" Ströme sind, auf 220 kV bezogen, die wirklichen Ströme bei direktem dreiphasigem Kurzschluss.

Das negative Netzbild ist dem positiven gleich, mit Ausnahme der auf 73 % reduzierten Reaktanzen der Generatoren und Kondensatoren; also 45,6 % statt 62,5 %, bzw. 73 % statt 100 %. Das Ergebnis ist in Fig. 48 gegeben.

Das Netzbild der neutralen Komponente ist von den beiden vorigen insofern verschieden, als dass die Reaktanzen der Generatoren, Kondensatoren und diejenige des Philadelphia-Systems unterhalb 66 kV infolge der Schaltung ausscheiden. Die Reaktanz der Freileitung und der Kabelleitung müssen entsprechend den (in Fig. 45) gegebenen Werten erhöht bzw. verringert werden. Das Resultat ist Fig. 49.

Bei Kenntnis der einzelnen unabhängigen Fehlerstromkomponenten lassen sich die einzelnen Impedanzen bei Bezug auf die gleiche Basis, in unserem Fall 100000 kVA, wie folgt finden:

$$Z \% = \frac{100 I_n}{\text{Fehlerstromkomponente}}$$
 also:

positive Impedanz
$$Z_1 = \frac{100 \cdot 262}{3370} = 7,78 \%$$

negative Impedanz $Z_2 = \frac{100 \cdot 262}{3840} = 6,83 \%$
neutrale Impedanz $Z_0 = \frac{100 \cdot 262}{9590} = 2,73 \%$.

Mit diesen Impedanzen bzw. Reaktanzen — der Ohmsche Widerstand wurde vernachlässigt — lässt sich die wirkliche positive Komponente des Fehlerstromes berechnen. Wird die Spannung der Phase "A" $E_{\rm A}$ als Referenzvektor angenommen,

so ist:
$$I_{A1} = \frac{E_A}{Z_1 + Z_2 + Z_0}$$
 A, wenn Z in Ohm,

oder auch: $I_{A1} = \frac{100 \cdot I_n}{Z_1 + Z_2 + Z_0}$ A, wenn Z in % und gleicher Basis wie I_n eingesetzt wird.

Aus I_{A1} lassen sich alle übrigen Komponenten ableiten. Es bestehen die Beziehungen (siehe Diagramme Fig. 43 und 44):

Positive Komponenten: $I_{A1} = a \ I_{B1} = a^2 \ I_{C1}$; $I_{B1} = a^2 \ I_{A1} = a \ I_{C1}$; $I_{C1} = a \ I_{A1} = a^2 \ I_{B1}$. Negative Komponenten: $I_{A2} = a^2 \ I_{B2} = a \ I_{C2}$; $I_{B2} = a \ I_{A2} = a^2 \ I_{C2}$; $I_{C2} = a^2 \ I_{A2} = a \ I_{B2}$. Neutrale Komponenten: $I_{A0} = I_{B0} = I_{C0}$, die alle in Phase sind, so dass der Erdschluss-Strom wird: $I_G = I_{A0} + I_{B0} + I_{C0} = 3 \ I_{A0} = 3 \ I_{B0} = 3 \ I_{C0}$ oder auch $= I_A + I_B + I_C$, denn die Phasenströme sind:

$$I_{A} = I_{A1} + I_{A2} + I_{A0}$$

 $I_{B} = I_{B1} + I_{B2} + I_{B0}$
 $I_{C} = I_{C1} + I_{C2} + I_{C0}$

a = (-0.5 + i 0.866) ist der Rotationsfaktor der Vektoren für 120°.

Aus den gegebenen Gleichungen lässt sich bei einem direkten Erdschluss in Phase "A" die Beziehung ableiten:

 $I_{A1}=I_{A2}=I_{A0}=I_{B0}=I_{C0}$, so dass wird: $I_{A}=3$ $I_{A1}=I_{G}$, dem Erdschlusstrom.

Auf unser Beispiel angewendet wird somit:

$$I_{A1} = \frac{100 \cdot 262}{7,78 + 6,83 + 2,73} = \frac{26200}{17,34} = 1510 \text{ A}$$

und der Erdschlusstrom: $I_G = 3 I_{A1} = 4530 A$.

Daraus lassen sich die verschiedenen Komponenten und die Gesamtströme in den einzelnen Zweigen und, unter Berücksichtigung der betreffenden Spannungen, der tatsächlich auftretende Strom in jeder Phase berechnen. Diesen wirklichen Strömen entsprechend sind die Relais und Schalter zu bemessen und für ein folgerichtiges Arbeiten einzustellen.

Es kann vorkommen, dass bei gewissen Leitungsnetzen der Einfluss des Ohmschen Widerstandes, der Kapazität und des Belastungsstromes so gross ist, dass er nicht vernachlässigt werden darf. Eine genaue Rechnung lässt sich in diesen Fällen unter Verwendung der symmetrischen Komponenten und mit Hilfe der Leitungskonstanten, anstatt der Reaktanz, durchführen ³⁶).

Für die Stabilität und die durchgehende Leistung ist die "positive Spannung" am Fehlerort massgebend. Um diese zu finden, kann die einphasige, unsymmetrische

³⁶) Evans and Wagner, Trans. A. I. E. E. 1926, S. 73.

Belastung des Erdschlusses durch eine äquivalente dreiphasige Last ersetzt werden, welche genau dieselben positiven Spannungskomponenten zur Folge hat. Die Impedanz der dreiphasigen äquivalenten Fehlerbelastung ist gleich der Summe der negativen plus neutralen Impedanz: ³⁷)

$$Z_{\rm F1}=Z_2+Z_0,$$

in unserem Fall:

$$Z_{\text{F1}} = 6.83 + 2.73 \Rightarrow 9.56 \%$$
.

Damit ergibt sich das Verhältnis der positiven Spannungen am Fehlerort zu derjenigen im Generator zu:

$$\frac{E_{\text{F1}}}{E_{\text{Gen.}}} = \frac{Z_2 + Z_0}{Z_1 + Z_2 + Z_0} = \frac{9,56}{17,34} = 0,5513.$$

Mit andern Worten: Die positive Spannung im Unterwerk "Plymouth-Meeting" fällt bei einem direkten Erdschluss in einer der 220 kV-Leitungen auf 55,13 %; wenn Synchronkondensatoren mit einer Reaktanz von 100 % auf 100 000 kVA bezogen, oder z. B. $3\times20\,900$ kVA-Einheiten mit X=20%, verwendet werden. In Tabelle VI ist das Resultat für die verschiedenen angenommenen Reaktanzen

In Tabelle VI ist das Resultat für die verschiedenen angenommenen Reaktanzen der Synchronkondensatoren und den Fall der dreifachen Reaktanz der Transformatoren-Hochspannungswicklung zusammengestellt worden.

Einfluss der Reaktanz von Synchronkondensatoren und Transformatoren auf Strom und Spannung bei Kurzschlüssen.

Tabelle VI.

Reaktanz der Transformatoren- Hochspannungswicklung	Reaktanz¹) der Synchron- Kondensatoren ⁰ / ₀	Dreiphasen- Kurzschlusstrom A	Strom bei direktem einphasigen Erdschluss A	Positive Spannung am Fehlerort bei direktem Erdschluss
1,8	$ \begin{array}{c} $	2 740 3 040 3 370 10 220	3 720 4 140 4 530 10 080	54,4 54,6 55,1 67,0
5,4	200 100 0 ³)	2 630 2 940 3 220 7 720	3 465 3 840 4 170 7 650	55,8 56,3 57,0 66,8
	0000 kVA Basis. ine Kondensatoren.		l densatoren unendlicher Le der normalen Spannung.	eistung.

Die Folgerungen aus diesen Ergebnissen können kurz folgendermassen zusammengefasst werden:

Die Reaktanz der Kondensatoren, insbesondere im Bereich heute üblicher Konstruktionen, hat einen verhältnismässig kleinen Einfluss auf die Hochhaltung der Spannung bei Kurzschlüssen. Die höhere Transformatorenimpedanz hat hier einen günstigen Einfluss. Es folgt auch, dass die Zweckmässigkeit eines mehr oder weniger direkten Anschlusses der Kondensatoren an die Leitung in grossem Masse von deren Leistungsfähigkeit abhängt ³⁸). Bei Verwendung von Dreiwicklungstransformatoren wird man selbstverständlich bestrebt sein, die Reaktanz der Hochspannungswicklung niedrig zu halten, da sie eine Serieimpedanz im Stromkreis der Uebertragung bildet und dazu beiträgt, die übertragbare Leistung zu begrenzen.

 $^{^{37}}$) Trans. A. I. E. E. 1926, S. 79. – Ein einphasiger Kurzschluss zwischen zwei Leitern lässt sich durch eine äquivalente, symmetrische Fehlerbelastung an der Kurzschlusstelle ersetzen, deren Impedanz gleich der negativen Komponente ist; also $Z_{\rm F}=Z_{\rm 2}$.

 $^{^{38}}$) Die Kondensatoren in Plymouth-Meeting besitzen eine Leistung von je 30000 kVA. Sie sind grosser Ueberlastung fähig und imstande, ihre Leistung um 45000 kVA (von 10000 auf 55000 kVA) innert $^{1}\!/_{2}$ Sekunde zu erhöhen.

G. Besondere Eigenschaften der Conowingo-Leitung.

Zur Vervollständigung des Bildes dieser Kraftübertragung seien noch folgende Angaben, die von allgemeinem Interesse sind, hinzugefügt:

Die Spannungserhöhung, welcher die Leitung am Ende, bei offenen Schaltern im Unterwerk "Plymouth-Meeting" unterworfen ist, berechnet sich nach Gleichung 12 zu 221 kV bei 220 kV Sendespannung. Sie ist also ohne Bedeutung.

Die Ladeleistung dagegen fällt mehr ins Gewicht. Der Ladestrom ist bei 220 kV 38 A, was einer voreilenden Scheinleistung von 14500 kVA pro Leitung entspricht.

Der Schutz gegen Spannungs- und Drehzahlzunahme bei plötzlicher Entlastung. Das Oeffnen der Schalter im Unterwerk in Philadelphia hat eine bedeutende Spannungszunahme im Hauptwerk zur Folge. Die Spannung nimmt infolge Wegfallens des Generatoren- und Transformatorenabfalls und der Wirkung des stark zur Geltung kommenden Ladestromes zu. Eine weitere Erhöhung tritt ausserdem durch die Zunahme der Drehzahl der Generatoren und Erreger ein. Der in der Praxis vorkommende ungünstigste Fall ergibt sich, wenn zwei Generatoren, die über die beiden Leitungen vollbelastet arbeiten, durch Oeffnen der Schalter am Ende entlastet werden. Bei einer um 33 % gesteigerten Drehzahl, die innert 4 bis 5 Sekunden erreicht wird, steigt die Spannung auf 190 % des normalen Wertes, also 420 000 V, an. Schutzmittel dagegen bieten Ueberspannungs-, Drehzahl- oder Frequenzrelais in Verbindung mit rasch auslösenden Schaltern. Die Ueberspannung lässt sich dadurch – Abschaltung innert einer Sekunde – auf 40 bis 50 % reduzieren.

Die erwarteten atmosphärischen Ueberspannungen können in gewissen Fällen die Isolationsfestigkeit der Leitung erreichen. Die 3 Meter langen, aus 14 Gliedern bestehenden Isolatorenketten schlagen bei einer Spannung von 2 Millonen V und einer Wellenstirn von 16 m über. Kraftwerk und Unterwerk wurden deshalb nach reiflicher Ueberlegung und Untersuchungen als erste Anlage dieser hohen Spannung mit Drosselspulen und 220 kV Ueberspannungsableitern ausgerüstet.

Das Relais-Schutzsystem der 220 kV-Leitungen wird durch zwei voneinander unabhängigen Relaissätzen gebildet, wovon die eine Gruppe gegen Phasen-, die andere gegen Erdschlüsse dient.

Der Phasenschutz jeder Leitung besteht aus drei polarisierten Impedanzrelais. In der Regel genügt es, diese Relaisart für einen Ansprechstrom einzustellen, der etwas über dem Vollaststrom liegt. Bei grossem Leistungsbereich, wie in vorliegender Anlage, kann es aber vorkommen, dass der Kurzschlusstrom bei minimaler Generatorenleistung nur einen Bruchteil, hier z. B. die Hälfte, des normalen Leitungsstromes bei maximaler Generatorenleistung beträgt. Um ein korrektes Arbeiten des Impedanzrelais zu erreichen, wird dasselbe deshalb von einer Detektorkombination gesteuert, die sich aus drei momentan ansprechenden Unterspannungsrelais, drei momentan ansprechenden Ueberstromrelais und einem Hilfsrelais zusammensetzt. Das Hilfsrelais hält bei normalen Betriebsverhältnissen die Stromspule des Impedanzrelais kurzgeschlossen. Je nachdem nun ein Phasenschluss bei minimaler oder maximaler angeschlossener Generatorenleistung auftritt, funktionieren die Unterspannungs- bzw. Ueberstromrelais und geben durch Auslösen des Hilfsrelais das Impedanzrelais frei.

Ein besonderer Sicherungsschutz für den Fall des Versagens eines der obengenannten Relais wurde nicht vorgesehen. Einen solchen bieten immerhin die Maximalrelais der Transformatoren.

Zum Schutz gegen Erdschluss ist jede Leitung mit einem doppelpoligen, abhängigen Zeitrelais, einem polarisierten Maximalstromrelais und einem einfachen Zeitrelais mit besonders flacher Charakteristik ausgerüstet. Jedes dieser Relais hat einen bestimmten, bevorzugten Arbeitsbereich. Zugleich wirken sie gegenseitig als Sicherungsschutz. Ihre Arbeitsweise ist folgende:

Das doppelpolige Zeitrelais wird so angeschlossen, dass der eine Pol vom Summenstrom der drei Leitungsstromwandler erregt wird, während der andere Pol vom Sekundärstrom aller parallel geschalteter Nulleiterwandler der 220 kV-Transformatoren gespiesen wird. Dadurch wird das Relais selektiv, denn der grössere Anteil des Erdschlusstromes rührt stets von demjenigen Transformator bzw. Transformatorengruppe her, die dem Fehlerort am nächsten liegt. Zudem ist das Relais auch polarisiert, indem die jeweilige momentane Stromrichtung im Summenstrom der Leitung umkehrt, je nachdem sich der Erdschluss vor oder hinter der Anschlussstelle befindet. Die Polarität der Spule, die vom sekundären Nulleiterstrom durchflossen wird, bleibt sich dagegen gleich.

Dieses Relais ist durchaus selektiv und spricht bei allen Erdschlüssen an. Um jedoch die Auslösezeit bei hohem Fehlerstrom zu verringern, wird es von einem momentan ansprechenden Maximalrelais unterstützt. Letzteres ist mit einem Richtungselement versehen und im Summenstromkreis der Leitungswandler angeschlossen.

Die rasche Abschaltung bei geringem Fehlerstrom wird durch das Zeitrelais mit flacher Charakteristik (Magnettyp) besorgt. Dasselbe wird vom Summenstrom der Instrumentstromwandler der Leitung gespiesen. Es betätigt die Schalter durch eine besondere Hilfsauslösespule.

Der Strom für die Relais wird von den Durchführungsstromwandlern der Schalter geliefert. Die Spannung wird in "Plymouth-Meeting" von separaten Spannungswandlern, in Conowingo dagegen von den Durchführungsisolatoren abgenommen, die zu diesem Zweck als Spannungskondensatoren ausgebildet sind.

Die Kurzschlussleistungen im Kraftwerk und in den Unterwerken sind sehr hoch. Sie können bei Kurzschlüssen in der Nähe der 220 kV-Sammelschienen in der Zentrale Conowingo $2^{1}/_{2}$ Millionen kVA, im Unterwerk "Plymouth-Meeting" sogar $3^{1}/_{2}$ Millionen kVA erreichen.

Die Sorgfalt und Planmässigkeit, mit welcher eine Kraftübertragung mit Rücksicht auf die Stabilität projektiert und gebaut werden muss, wird deutlich veranschaulicht, wenn man die Folgen prüft, welche die Installierung einer 66 kV-Sammelschiene zur Energieabgabe im Unterwerk "Plymouth-Meeting" haben kann.

Es ist sogleich ohne weiteres ersichtlich, dass durch die Sammelschiene, bei einem Kurzschluss in einer der 66 kV-Leitungen, alle andern parallelen Leitungen unmittelbar in Mitleidenschaft gezogen werden. Dadurch wird die gesamte Spannung im Unterwerk in der Höhe so stark vermindert und der Phasenwinkel der Endspannungen so rapid vergrössert, dass das System ausser Synchronismus fällt, bevor eine Abschaltung des fehlerhaften Teils möglich ist. Bei getrennter Führung der einzelnen 66 kV-Leitungen haben dagegen die gesunden Speiseleitungen das Bestreben, die Spannung hochzuhalten. Sie geben so Relais und Schalter genügend Zeit, den Fehler vor dem Ausser-Trittfallen der Systemenden unschädlich zu machen.

Es zeigt sich hier im weitern auch, dass man von der statischen Stabilitätsgrenze nicht auf die dynamische Stabilität und damit auf die zulässige Betriebsleistung schliessen darf. Das Zuschalten einer parallelen 66 kV-Leitung erhöht die statische Stabilitätsgrenze um den Betrag der verminderten Reaktanz, währenddem bei Vorhandensein einer Sammelschiene die dynamische Stabilität beinahe unverändert bleibt.

Die Verhältnisse können sich zugunsten einer Sammelschiene verschieben, wenn die Energieabgabe in ein grösseres, eine eigene E. M. K. erzeugendes System erfolgt.

H. Bemerkungen zur Wirtschaftlichkeit.

Das Verhältnis der Kosten einer Kraftübertragung zu denjenigen der gesamten Anlage hängt von den jeweiligen Umständen ab Die nachstehenden Angaben über das Conowingo-Werk und die 220 kV-Leitungen der Southern California Edison Company sollen deshalb nur einen allgemeinen Begriff über die Grössenordnung und die Wirtschaftlichkeit in zwei typischen Fällen geben.

Die totalen Baukosten von "Conowingo" sind, in einzelne Posten unterteilt, in der Tabelle VII zusammengestellt. Sie belaufen sich für den ersten Ausbau von

Baukosten von Stausee, Damm, Zentrale und Kraftübertragung Conowingo. Tabelle VII.

		Baukoste	en in $0/0$ 1)
Pos.		Gesamte Anlage 100 %	Zentrale Pos.6-1 = $100 ^{0}/_{0}$
1	Wasserrechte und Landerwerbungen	9,8	
2	Zufahrtstrassen	0,9	
2 3	Umbau der bestehenden Bahnlinie	10,5	
4	Vorgängige Projektierung, Verwaltungskosten und Zins während		6
	der Bauzeit	15,0	
5	220 kV-Leitungen	5,3	
	Zentrale = 58,5%		
6	Damm, zugleich als Brücke ausgebaut, einschl. Bohrungen und		
	Voruntersuchungen	16,8	28,7
7	Ausbau des Staubeckens, Fassung und Unterwasserkanal	4,8	8,2
8	Maschinenhaus und Fundationen	16,8	28,7
9	Hydraulische Maschinen und Zubehör	5,9	10,0
10	Generatoren, Erreger und Transformatoren	7,4	12,7
11	Schaltanlage und Hochspannungs-Apparate	4,8	8,2
12	Reparaturwerkstätte, Versuchseinrichtungen, Geleiseanschluss und Gebäude für das Betriebspersonal	2,0	3,5
	Gesamte Baukosten in Dollar	52 220 000.—	30 595 400. –

1) Für den ersten Ausbau von 280 000 kW (7 Maschineneinheiten) und eine durchschnittliche Jahresproduktion von 1250 000 000 kWh. Pos. 1, 2, 3, 6, 7, 12, teilweise 4, genügen bereits auch dem Vollausbau auf 450 000 kW.

280 000 kW auf 52 220 000 Dollar. Die durchschnittliche jährliche Energieproduktion beträgt 1 250 000 000 kWh effektiv in Philadelphia. Die gesamten Jahresausgaben für Kapitalzins, Betriebskosten, Abschreibungen, Rücklagen usf. können für die überschlägige Rechnung mit genügender Genauigkeit zu 10 % des investierten Kapitals in Rechnung gebracht werden. Mit diesem Ansatz stellt sich der Energiegestehungspreis in Philadelphia auf:

$$\frac{5220000 \cdot 10^2}{1250 \cdot 10^6} = 0.42 \text{ Cent/kWh.}$$

Die Jahresausgaben der 220 kV-Leitung belaufen sich bei einem Ansatz von 11 % des dafür ausgegebenen Kapitals auf:

$$\frac{305\,000\cdot 10^2}{1\,250\cdot 10^6} = \frac{0,0244\,\text{Cent/kWh.}}{}$$

Die gesamten Uebertragungskosten, einschliesslich aller Verluste und der Transformierung auf 66 kV, bleiben unter 0,05 Cent/kWh und belasten somit den Strompreis um nur ca. 10 bis 15%.

Bei Betrachtung des Energiepreises von 0,42 Cent/kWh ist zu berücksichtigen, dass es sich um ein ausgesprochenes Saison-Werk handelt, das nur während eines Bruchteiles des Jahres voll ausgenützt werden kann. Ausserdem steht es aber während den Monaten geringerer Wasserführung des Susquehanna als Reserve und zur Deckung der Spitzenleistungen mit 180 000 kVA jederzeit durch das 220 kV-Kuppelungsnetz allen angeschlossenen Werken zur Verfügung. Dieser letztere Umstand ist von ganz hervorragender wirtschaftlicher Bedeutung.

Ein gutes Beispiel über den Einfluss der Wahl hoher Spannungen bei Grosskraftübertragungen auf die Kosten zeigen die Vergleichsrechnungen, welche die Southern California Edison Company für ihre beiden 220 kV "Big Creek"-Leitungen durchgeführt hat. Diese zwei Leitungen von je 400 km Länge waren bis Mai 1923 mit einer Spannung von 150 kV in Betrieb. Untersuchungen zeigten damals, dass die Leistung dieser Uebertragung bei Umbau für 220 kV verdoppelt werden könnte. Gegenüber dem andernfalls notwendigen Bau zweier weitern 150 kV-Leitungen ergab die erstere Lösung eine Ersparnis von 7000000 Dollar. Die Wirtschaftlichkeit wird bei der höhern Spannung ausserdem noch durch die geringern Betriebskosten verbessert.

Schlussbetrachtung.

In der vorstehenden Arbeit wurde versucht, ein möglichst zusammenhängendes Bild des Problems der Kraftübertragung zu geben, so dass der projektierende, wie leitende Ingenieur sich ein Urteil über die technische und wirtschaftliche Tragweite der einzelnen Faktoren für sich, sowohl wie im Hinblick auf das Ganze bilden kann. Dabei wurde es zwangsläufig nötig, die Energieerzeugung miteinzubeziehen.

Naturgemäss kennen die Gesetze technischer Notwendigkeit und wirtschaftlicher Zweckmässigkeit keine willkürlich gezogenen Gesellschaftsgrenzen der angeschlossenen Werke, sondern beeinflussen alle Glieder einer Verbundswirtschaft in demselben Mass. Die übliche Betrachtungsweise der isolierten Abstraktion, die bis dahin die technischen und wirtschaftlichen Richtlinien der Elektrizitätsversorgung beherrscht hat, muss im Interesse einer rationellen Entwicklung auf ein neues Begriffsgebäude gestellt werden, das die gesamte Energiewirtschaft eines Landes als Einheit umfasst. Auf dieser Grundlage erfüllen wir die Eingangs gestellte Forderung des organischen Aufbaues eines Kraftsystems und die Bedingungen zur Schaffung eines Leistungsorganismus von gewaltig gesteigerter Leistungsfähigkeit. Vermöge der grossen potentiellen Energien, die uns in der Schweiz zur Ver-

fügung stehen und unserer günstigen geographischen Lage, können wir die Entwicklung der europäischen Elektrizitätswirtschaft in hohem Masse beeinflussen, wenn es uns gelingt, die technischen, wirtschaftlichen und organisatorischen Forderungen der Energiewirtschaft zu erfüllen und damit die weitestgehende Verwer-

tung unserer Wasserkräfte zu ermöglichen.

Literatur-Verzeichnis.

(Fortsetzung von S. 507.)

63. "Operating Plans and Expected Costs of Conowingo". Electrical World 1927, S. 307, Aug. 13.
64. W. C. L. Eglin: "The Conowingo-Hydro-Electric Project of the Philadelphia Electric Company's System-with particular reference to Interconnection". J. A. I. E. E., June 1928.
65. Alex Wilson: "The Conowingo-Hydroelectric Development". J. A. I. E. E., Sept. 1928.
66. R. A. Hentz: "Electrical Features of the Conowingo Generating Station and the Receiving Substations at Philadelphia". J. A. I. E. E., Sept. 1928.
67. P. H. Chase: "220-kV Transmission Line for the Conowingo Development". J. A. I. E. E., Oct. 1928.

Technische Mitteilungen. – Communications de nature technique.

Spannungsprüfanlage für 2 Millionen Volt Prüfspannung.

Die immer höher werdenden Betriebsspannungen bedingen automatisch Prüfanlagen mit höherer Spannung. Vor einem Monat hat nun die Firma Koch & Sterzel A.-G. in Dresden eine Transformatorenanlage für 2 Millionen Volt

und 1200 kVA vorgeführt. Während man früher die hohen Spannungen in Transformatoren dadurch zu bewältigen suchte, dass man zu Isolationsmaterialien mit immer höheren Durchbruchsfestigkeiten griff, ist man später dazu gekommen, die die Spannung erzeugenden Transformatoren in Einzelglieder aufzuteilen und zu staffeln, derart, dass z. B. drei Transformatoren zu 333 000 V gewissermassen in Serie geschaltet werden, so

dass die Endspannung rund 1 Million V beträgt. Dadurch konnte die Betriebssicherheit dieser Apparate erheblich gesteigert werden. Die vorgeführte Anlage besteht aus 5 Transformatoren, von denen jeder für 400 000 V gebaut ist. Durch die sogenannte Staffelschaltung ist es möglich, mit diesen 5 Transformatoren die Summenspan-nung von 2 Millionen V zu erreichen. Wie aus der Figur hervorgeht, liegt der mittlere Trans-formator an Erde; die Spannung von 2 Millionen V besteht also zwischen den beiden äussersten Transformatoren. Gegen Erde erzeugt die Anlage 1 Million V. Die volle Spannung $(2 \times 10^6 \text{ V})$ genügt, um Ueberschläge zwischen zwei Spitzen im Abstand von 5 m hervorzu-