Bulletin de l'Association suisse des électriciens
Association suisse des électriciens
49 (1958)
4
Die Anwendung von Netzmodellen und Integrieranlage zur Jntersuchung des dynamischen Verhaltens von Synchronmaschinen
Jucker, E.
nttps://doi.org/10.5169/seals-1058509

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 16.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

führung voraus, so ist die Summe der Mittelwerte $\overline{\varphi}$ und $\overline{\varrho}$ wegen der Zweipunkt-Arbeitsweise gleich Null. Der auf den Stellbereich bezogene Mittelwert $\overline{\mu}$ der Stellgrösse ist dem Quotienten aus Impulsdauer

Blockschaltbild eines Beispiels für die Einteilung der Regler φ Regelabweichung; ε Ausgangsgrösse der Rückführung; μ Stellgrösse; σ Eingangsgrösse der Rückführung

und Impulsabstand, also dem Einschaltverhältnis ε gleich. Dieses bildet zugleich die mittlere Eingangsgrösse σ zur Rückführung. Es gilt also:

$$\overline{\varphi} + \overline{\varrho} \approx 0 \tag{1}$$

$$\overline{\mu} = \varepsilon$$
 (2)

$$\overline{\sigma} = \varepsilon$$
 (3)

Es ist noch über das Übertragungsverhalten der Rückführung zu verfügen. Diese soll Trägheit erster Ordnung aufweisen:

$$T_R \varrho' + \varrho = \delta \sigma \tag{4}$$

 T_R ist die Zeitkonstante der Rückführung δ . Der Rückführbereich ist der Höchstwert der Ausgangsgrösse der Rückführung, der in Beharrung für die maximale Eingangsgrösse $\sigma = 1$ auftritt. Aus den Gl. (1)...(4) erhält man:

$$T_R \overline{\varphi}' + \overline{\varphi} = -\delta_{\mu}$$
(5)

Für die Mittelwerte der Regelabweichung $\overline{\varphi}$ und der Stellgrösse μ gelten somit unter den gemachten Voraussetzungen die Gesetzmässigkeiten des PD-Reglers.

Zunächst ist der vorliegende Regler als Zweipunkt-Regler unstetig. Er kann aber gemäss Gl. (5) als quasistetiger PD-Regler wirken. Wegen des P-Teils und da kein Integralteil vorliegt, ist der Regler statisch. Aus Gl. (5) erkennt man, dass die Vorhaltzeit mit der Zeitkonstante T_R der Rückführung identisch ist. Der Proportionalbereich ergibt sich zu δ , er ist also dem Rückführbereich gleich.

Adresse des Autors:

Dr. F. Galavics, Landis & Gyr A.-G., Zug.

Die Anwendung von Netzmodell und Integrieranlage zur Untersuchung des dynamischen Verhaltens von Synchronmaschinen

Von E. Jucker, Zürich

621.316.313 + 681.143 - 82 : 621.313.32

Bekanntlich sind die Untersuchungen elektrischer Netze mit Hilfe mathematischer Methoden in der Praxis sehr kompliziert und zeitraubend. Es

wurden deshalb schon frühzeitig Modellversuche ausgeführt unter Verwendung von Netzmodellen. Das Wechselstrom-Netzmodell der Contraves A.-G. (Fig. 1) enthält einzelne Schaltelemente, mit welchen beliebige Netze nachgebildet werden können. Da im Modell mit Impedanzen und Admittanzen gerechnet wird, muss die Modellfrequenz nicht mit der Netzfrequenz übereinstimmen. Damit die Induktivitäten und Kapazitäten in Gewicht und Abmessungen genügend klein gebaut werden können, wurde 500 Hz als Modellfrequenz gewählt.

Die Generatoren eines Kraftwerkes werden durch sog. statische Generatorelemente dargestellt. Diese

> Fig. 1 Contraves-Netzmodell

bestehen im wesentlichen aus einem elektronischen Verstärker und einer nachgeschalteten, dekadischvariablen Reaktanz. Die Ausgangsspannung des Verstärkers stellt die EMK des Generators dar, welche nach Amplitude und Phasenlage kontinuierlich einstellbar ist.

Will man das dynamische Verhalten von Synchrongeneratoren im Zusammenhang mit elektrischen Netzen untersuchen, so genügen diese «statischen» Generatorelemente nicht, da laufend Amplitude und Phase geändert werden müssen. Natürlich kann man mit Hilfe von Schrittrechnungen laufend diese Amplituden und Phasenänderungen berechnen, was aber einen relativ grossen Rechenaufwand benötigt. Man muss deshalb das «statische» Generatorelement durch ein «dynamisches» ersetzen.

Hier gibt es prinzipiell zwei Möglichkeiten. Die erste besteht in der Verwendung eines Modellgenerators (wie im Microréseaux) und die zweite, indem man mit einer Analogie-Rechenmaschine laufend Amplituden- und Phasenänderung berechnet, und diese automatisch am «statischen» Generatorelement regelt. Eine vereinfachte Darstellung eines dynamischen Generatorelementes zeigt Fig. 2. Diesem Generatorelement liegt die folgende vereinfachte Bewegungsgleichung des Synchrongenerators zu Grunde:

$$J\,\ddot{\delta} + C\,\dot{\delta} = P_m - P_e$$

 P_m ist die mechanische Antriebsleistung, P_e die an das Netz abgegebene elektrische Leistung und δ der Polradwinkel. Diese Gleichung kann mit einem Doppelservomotor gelöst werden. Der erste Motor gibt ein positives Drehmoment entsprechend P_m und der zweite ein negatives entsprechend $P_e + C\dot{\delta}$. Die Wellenstellung des Motors ergibt dann als Resultat den Polradwinkel δ . Die Dämpfung $C\dot{\delta}$ wird durch einen Tachometergenerator auf der Motorenwelle erzeugt.

Die Referenzspannung sin $\omega_0 t$ wird um den Polradwinkel δ Phasengeschoben, so dass man die Netzspannung $U_0 \sin (\omega_0 t + \delta)$ am Ausgang des dynamischen Generatorelementes erhält. Mit diesem «dynamischen» Generatorelement können kleine Schwingungen von Synchrongeneratoren im Zusammenhang mit Netzänderungen sehr gut untersucht werden. Als zweite Lösung kann eine Integrier-Anlage (Fig. 3) zur Lösung des Gleichungssystems eines Synchrongenerators herangezogen werden. Die Zusammenschaltung von Netzmodell und Integrier-

Fig. 3 Integrier-Anlage

Anlage zeigt Fig. 4. Die Integrier-Anlage berechnet auf Grund der Spannungen u_{α} , u_{β} , u_{f} und dem mechanischen Antriebsmoment m_{A} , die Ströme i_{α} , i_{β} . Speist man das Netzmodell mit diesen Strömen i_{α} , i_{β} , so kann man im Modell die Spannungen u_{α} , u_{β} sowie ihre Phasenlagen messen, welche man in die Inte-

Prinzipschema der Zusammenschaltung von Netzmodell und Integrieranlage

 i_{α},i_{β} Strangströme, werden von der Integrier-Anlage berechnet u_{α},u_{β} Strangspannungen, werden im Netzmodell gemessen

grier-Anlage zurückführt. Fig. 5 zeigt, das von der Integrier-Anlage zu lösende Gleichungssystem. Sie muss dazu folgende Rechenoperationen ausführen können:

- a) Addition
- b) Integration
- c) Multiplikation
- d) Koordinatentransformation
 - (Phasenschiebung).

Zu a) und b): Eine Beschreibung der Integrier-Anlage IA 55 befindet sich im Bull. SEV Bd. 48(1957), Nr. 23, S. 1017...1020. Die Rechenoperationen a) bis c) werden dort eingehend erklärt.

Zu c) ist zu bemerken, dass mit Funktionsrechenkondensatoren (cos und sin) sehr einfach die Koordinatentransformationen ausgeführt werden können:

$$\bar{x} = x \cos \alpha - y \sin \alpha$$

$$\bar{y} = x \sin \alpha + y \cos \alpha$$

(Drehung eines Koordinatensystems um den Winkel α)

oder

$$x = \varrho \cos \varphi$$
$$y = \varrho \sin \varphi$$

Zu d): Die Phasenschiebung kann auf obige Koordinatentransformation zurückgeführt werden, indem man:

 $x = \cos \omega_0 t; \ y = \sin \omega_0 t$

setzt und erhält:

 $\bar{x} = \cos \omega_0 t \cdot \cos \delta - \sin \omega_0 t \cdot \sin \delta = \cos (\omega_0 t + \delta)$

 $\bar{y} = \cos \omega_0 t \cdot \sin \delta + \sin \omega_0 t \cdot \cos \delta = \sin (\omega_0 t + \delta)$

Die Spannungen \bar{x} , \bar{y} sind gegenüber den Spannungen x, y um die Phase δ verschoben.

Das inverse Element zum Phasenschieber ist das Phasenmessgerät. Es enthält 2 Servosysteme, welche einerseits die Amplitude, anderseits die Phasenlage einer zu messenden Wechselspannung u_x gegenüber einer Referenzspannung u_R anzeigen. Das Schaltschema des Phasenmessgerätes zeigt Fig. 5.

Man speist einen linearen Rechenkondensator mit der zu messenden Grösse u_x . Die Phasenlage der Ausgangsspannung $A u_x$ wird in einem Phasen-

$$\begin{aligned} \frac{d\Psi_{d}}{dt} &= \Psi_{Q} \frac{d\Psi}{dt} - i_{d} \cdot r - u_{d} & \frac{d^{2}\Psi}{dt^{2}} = \frac{1}{T_{m}} \left\{ m_{A} - \Psi_{Q} \cdot i_{d} + \Psi_{d} \cdot i_{Q} \right\} \\ \frac{d\Psi_{Q}}{dt} &= \Psi_{d} \frac{d\Psi}{dt} - i_{Q} \cdot r - u_{Q} & i_{d} = \frac{1}{x_{d}} \left\{ \Psi_{d} + i_{f} - i_{D} \right\} \\ \frac{d\Psi_{f}}{dt} &= \frac{1}{T_{f}} \left(u_{f} - i_{f} \right) & i_{q} = \frac{1}{x_{Q}} \left\{ \Psi_{Q} - i_{Q} \right\} \\ \frac{d\Psi_{D}}{dt} &= -\frac{1}{T_{D}} \cdot i_{D} & i_{f} = \Psi_{f} + i_{d} \times d \left(1 - \sigma_{df} \right) + i_{D} \left(1 - \mathcal{M}_{f} \right) \\ \frac{d\Psi_{Q}}{dt} &= -\frac{1}{T_{Q}} \cdot i_{Q} & i_{D} = \Psi_{D} - i_{d} \times d \left(1 - \sigma_{dD} \right) + i_{f} \left(1 - \mathcal{M}_{D} \right) \\ \frac{di_{o}}{dt} &= -\frac{1}{x_{o}} \left(u_{o} + i_{o} \cdot r \right) & i_{Q} = \Psi_{Q} - i_{Q} \times q \left(1 - \sigma_{Q} \right) \end{aligned}$$

Heichungssystem der Synchronmaschine

i Strom; u Spannung; ψ Flussverkettung; \Im Winkel zwischen Polrad und Statorstrang α ; δ Polradwinkel; ω_0 Kreisfrequenz; m_A Antriebsdrehmoment; x Reaktanz; σ Streukoeffizient; μ Abschirmungskoeffizient; T Zeitkonstante; r Statorwiderstand; d Längsfeld der Statorwicklung; q Querfeld der Statorwicklung; α , β Statorstränge; f Feldwicklung (Polrad); D Längsfeld der Dämpferwicklung; Q Querfeld der Dämpferwicklung schieber verändert. In einem Addierglied bildet man die Differenzspannung Δu zwischen der so erhaltenen Spannung $A \ \bar{u}_x$ und der Referenzspannung u_R . In einem Demodulator wird die Normalkomponente Δu_n von Δu zur Referenzspannung u_R phasenrichtig demoduliert. Die erhaltene Gleichspannung wird wieder moduliert und über einen Servoverstärker auf den Antriebsmotor des Phasenschiebers gegeben. Dieser ändert die Phase von $A \ \bar{u}_x$ solange, bis $\Delta u_n = 0$ wird und damit auch $\Delta \varphi$, die Phase zwischen u_0 und $A \ \bar{u}_x$ Null ist. Der Drehwinkel φ des Phasenschiebers zeigt dann die Phasenverschiebung φ zwischen der Referenzspannung u_R und der zu messenden Spannung u_x . Demoduliert man $A \ \bar{u}_x$ und u_R , und bildet die Differenzspannung zwischen

den erhaltenen Gleichspannungen, so kann man mit dieser Fehlerspannung über einen Servoverstärker den Antriebsmotor des linearen Rechenkondensators (Amplitude) steuern. Die Wellenstellung dieses Rechenkondensators zeigt dann die Amplitude von u_x an.

Schaltet man die erwähnten Rechenelemente und Messelemente entsprechend dem Gleichungssystem der Fig. 6 zusammen, so erhält man ein Rechenschema wie Fig. 7 zeigt. Wie oben erwähnt, rechnet die Integrier-Anlage auf Grund der Eingangsgrössen u_f , u_d , u_q , u_0 und m_A durch Integrationen, Additionen und Multiplikationen die Ausgangsgrössen i_d , i_q , i_0 und δ , woraus durch Koordinatentransformation die Ströme

$$\begin{split} &i_{\alpha} = i_{d} \cdot \cos\left(\omega_{0} t + \delta\right) - i_{q} \cdot \sin\left(\omega_{0} t + \delta\right) + i_{0} \\ &i_{\beta} = i_{d} \cdot \sin\left(\omega_{0} t + \delta\right) + i_{q} \cdot \cos\left(\omega_{0} t + \delta\right) + i_{0} \end{split}$$

entstehen. Die Ströme i_{α} , i_{β} werden in Leistungsverstärkern verstärkt und auf das Netzmodell übertragen, welches die Netzimpedanz für den nachgebildeten Synchrongenerator darstellt. Im Netzmodell werden nun die Amplituden der Spannungen u_{α} , u_{β} gemessen, sowie mit zwei Phasenmessgeräten ihre Phasenlage, so dass sie in die Grössen u_d , u_q , u_0 umgerechnet werden können. Damit ist der ganze Rechenkreis geschlossen.

Wie aus Fig. 4 ersichtlich ist, kann am ganzen Modell (Netzmodell und Integrier-Anlage) von aussen lediglich in der Integrier-Anlage die Erregerspannung u_f und das mechanische Antriebsmoment m_A , sowie Laständerungen am Netzmodell eingestellt werden. Die interessierenden Grössen, wie Polradwinkel δ , die Netzspannungen u_{α} , u_{β} oder die vom Generator abgegebene Leistung können direkt mit Servoschreibern als Funktion der astronomischen Zeit aufgezeichnet werden. Fig. 8 zeigt einen 3fach-Servoschreiber, welcher erlaubt, gleichzeitig drei Rechengrössen als Funktion der Zeit t aufzuzeichnen.

Fig. 7 Rechenschema für das Gleichungssystem des Synchro-Generators Bezeichnungen siehe im Text

Fig. 8 Dreifach-Servoschreiber

Es ist natürlich ohne weiteres möglich, auch m_A und u_f servomotorisch nach gegebenem Programm zu regeln: z. B. die Erregung u_f so, dass der Generator eine gegebene konstante Blindleistung abgibt. Die Regelkurven können für solche Betriebszustände direkt mit Servoschreibern aufgezeichnet werden, so dass mit dem beschriebenen Modell die Regelmöglichkeiten einer gegebenen Synchronmaschine in Zusammenschaltung mit dem Netz untersucht werden können.

Adresse des Autors:

E. Jucker, dipl. Physiker, Contraves A.-G., Schaffhauserstr. 580, Zürich 52.

Technische Mitteilungen — Communications de nature technique

Aufbau und Kennlinien moderner Spaltpolmotoren

621.313.333.2 [Nach P. Vaske: Aufbau und Kennlinien moderner Spaltpolmotoren. ETZ-B Bd. 9(1957), Nr. 2, S. 33...37]

Für den Antrieb elektrischer Kleingeräte, wie Plattenspieler, Haushaltmaschinen, Ventilatoren usw., erhält der Spaltpolmotor, auch Ferrarismotor oder Motor mit abgeschirmten Polen (englisch: shaded-pole motor) genannt, innerhalb des Kleinstmotorenbaus wachsende Bedeutung. Seine Hauptvorteile gegenüber normalen Einphasenmotoren sind Einfachheit im Aufbau, grosse Robustheit, selbsttätiger Anlauf ohne Zusatzgeräte, relativ hohes Anzugsmoment (ca. 0,5...1,0mal Nennmoment) bei niedrigem Kurzschlußstrom (1,25...2mal Nennstrom) und eine dem Drehstrommotor ähnliche Charakteristik. Dagegen ist der Raumbedarf, das Gewicht, die Verluste und damit der Kühlluftbedarf höher als bei normalen Motoren gleicher Leistung. Eine Umkehrung der Drehrichtung ist bei Spaltmotoren im allgemeinen nicht möglich.

Während der Rotor eines Spaltpolmotors als gewöhnlicher Käfigläufer ausgebildet ist, unterscheidet sich der Stator wesentlich von demjenigen eines normalen Asynchronmotors (Fig. 1). Er besitzt ausgeprägte Pole, an welchen die Primärwicklung konzentriert angeordnet ist. Um einen Teil des Polbogens, den «Spaltpol», wird die aus einem Kupferdraht

oder einem gestanzten und gebogenen Kupferblech bestehende Spaltpolwindung gelegt. Die Öffnung zwischen den Polen wird gegen den Luftspalt hin mit einem Stück Eisenblech, dem «Streublech», verschlossen, oder das Statorblech wird entsprechend geschlossen gestanzt. Wird die Primärwicklung an ein Wechselstromnetz gelegt, so induziert sie transformatorisch in der Spaltpolwindung einen Sekundärstrom, welcher zeitlich dem Primärstrom nacheilt. Die Fel-der des Primär- und des Spaltpolwindungsstromes setzen sich zu einem elliptischen Drehfeld zusammen, dessen Drehsinn stets von der Polmitte gegen den Spaltpol verläuft. Die Grösse des resultierenden Drehmomentes hängt stark von der Dimensionierung und Anordnung von Spaltpol, Spaltpolwindung und Streublech ab. Diese beruht weitgehend auf Erfahrung, da die genaue Vorausbestimmung aller Elemente einen unverhältnismässig grossen Rechnungsaufwand erfordert.

Fig. 2 zeigt die von vierpoligen Spaltpolmotoren von etwa 10...20 W Leistung erreichten Charakteristiken. Auffallend ist die über einen grossen Bereich konstante Differenz zwischen der aufgenommenen und der abgegebenen Leistung. Diese Konstanz der Verluste, zusammen mit den niedrigen Anschaffungskosten dank der einfachen Herstellung, macht den Spaltpolmotor besonders geeignet für aussetzenden Betrieb mit kurzer Einschaltdauer, während der Betrieb im Leerlauf oder bei Teillast den Motor nicht wesentlich weniger beansprucht als bei Vollast. Die infolge der ausgeprägten