Zeitschrift:	Bulletin de l'Association suisse des électriciens
Herausgeber:	Association suisse des électriciens
Band:	59 (1968)
Heft:	4
Artikel:	Berechnung des elektrischen Feldes von Bündelleitern
Autor:	Singer, H. / Bässler, H.
DOI:	https://doi.org/10.5169/seals-1057383

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 25.12.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- [10] G. v. Békésy: Über die Resonanzkurve und die Abklingzeit der verschie-denen Stellen der Schneckentrennwand. Akustische Zeitschrift 8(1943), S. 66...76.
- [11] R. öttinger und H. Hauser: Ein elektrischer Kettenleiter zur Untersu-chung der mechanischen Schwingungsvorgänge im Innenrohr. Acustica 11(1961), S. 161...177.
- [12] G. v. Békésy: Descriptions of some Mechanical Properties of the Organ of Corti. J. Acoustical Society of America 25(1953), S. 770...785.
 [13] E. Zwicker: Temporal Effects in Simultaneous Masking and Loudness. J. Acoustical Society of America 38(1965), S. 132...141.
- [14] Méthode de calcul du niveau d'isosonie. Recommandation ISO R 532-1966
- *T. Pfeiffer:* Ein Lautstärke-Messgerät für breitbandige und impulshaltige Schalle. Acustica 17(1966), S. 322...334. [15]
- [16] E. Zwicker: Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6(1956), S. 365...381
- D. Maiwald: Besichungen zwischen Schallspektrum, Mithörschwelle und Erregung des Gehörs. Acustica 18(1967), S. 69...80. [17]

- [18] E. Zwicker: Über ein einfaches Funktionsschema des Gehörs. Acustica 12(1962), S. 22...28.
 [19] E. Zwicker, W. Hess und E. Terhardt: Erkennung gesprochener Zahlworte mit Funktionsmodell und elektronischer Rechenanlage. Kybernetik 3(1966/67), S. 267...272.
- E. Zwicker: Möglichkeiten zur Spracherkennung über den Tastsinn mit Hilfe eines Funktionsmodells des Gehörs. Beihefte zur Zeitschrift «Elek-
- Hilfe effest runktionsmodens des Genots, Benetic Zur Zeitsehner state tronische Rechenanlagen» 7(1963), S. 239...244.
 E. Zwicker: Temporal Effects in Simultaneous Masking by White-Noise Bursts, J. acoustical Society of America 37(1965), S. 653...663. [21]
- E. Zwicker: «Negative Afterimage» in Hearing. J. Acoustical Society of America 36(1964), S. 2413...2415. [22]

Adresse des Autors:

Prof. Dr.-Ing. Eberhard Zwicker, Institut für Elektroakustik Technische Hochschule München, Franz-Josef-Strasse 38, D-8 München 13.

Berechnung des elektrischen Feldes von Bündelleitern

Von H. Singer, München, und H. Bässler, Memmingen

1. Einleitung

Die Vorzüge des Bündelleiters zeigten im Jahre 1932 erstmals G. Markt und B. Mengele auf [1]1). Heute gehören Bündelleiter bereits zu den festen Konstruktionsmitteln der Hochspannungstechnik [4; 5].

Diese Stellung gewann der Bündelleiter durch Vorteile vielfacher Art gegenüber einem Einzelleiter [2]: Neben der Verringerung der elektrischen Feldstärke, der hohen Strahlungsfestigkeit und der Verminderung der Koronaverluste beseitigt er die technologischen Schwierigkeiten, Einzelleiter mit grossem Querschnitt herzustellen. Ausserdem sind Seile mit kleinerem Querschnitt wegen besserer Wärmeabfuhr höher belastbar. Bei einer Drehstromübertragung spielt auch die Grösse der natürlichen Leistung eine Rolle. Bündelleitungen weisen eine grössere Betriebskapazität und einen kleineren induktiven Widerstand auf als Einzelleitersysteme. Damit wird der Wellenwiderstand verringert, und die natürliche Leistung der Leitung steigt. So ist es verständlich, wenn sich bei hohen Übertragungsspannungen Bündelleiter wirtschaftlicher erweisen als Einzelleiter [2; 5]. Während also bei Gleichspannung das elektrische Feld die Abmessungen der Leitung bestimmt, wird bei Wechsel- oder Drehstromübertragung ein Abwägen von Feldeigenschaften und Wellenwiderstand notwendig.

In den letzten Jahren sind in der Literatur einige Beiträge zur Berechnung des elektrostatischen Feldes von Bündelleitern erschienen, wo entweder die konforme Abbildung benutzt [6; 8] oder mit den Maxwellschen Potentialkoeffizienten gerechnet wird [3; 7]. Auch Feldbilder von Bündeln wurden veröffentlicht [6; 8]. Freilich erstrecken sich diese Ergebnisse

 ζ -Ebene mit $\zeta = \xi + j\eta$, Winkel φ und Strecke r; z-Ebene mit z = x + jy, Winkel φ/n und Strecke n/r

1) Siehe Literatur am Schluss des Aufsatzes.

621.315.145:537.212 meist nur auf die Anordnung Bündel gegen Hüllzylinder, oder es wurden Lösungswege angedeutet ohne analytische Darstellung, soweit es sich um den Ausnutzungsfaktor und den feldstärkegleichen Ersatzradius handelt.

Aufgabe des vorliegenden Beitrages soll es nun sein, mit Hilfe der konformen Abbildung das Feld der Anordnungen Bündel gegen Bündel und Bündel gegen Ebene zu berechnen.

2. Berechnung der Potentiallinien

Die Abbildung $z = \sqrt[n]{\zeta}$ faltet die gesamte ζ -Ebene auf den n-ten Teil der z-Ebene (Fig. 1) und bildet den Punkt A der

a ζ -Ebene mit $\zeta = \xi + j\eta$; *b z*-Ebene mit z = x + jy

ζ-Ebene nach Fig. 2 auf die Punkte A1, A2, ... An der z-Ebene ab. Die Abbildung

$$\zeta = z^{\mathbf{n}} - R^{\mathbf{n}} = \prod_{\nu=1}^{\mathbf{n}} \left(z - R \cdot \mathrm{e}^{\mathrm{j} 2\pi \frac{\nu}{\mathbf{n}}} \right) \tag{1}$$

führt im Prinzip die gleiche Transformation durch; nur liegt hier der Punkt A im Ursprung der ζ-Ebene. Damit ist das Feld eines Bündels (Fig. 2b) auf das Feld eines einzelnen Punktes (Fig. 2a) zurückgeführt, dessen Potentiallinien bekanntlich konzentrische Kreise bilden. Diese Kreise lassen sich durch $w = \log \zeta$ auf einen Plattenkondensator abbilden. Wird schliesslich das Bündel um jH verschoben und an der x-Achse gespiegelt, so entsteht die Anordnung Bündel-Bündel oder Bündel-Ebene.

Die Abbildung dieses Bildes vermittelt die Transformation:

$$w = \sum_{\mathbf{v}=1}^{n} \frac{z - \mathbf{j}H - R \cdot e^{\mathbf{j}\phi_{\mathbf{v}}}}{z + \mathbf{j}H - R \cdot e^{-\mathbf{j}\phi_{\mathbf{v}}}}$$
(2)

mit R als Bündelradius, H als Höhe des Bündelmittelpunkts über der Ebene und *n* als Anzahl der Teilleiter; φ_{v} ist Winkel zwischen der Parallele zur x-Achse durch den Bündelmittelpunkt und der Verbindungslinie Bündelmittelpunkt-v-ter Teilleiter (Fig. 3). Die Koordinaten werden dargestellt durch:

1.14

$$z = x + jy$$

$$\zeta = \xi + j\eta$$
(3)

$$w = u + jv$$

(5)

a

b

Da die Abbildung unabhängig von den absoluten Dimensionen ist, können alle Angaben über das Bündel auf den Teilleiterradius r bezogen werden. Damit ergeben sich folgende Abkürzungen:

Bündelcharakteristik
$$b_z = \frac{s}{r}$$
 (4)

geometrische Charakteristik
$$p_z = \frac{a_z + r}{r}$$

mit Teilleiterabstand $s = 2 R \cdot \sin \pi / n$ und a_z als kürzestem Abstand zwischen Bündel und Ebene.

In der Abbildung nach Gl. (2) werden die Linien u = konst. Potentiallinien und v = konst. Feldlinien. Explizit ergibt sich für die Potentiallinien:

$$u = \sum_{\nu=1}^{n} \ln \sqrt{(x - R \cdot \cos \varphi_{\nu})^2 + (y - H - R \cdot \sin \varphi_{\nu})^2} - \sum_{\nu=1}^{n} \ln \sqrt{(x - R \cdot \cos \varphi_{\nu})^2 + (y - H + R \cdot \sin \varphi_{\nu})^2}$$
(6)

wobei

und

$$\varphi_{\nu} = \frac{2\pi}{n} \left(\nu - \frac{q}{4} \right) - \frac{\pi}{2} \tag{7}$$

und q die Lage des Bündels angibt (Fig. 4).

Dabei bedeutet bei allen Bündeln, dass das durch die Teilleiter gebildete Polygon bei q = 2 mit einer Seite parallel zur

Ebene und bei q = 4 auf der Spitze steht. Eine weitere mögliche Lage für das Dreierbündel gibt q = 3 an.

Die Berechnung erfolgte mit Hilfe eines Digitalrechners.

Die Ergebnisse zeigen, dass keine Potentiallinie exakt mit dem angenommenen Teilleiter übereinstimmt. Die Potentiallinien werden zwar im technisch interessanten Bereich von b_z und p_z mit guter Genauigkeit kreisförmig, jedoch stimmen die Mittelpunkte der Potentiallinien nicht mit den Mittelpunkten $a = jH + R \cdot e^{j\varphi}$ überein. Näherungsweise stellen die Potentiallinien in der Nähe der Leiter nichtkonzentrische Kreise dar, deren Mittelpunkte mit steigenden Radien immer mehr zum Bündelmittelpunkt rücken. Zum Vergleich dazu kann das elektrostatische Feld zweier gleichgeladener Zylinder dienen. Dort sind die Potentiallinien Cassinische Kurven, die ebenfalls um so kreisförmiger werden, je geringer ihr Durchmesser wird.

Für die Programmierung der Rechenmaschine erwies es sich als günstig, dass die Mittelpunkte der Potentiallinien auf der Verbindungslinie Bündelmittelpunkt—theoretischer Teilleitermittelpunkt nach innen zum Bündelmittelpunkt wandern; d.h. die Winkel zwischen den einzelnen Teilleitern bleiben konstant $2\pi/n$. Da die Potentiallinien zur Bündelmitte hin verschoben werden, ist der tatsächliche Bündelradius also immer kleiner als das angenommene *R*. Dieser Fehler bleibt jedoch im allgemeinen kleiner als 1%. Nur bei kleinen b_z kann dieser Fehler 3% erreichen. Weiter zeigt die Rechnung, dass der tatsächliche Bündelmittelpunkt praktisch nicht vom angenommenen Bündelmittelpunkt abweicht. Deshalb können die Werte von *R* und *H* mit den sich wirklich ergebenden Werten von Bündelradius und Bündelhöhe gleichgesetzt werden.

Eine andere Eigenschaft der verwendeten Abbildung besteht darin, dass die einzelnen Teilleiter des Bündels verschiedene Grösse erhalten. Die Differenz beträgt im Durchschnitt 3 bis 5%. Durch Annahme von unterschiedlichen Ladungen auf den Teilleitern könnten alle Leiter auf gleiche Grösse gebracht werden. Da aber die Grösse der oberen Leiter nicht allzu grossen Einfluss auf die Feldstärke am unteren Leiter hat, wurde, um Rechenzeit zu sparen, diese Differenz vernachlässigt.

Würden nun allerdings nach Fig. 5a die Koordinaten des Punktes A in die Rechnung für den Ausnutzungsfaktor und den Ersatzradius eingesetzt werden, so erhielte die dazugehörige Potentiallinie einen 5 bis 20% grösseren Durchmesser als vorgegeben, was natürlich in der Rechnung zu berücksichtigen wäre. Statt dessen wurde nach Fig. 5b der Punkt B er-

> mittelt, dessen Potentiallinie den festgelegten Durchmesser besitzt. Das hat den Vorteil, dass p_z und b_z glatte Werte erhalten.

3. Berechnung der Feldstärke, des Ausnutzungsfaktors und des Ersatzradius

Aus den Potentialwerten errechnet sich die Feldstärke durch Bildung des Gradienten:

$$E_{z} = -\frac{\partial u}{\partial x} - j \frac{\partial u}{\partial y}$$
(8)

Für eine zahlenmässige Ermittlung der Feldstärke ist noch eine Eichung mit:

$$E_{\rm w} = \frac{U}{u_{\rm II} - u_{\rm I}} \tag{9}$$

vorzunehmen [9], so dass sich der Betrag der Feldstärke aus $|\mathbf{E}_z| [kV/cm] = |\mathbf{E}_z| \cdot |\mathbf{E}_w|$ (10)

$$\eta = \frac{U}{|E_{\rm z}| \, [\rm kV/cm] \cdot a_{\rm z}} \tag{11}$$

Aus η lässt sich nun der gesuchte Ersatzradius r_e ermitteln als Radius eines fiktiven Einzelleiters, der bei gleicher Höhe Hüber der Ebene denselben Ausnutzungsfaktor wie der gegebene Bündelleiter hat. Bekanntlich gilt für den Ausnutzungsfaktor der Anordnung Zylinder gegen Ebene (Fig. 6):

$$\eta = \frac{2 p \cdot \ln p}{p^2 - 1} \tag{12}$$

mit

$$p = \frac{a+r}{r} \tag{13}$$

Aus der transzendenten Gleichung (12) wird p ermittelt, und mit diesem Wert ergibt sich r_e aus:

$$\dot{r}_{\rm e} = \frac{2H}{p+1/p} \tag{14}$$

Für alle Bündel mit der Lage q = 2 oder q = 3 muss berücksichtigt werden, dass der tiefste Punkt des Bündels nicht gleichzeitig der Punkt mit der grössten Feldstärke an der Oberfläche des Leiters ist. Wie jedoch die Rechnung zeigt, verändert sich die Grösse der Feldstärke rund um die Oberfläche eines Leiters nur sehr wenig (max. 0,7 %), so dass darauf verzichtet wurde, den Punkt der grössten Feldstärke zu suchen.

4. Ergebnisse

Die Ergebnisse der Berechnung für die Anordnung Bündel gegen Ebene sind in den Fig. 8 und 9 graphisch dargestellt. Die Werte für die Anordnung Bündel-Bündel können durch einfache Umrechnung der geometrischen Charakteristiken p_z daraus gewonnen werden. Erwartungsgemäss liegen die Werte der Ausnutzungsfaktoren bei wenigen Prozenten und steigen mit zunehmender Anzahl der Teilleiter.

In Abhängigkeit von b_z betrachtet zeigt η im allgemeinen folgenden Verlauf:

Für $b_z = 0$ (Bündelradius R = 0) nimmt der Ausnutzungsfaktor denselben Wert an wie bei einem Einzelleiter. Mit grösser werdendem R steigt η an, durchläuft ein Maximum und fällt dann leicht ab. In diesem Bereich ändern sich die Ausnutzungsfaktoren mit steigendem b_z verhältnismässig wenig, insofern, wie technisch üblich, $p_z/b_z \ge 1$ ist. Das lässt sich dadurch erklären, dass eine Änderung des Bündelradius R gleichbedeutend ist mit einer Änderung des Abstandes a_z . Diese

Fig. 7 Abhängigkeit des Feldes von der Lage q der Bündel η Ausnutzungsfaktor; r_e Ersatzradius; b_z Bündelcharakteristik

liefert die Abbildung genauere Ergebnisse als für kleine Bündelcharakteristiken (vgl.

Bemerkung unter Abschnitt 2). Käme R schliesslich in die Grössenordnung von H, würde der Ausnutzungsfaktor wieder grösser werden, um schliesslich im Grenzfall den Wert 100 % zu erreichen. Dieser Bereich ist freilich technisch nicht mehr interessant.

Die Kurven für den Ersatzradius zeigen einen ähnlichen Verlauf und machen deutlich, dass ein Bündelleiter das Feld gegenüber einem Einzelleiter im Durchschnitt um 100 bis 200 % verbessert. Bei R = 0 wird $r_e = r$. Der obere Grenzfall (grosses R und grosses b_z) bringt $r_e = R$.

Eine Ausnahme in beiden Kurvenscharen bildet das Zweierbündel, dessen Leiter parallel zur Erde liegen. Hier bleibt der Abstand a_z bei steigendem b_z konstant. Wird nun b_z grösser, so bleiben die Leiter zwar in gleicher Höhe, aber ihre gegenseitige Beeinflussung wird immer geringer. Das bedeutet, dass für sehr grosse b_z der Ausnutzungsfaktor dieser Anordnung derjenigen eines Einzelleiters mit dem Radius r und der Höhe H identisch wird. Die Kurven r_e/r streben schliesslich dem Wert 1 zu, und der Ersatzradius nimmt den Wert r an.

Somit wird deutlich, dass das elektrische Feld bei konstanter Höhe H im allgemeinen nur durch Vermehrung der Anzahl *n* der Teilleiter verbessert werden kann. Eine Verdopplung der Teilleiterzahl bringt im Mittel eine relative Vergrösserung des Ausnutzungsfaktors um 55 %. Dagegen hat der Teilleiterabstand *s* oder der Bündelradius *R* im Bereich der technischen Abmessungen kaum Einfluss auf den Ausnutzungsfaktor. Durch eine Vergrösserung des Teilleiterabstandes wird also nichts gewonnen. Diese Eigenschaften sollen durch einige Zahlenwerte unterstrichen werden. Für konstanten Teilleiterradius ergeben sich folgende Ausnutzungsfaktoren (q = 2, H/r = 500):

n	$\begin{array}{c c} R/r = 20 \\ \% \end{array}$	<i>R</i> / <i>r</i> = 50 %
2	2,03	1,84
3	2,64	2,42
4	3,19	2,96
6	4,13	3,96
8	4,90	4,88

Mit q = 2 und $H/r_1 = 500$ errechnen sich unter Berücksichtigung konstanter Querschnittssumme die im Folgenden dargestellten Werte der Ausnutzungsfaktoren (r_1 ist der Radius eines Einzelleiters, der denselben Querschnitt wie ein Bündel besitzt.):

n	$\frac{R/r_1=20}{\%}$	$\frac{R/r_1=50}{\%}$
2	1,50	1,34
3	1,61	1,48
4	1,75	1,60
6	1,96	1,78
8	2,07	1,95

Diese Werte liegen niedriger als die oben aufgezeigten, da ja die Teilleiterradien kleiner sind, zeigen aber im übrigen ein ähnliches Verhalten.

Allgemein lässt sich sagen, dass auch die Lage der Bündel (Fig. 4) Einfluss auf die Ausnutzungsfaktoren und die Ersatzradien hat. Während ihre Werte bei kleiner Bündelcharakteristik b_z für q = 2 höher liegen als für q = 4, ändern sich diese Verhältnisse bei grossem b_z . Prinzipiell ist dieses Ergebnis in Fig. 7 aufgezeichnet. Der Schnittpunkt verschiebt sich mit steigendem p_z , also grösser werdendem Abstand zur Ebene, zu grösseren b_z hin. Deshalb wird bei hohen Übertragungsspannungen vorteilhaft die Lage q = 2 eingesetzt, während bei kleinen Abständen und wenigen Teilleitern die Lage q = 4nützlich sein kann.

Im Vergleich zur Anordnung Bündel gegen Hüllzylinder [6; 7] haben die hier errechneten Ausnutzungsfaktoren und Ersatzradien im Durchschnitt 10 % höhere Werte. Dieses Verhalten wird verständlich, wenn die Ergebnisse der Figuren Kreiszylinder gegen Ebene und konzentrische Kreise miteinander verglichen werden; denn die Ausnutzungsfaktoren der Anordnung Kreiszylinder-Ebene liegen ebenfalls etwa 10 % höher als die von konzentrischen Kreisen.

5. Zusammenfassung

Es ist erfreulich, dass das elektrostatische Feld des Bündelleiters mit verhältnismässig einfachen Mitteln der konformen Abbildung bestimmt werden kann. Durch die hier verwendete Transformation (2) lassen sich der Ausnutzungsfaktor und der feldstärkegleiche Ersatzradius eines Bündels ermitteln. Vorliegende Ausführungen zeigen damit einmal mehr die Bedeutung des Bündelleiters vom feldtheoretischen Gesichtspunkt aus. Weiteren Arbeiten bleibt es vorbehalten, mit Hilfe einer ähnlichen Abbildung die Felder von Gleichstrom- und Drehstrombündeln zu berechnen.

Fig. 9 Ersatzradien r_e als Funktion der Bündelcharakteristik b_z mit geometrischer Charakteristik p_z als Parameter *a* Zweierbündel; *b* Dreierbündel; *c* Viererbündel (Lage q=2); *d* Viererbündel (Lage q=4)

Literatur

- G. Markt und B. Mengele: Drehstromfernübertragung mit Bündelleitern. E und M 50(1932)20, S. 293...298.
- [2] G. Markt: Bündelleiter und Hohlseil. In: Fortschritte der Hochspannungstechnik. Herausgegeben von W. O. Schumann und H. Prinz. Leipzig, Akademische Verlagsgesellschaft Geest und Portig, 1954, Bd. II, S. 28...45.
- [3] J. Reichmann: Bundled Conducter Voltage Gradient Calculations. Trans. AIEE Power Apparatus and Systems 78(1959)-, S. 598...607.
- [4] P. A. Abetti, C. B. Lindh and H. O. Simmons: Economics of Single und Bundle Conductors for Extra-High-Voltage Transmission. Trans. AIEE Power Apparatus und Systems 79(1960)-, S. 138...153.
- [5] H. Engelhardt: Einfluss der Beseilung auf die Höchstspannungsübertragung mit Freileitungen. Elektr.-Wirtsch. 60(1961)24, S. 911...918.

- [6] A.S. Timascheff: Field Patterns of Bundle Conductors and their Electrostatic Properties. Trans. AIEE Power Apparatus and Systems 80(1961)-, S. 590...597.
- [7] E. Rix, Gleichspannungskorona an Bündelleitern. Dissertation Technische Hochschule München, 1962.
- [8] A. S. Timascheff: Equigradient Lines in the Vicinity of Bundle Conductors, Trans. IEEE. Power Apparatus and Systems 82(1963)65, S. 104...110.
- [9] H. Prinz: Zur Feldberechnung von Höchstspannungs-Übertragungsanlagen. Bull. SEV 57(1966)26, S. 1199...1211.

Adressen der Autoren:

Dipl.-Ing. H. Singer, wissenschaftlicher Assistent am Institut für Hochspannungs- und Anlagentechnik der Technischen Hochschule München, Areisstrasse 21, D-8 München 2, und Dipl.-Ing. H. Bässler, Ebertring 1, D-894 Memmingen.