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Durability In Design, Detailing and Construction
Chemical and physical effects on the durability of concrete structures

Bernd Hillemeier, Untv.-Professor, Dr.-Ing., Department of Civil Engineering, Technical Universityof Berlin

1 General

Today, the main criteria for durability are well understood,

agreed upon, and reflected in most specifications

and codes [1],[2]. Improved durability of
staictures requires both, knowledge of materials and
experience in execution. The fields which have to be
mastered are improved materials characteristics,
architectural and structural design, process of
execution, inspection techniques and maintenance
procedura».

Planning and execution must meet quality assurance

requirements. Quality assurance Covers technology

as well asorganization: The construction
Company, the local branch.the building site, the
client and the architect need to be involved in every
total project. Schematised approaches to service life
design are not considered reliable in practice.

Concerning these specific items, the Teach-In is
subdivided into the following main sections:
1 .Theoretical Background (Hillemeier), 2. Design
(Pakvor), 3. Execution (Limsuwan), 4. Curing (Müller),

5. Examples (Dillman).

2 Influences on durability

Durability of concrete structures is mainly controlled
by transportation processes of heat, moisture and
chemical substances and by physical, chemical and
biological corrosion as type and rate of degradation
processes of concrete and steel.

Dominant factors for durability of structures are
water and the transport mechanisms of water and

gases within pores and cracks. Planning and design
must aim to minimize negative effects of water
attack.

3 Necessityofdense and durable concrete

Concrete consists of two major phases: cement
paste and aggregate. The mechanical as well as the
durability properties of concrete are determined above

all by the cement paste.

Cement and water read with each other to form the
fibrous and very finely interlocking cement gel. The
cement needs only a portion of the mixing water for
its hydratation. Water that is not used by the cement
evaporates, leaving capillary pores behind that runs
through the cement paste like veins. It is obvious
that a high water content and insufficient curing
increases the evaporation and thus the number of
capillary pores breaking through to the surface of the
concrete. Acidic gases invade the concrete through
these pores and react with the alkaline elements of
the hydrated cement.

3.1 Concrete attack mechanisms

Carbonlzatkm Carbon dioxide (C02) in the air

changes alkaline calcium hydroxide into neutral
limestone and thus prevents the rust protection of
the steel reinforcement:

Ca(OH)2 CO, CaCO, H20

high alcalinity,
pH ~ 12,6,
corrosion
protection of steel

gas,
0,03 V-%
in the air

lime-stone,
pH - 8 no
corrosion
protection of steel

Chloride attack. The permeability of concrete
facilitates the entry of Chlorides. This, in turn, makes
the destructive Chloride corrosion possible. It is well
known that (he presence of significant levels of free
Chloride ions 0,4 M-% of cement Cl combined with
Friedel-salt C3A*CaCl2*1--iH20) causes disruption of

the protective passivating, thin film of gamma ferric
oxide which forms on steel embedded in concrete by
virtue of the high alkalinity of the concrete pore water.

The objective is therefore to limit Chloride levels in
the concrete mix constituents to as tow a level as
possible and to provide a dense concrete of low
permeability to reduce the intrusion of Chloride ions
from external sources.

Sulphate attack. High concentrations of sulphate
ions, particularly of magnesium sulphate, attack
concrete. This attack involves the formation of calcium
sulphate (CaS04 - gypsum) and calcium trisulphoal-
uminate within the cement matrix by reaction of the
sulphate ions with the cement constituents, calcium
hydroxide and tricalcium aluminate (C3A) respectively.

These reactions are expansive, which can
weaken the concrete and cause cracking and breakdown

of the concrete core.

Acid attack involves, initially, the softening of the
cement matrix by the removal of calcium oxide leaving
only hydrated silica and alumina. Strong acids may
even dissolve silica and alumina hydrates.
The mechanism and kinetics of dissolution of the
cement matrix and sbluble aggregates in concrete subject

to carbonic acid attack are complex. In the first
instance, it is necessary to establish whether a water
is undersaturated with carbonate, contains free
carbon dioxide and is aggressive to concrete, or is
oversaturated with carbonate acid and can deposit
calcium carbonate.

From the point of view of a permanent contact of water

with a concrete surface the State of undersatura-
tion of water with respect to calcium carbonate is
important. A simple technique exists to establish the
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undersaturation state of a water, commonly called
the marble test, which is used by hydrochemists.
The test is specified in DIN 4030. [3]

To summarize, the key elements determining the
durability of concrete are:

1. low water/cement ratio and sufficient cement
content so that the cement particles are densely
packed.

2. intensive curing in order to keep the water
required for the chemical reaction from
evaporating. Both are prerequisites for a

3. good quality concrete cover for the steel
reinforcement.

The well-known relationship concerning Power's
theory according to which the percentage volume of
capillary pores decreases by reducing the
water/cement ratio leads to the major requirement
for durable concrete:

Limitation of thevolume of pores in hydrated cement

:C/y • (w/c - 0,36*m)

where

VK Capillary pores in the cement paste [ dm3]

c cement content [kg]
w/c water cement ratio

v density of water [kg/dm3]
w

m maturity of cement paste, degree of hydration
m - 0,17 ln(d)+0,18 (for Portland cement, at

20 °C)
d age of cement paste in days

An intensive curing must make sure that the cement
has enough water available for the hydratation
process which will serve to minimize the capillary
pores. During the planning and design phase quality
assurance (QA) measures have to be involved to
actually realize the specific requirements for a dense
concrete. ISO Standards 29000 to 29004 represent
the relevant aualitv assurance measures.

3.2 Concrete resistance properties

Permeability is influenced by the pore structure of
the cement paste. For a characterization of the
relevant pore structure with regard to the transport of
substances into and within porous building materials,

two parameters are of importance:

- relevant porosity, and

- pore size distribution.

Relevant porosity means pores which are intercon-

nected so far that a transport of liquids or gases

and/or the exchange of dissolved substances is

possible. At the same time, the relevant porosity

corresponds to the maximum reversible water con
tent and, in the case of cement paste, lies in th«

region of between 20 and 30 per cent.

The pore size distribution influences particularly th.
type and the rate of transport mechanisms anc

binding mechanisms in respect of water. The size o

pores in the cement paste Covers a ränge of severa
Orders of magnitude. According to origin and charac
teristics, the pores are described as:

- compaction pores

- air pores

- capillary pores

- gelpores.

Expressed in more general terms, the following das
sification appears to be convenient:

- micropores (10"1C to 10~7 rn in diameter), gel pore:

- capillary pores (10"7 to 10"4 m)

- macropores (10"4to 10~2 m), compaction pores +
air pores

Free surfaces of solids exhibit a surplus of energy
due to a lack of binding components to the adjacen
molecules. This energy is called surface energy. lr

the pores of the cement paste surface energj
causes the water vapour molecules within the pore;
to adsorb to the pore surface (adsorption), th<

thickness of the water film thereby depending on th<

degree of humidity within the pores.
Due to the fad that the ratio between the surfac.
area and the volume of the pores increases witl
decreasing pore radius, the rate of the wate
quantity adsorbed relatively to the pore volume wil
also increase until, at a certain limit value of the por<
radius, the pore is completely filled with water. Thii

process is called capillary condensation. The limi
value of the pore diameter primarily depends on th<

water content of the air within the pore which, in th<

case of constant conditions, is proportional to thi
humidity of the air surrounding the concrete. (Fig. 1)

Any transport processes of gases, water, o
substances dissolved in water are diffusioi
processes in respect to the ambient conditions.

Diffusion processes are induced by the tendency o

equilibrating differences in concentrations. Thi
driving forces for diffusion are therefore difference:
in concentrations.

Carbon dioxide diffuses into concrete due to a che
mical reaction with CO2 developing at the pore wall:

in the concrete, which causes the concentratioi
within the pores to be reduced. This applies equall;
to oxygen when it is consumed during corrosion 0

the reinforcement.[11
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Fig. 1 Sorption-isothermes (Powers)

In the case of continuously immersed strudures,
large quantities of water may, under unfavourable
conditions, be transported. A continuous transport of
•vater will develop when water is allowed to
evaporate at the concrete surfaces exposed to the
air. The intensity of this water transport depends on
Ihe following three variables:

- evaporation

- capillary sudion

- hydraulic pressure.

With the water, dissolved agents (carbonate,
Chloride, sulphate, etc.) will be transported.
However, these agents are left behind in the
concrete in the region of evaporation where they are
likely to arrive at considerable concentrations. Ef-
llorescence phenomena may also be due to this
effect: the agents first dissolved are caused to
crystallize at the concrete surfaces.

In concrete the expansive forces due to salt crystalli-
zation near the surface only cause minor problems,
of importance is the chemical effed of the increased
concentration of aggressive substance. However, in

other porous materials such as sandstone, marble,
masonry, etc., bursting and sealing due to salt cry-
stallization is a serious cause of deterioration. This
mechanism results in rapid deterioration of
sculptures, monuments, etc. exposed to aggressive
environments.

3.3 Cracking of Concrete

Cracking of concrete will occur whenever the tensile
strain to which concrete is subjeded exceeds the
tensile strain capacity.

The tensile strain capacity of concrete reaches a

nearly constant limit value of about 0,15 %o approximately

after the 7 th day of age. This ultimate value
is nearly the same for all types of concrete. The
minimum ultimate tensile strain of about 0,05 %o is
found in the concrete age between 6 hours and one
day.

S 0.3

0.2

.«¦ 0.1

I 2 i 6 BIO fi 1 1

age of concrete IlogarithmicI
2t dafs

Fig. 2 Ultimate tensile strain of concrete depending
upon age. [1]

As Fig. 2 shows young concrete is especially prone
to cracking. Within the transition phase leading from
fresh ("green") to hardened ("young") concrete, a
critical period with very low tensile strength and a very
low deformability is observed.

To consider whether a concrete may get cracked the
different types of local deformations have to be
added and compared to the ultimate tensile strain rate.
Influences causing lokal strains which lead to tensile
stresses if the movements are restrained are:

- drying shrinkage

- contradion due to temperature change

- externally imposed loading and/or deformation
conditions

- expansion of material embedded within the concrete,

(corrosion of reinforcement, alkali aggregate
readion,...)

Shrinkage can be assessed analogous to temperature

change AT. The applicable ränge tends from 10
to 45 degrees Celsius, depending on the environmental

conditions. Cracking occurs if

e - 0,5 * 10-5 • (ATTernp + ATShrink)

exceeds the ultimate tensile strain.

The temperature distribution in the cross sedion of a
strudural element has generally to be analysed with
the equation for non-stationary heat condudivity:

dT/dt X/pc * d2T/dx2

In most cases rt will be possible to transform the model

of consideration to a one dimensional problem.

4 Corrosion of reinforcement

The corrosion process can be separated into two
single processes, the cathodic and the anodic
process.

The anodic process is the real dissolution of iron.
Positively charged iron ions pass into Solution:

Anodic process: Fe ~> Fe"1-1" + 2e_
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The surplus eledrons in the steel will combine at the
cathode with water and oxygen to form hydroxyl
ions.

Cathodic process: 2e- + 1/2 O2 + H2O —> 2(0H)~

After some intermediate stages, the iron and hydroxide

ions will combine to form rust which, at least
theoretically, can be written as Fe203. Water is only

necessary to enable the eledrolytic process to take
place.

The highest corrosion rate will occur in concrete
surface layers, subjeded to highly changing wetting
and drying conditions.

At the steel surface, anodically and cathodically
acting areas may be situated either dose together (mi-
cro-cell corrosion) or at locally separated places
(macro-cell corrosion) even over relatively great
distances. Consequently, corrosion may occur in areas

of the tJtrudure where tho dired access of oxygen

to the surface of the reinforcement is impeded.

5 10 rules for durable concrete [4]

1.Select high quality materials

- Cement: Seled high strength, moderate C3A

(5-8 %), moderate alkali content, uniform quality.

- Aggregates: Check soundness and impurities,
control content of fines < 0,30 mm to ensure
stability at high slump, uniform grading.

- Admixtures: Seled efficient water reducers (su-
perplasticizers), air entrainers at high slump
benefit by modified batching process, check air spacing

fador (<0,2 mm) and specific surface for
frost resistance.

2. Get mix proportions right

- w/c ratio < 0,50 is imperative.

- Cement content > 380 kg/m3 gives high "seif
healing" ability in cracks and joints.

- Stable mix at high slump requires seleded gra¬
ding of sand and efficient superplasticizers.

- Small dosage (< 5%) of CSF (Condensed silica
fume) benefits strength and stability, large dosage

impairs construdability.

- Füll scale site trials are essential before mix is
chosen.

3. Employmodernautomaticbatching plants

- Batcher type and batching procedure affeds
obtained properties.

- Seled optimum batching procedure.

- Print-out of each batch (100% control).

4. Develop sound work procedures beforehand

- Think concreting before steelfixing. Ensure bacl<

up of plant and materials.

- Do trials or mock-ups if in doubt.

5. Compact the concrete generously

- Revibrate top layer for increased strength and el
mination of voids under embedded items. (Rev
bration is an added bonus in slipforming).

- Make sure the concrete cover to the rebars is fu
ly compaded

6. Ensure adequate cover to rebars

- Min. 50 mm cover to main reinforcement.

- Quality of cover is as important as thickness.

- Deficient cover is made up by cement-based cc

ating (for 30-50 mm cover) or epoxy coating (C

30 mm cover).

7.Pay attention toconstruction joints

- Remove laitance (surface retarder and water jet
are efficient on large areas).

- Apply rieh mix against joint. Vibrate thoroughly.

8.Make allowances for temperature

- Avoid excessive temperature differences acros
sedions. Temperature rise in thick sedions ca
generally be expeded asl2°C/l00 kg cement.

- Initial temperature can be efficiently reduced b

ice flakes as part replacement of mixing water
(8 kg/m3 ice gives 1°C Temp. redudion).

9.Keepdeslgn simple

- Genereous sedions are easier to pour.

- Roundea and smooth surfaces discourage surf,
ce decay.

- Avoid sudden changes in geometry.

- Larger rebars take less space.

10. Use trained and skilled Operators

- Only the Operators performing the work can efl

ciently and continuously affect the quality of whi
is being produced.
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