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Development of the Analysis of Arch Dams.
Entwicklung der Berechnung von Bogen-Staumauern.,

Le développement du calcul des barrages arqués.

Zd. BaZzant,

Professor of Structural Mechanics, Czech Polytechnic School. Prague.

Introduction.

Masonry dams were in the beginning executed straight and calculated as
vertical cantilevers between two vertical crossections, fixed in the foundations,
loaded with the weight of masonry and water pressure; both loads produce
combined compression and bending stresses which cause the strength of
masonry to be but little utilised, especially as the tensile strength of masonry
is neglected. To eliminate the dangerous effect of temperature changes, a slight
curvature of dams was later used; but the stresses were computed as if the dam
were straight. It was supposed that the curved dam accomodated itself to the
changes produced in its length, which are the consequence of temperature
changes, by a change in its curvature. The dam also being fixed at the abut-
ments in a horizontal direction, it was supposed that there was additional safety
both for the weight of masonry and for the water pressure. But a detailed
statical investigation showed that a slight curvature of the dam has not the
favorable consequences expected, because the usual computation gives great
thickness. For, if the dam is considered as a horizontal arch under water
pressure, the computation gives, with a slight curvature and a great thickness
of arch, tensions at ‘the abutments in the extrados and at the crown in the -
intrados, which can produce vertical cracks in the masonry of the dam.!
Though the strenghtening of the dam will obviate cracks in horizontal joints,
cracks in vertical joints may nevertheless occur; the strengthening of the dam

with a surplus of masonry is only apparent as the masonry is not rightly
located.

Analysis of Arch Dam as a System of Independent Horizontal Arches.

An arch is, in comparison to a cantilever, a much better structural element
as it permits, given a right disposition, a much more uniform distribution of
stresses on the masonry and a better use of its strength. The first conscious
application of it was made about 1800 in the Meer Allum Dam at Hyderabad in
India2 with 21 horizontal arches between vertical buttresses and in 1845 in the
dam built after the project of M. Zola? near Aix in France in a narrow valley
and having the shape of one single horizontal arch.
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The following considerations refer as a rule the up-stram face of the dam
vertical.

The analysis of arch dams considered, at first approximately, the horizontal
arches in different heights as independent arches, loaded with the whole radial
water pressure, uniformly distributed along the length of the arch. This method
makes no allowance for the mutual connection in the vertical direction; it there-
fore disregards the shearing stresses in horizontal planes between adjacent arches,
which are the consequence of various horizontal displacements. When the
reservoir is empty, the weight of the upper arches acts vertically upon the lower
arches as in a straight dam; when the reservoir is full, this method considers
horizontal elements as independent arches, each of which bears its full water
pressure. If the up-stream face is inclined, the vertical component of water
pressure adds to the weight of masonry3. Deloore, who made the first theoretical
analysis of arch dams,* supposed approximately that the resultant of stresses
caussed by water pressure in the crown and abutment joint passes through a
point distant by one-third thickness from the up-stream face. Pelletreas>
supposes for uniformly distributed radial water pressure the circular centre line
of arch as a pressure line (an for thin cylindrical shells equally loaded), he
therefore assumes a uniform pressure in all sections of the arch. This method
was then customary, especially in America in the majority of cases, and the many
arch dams in Australia were calculated in this manner, which is still advocated
by H. Hawgood6. The dams calculated by this method proved very safe. The
transmission of external forces by arch action causes a much better division
of stresses and a very considerable diminution of thickness compared with dams
opposing to water pressure only the weight of masonry as vertical cantilevers,
which are therefore very uneconomical as regards the division of stresses and the
utilisation of masonry strength.

R. Ruffieux first calculated the horizontal arch of arch dams as an elastic
arch with fixed ends (according to the theory of J. Résal), taking also into
account the effect of normal stresses, which is very essential here, and using
the theorie of the thin arch. The same method was used later by E. Mérsch8,
H. Ritter®, C. Guidi®, W.Cain1l, R. Kelen1? and G. Ippolito13.

In the analysis of an arch dam as a system of independent horizontal arches,
the usual assumption was, as for thin cylindrical shells, that the stresses are
uniformly distributed throughout the thickness t, that is, the circular centre
line was supposed as pressure line to the uniformly distributed radial pressure p,
on the extrados of arch with radius r, (fig. 1). That gives in each section a
thrust N, = — p, 1, or a stress

N 5 Ty
’Vo:”go‘:—pl;t: (1)

for an arch of a length b, area of section A = bt; the thrust N and the arch
stress v are positive, if they are tensions. Instead of pressure p, on the extrados,
a radial pressure p uniformly distributed along the centre line with radius r can
be considered; it is

r-)

r
This method also corresponds to the analysis of an elastic arch, neglecting the
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effect of thrust (the shortening of centre line), for then the stress centre coin-
cide with the centre of sections. But a detailed investigation showed that in this
case the effect of thrust cannot be neglected even for higher arches. The thrust
shortens the centre line, which would change in a circle of shorter radius if the
abutments were free; since the width of arch does not change with fixed abutments,
the arch cannot remain circular and therefore the centres of stresses must depart
from centres of sections. The centre line, deformed by the thrust N,, if the
abutments are assumed to be free, can be brought into shape where the abut-
ments come into their original position, by adding a horizontal force A H, going
through centre of gravity of the centre line, as an additional reaction acting in
both abutments in the outward direction® (fig. 1); its value is generally

N, J’cos @ ds ds

)2 ds fcos2 o ds (3)
A

for constant thickness

H— Nol (3a)
A 12 1 121212
Tfyz ds+fcos2(pds ( r’ — 4 1”? (r-—h)-i—% — t:

if A = area of section, J = moment of inertia and s = 2r o = length of centre
line.

Fig. 2.

The temperature change, equal at all points of arch, gives a horizontal force

deEl
(4)
Jf) ds +Afcoscpds
where ® — temperature change, ¢ = coefficient of temperature expansion,

E = modulus of elasticity. If the change of temperature varies linearly from 9,
at the intrados to d, at the extrados (fig. 2) in all the sections, it produces in
the abutments only a bending moment

J’ds

J’ds

My = — (b, (3)
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for constant thickness
J

Mt'=—(5g—b1)€ET (ba)

A detailed analysis of the case, already made by H. Ritter® and later by
A. Stucky4, showed that also shear has an influence which can be of con-
siderable importance for flat arches. The denominator in the formula (3) for

AH has a general value

yy'ds J’cos*’vds Efsinecpﬁ-
JRFE 4 [ ng [

if B = reduction coefficient of shear (for a rectangular section =—g—), G = she-

aring modulus, y = ordinate of the antipole of the axis of gravity of the centre
line with respect to the ellipse of elasticity of the element of arch. For isotropical

substances —g: 2.5, therefore B T 3. For thin arches approximately y’ =y
and for constant thickness the value of AH becomes

_____prtt ( o  2sina} ~ _--2a
All= Cyr2+4 Gy t¥ C, =6 e e o )’ vcz_.sin a e (3b)

H. Ritter® has computed tables for C;, G, which facilitate the calculation.
A constant temperature change produces the horizontal force
deEt

Ht:clr2+C2t2

acting in the axis of gravity of the centre line. Ritler determines the effect of
temperature change also in the case when temperature varies in the section
continually, after a curve from zero at the extrados to maximum at the intrados.
If (reservoir being empty), the temperature change in the section is symmetrical
to its centre, the horizontal force H. has the value (4a), for d being the mean
temperature change in the section.

Very detailed is the analysis of arches under radial loads in the article by
W. Cain1l and in the following discussion, further in the article by
F. A. Noetzli15 and in the discussion on it. W. Cain published in his article and
in his conclusion of the discussion1é the final formulas for calculation of fixed
arches under uniformly distributed normal loads (fig. 3), as follows. The thrust
H. at the crown is given by '

(4a

32

X:pr—ch%‘ﬂ%g—asina, (6)
where
&—(1 +f) ( —{—Lsin2 )—'—2sin2 +288i ( —Lsin2 ) (6a)
= gleletg o at288 gala— al; ‘
1 = radius of gyration (i2————1i2t2); the numerical factor 2.88 = B e with
_ E
g—: 2.4 for concrete (instead of G 2.5 for isotropical substances) and J3 9

5
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for rectangular section. The member with the factor 2.88 comes from shear;
the effect of shear can be neglected for central angles 900 < 2a < 1209, but for
smaller central angles and for large proportions t/r the effect of shear can be
great enough. For the point M of the arc, given by the angle with the axis of
symmetry, the thrust (positive for tension) is

N = Xcosp — pr, (7)
the shear
T = Xsing . (8)
and the bending moment (positive when clockwise for forces on the left side)
M:_-——Xr(sma—coscp); (9)
a -

that is, the moment to the point M of a force X acting to the right in the
centre of gravity E of the centre line, if it is the effect of the right portion,

r-sina
—. These

because the centre of gravity E is given by the distance OE =

results signify that in each section the force X, acting in the centre of gravity E,
adds to the thrust N, = — pr = — p, r,.

Fig. 8.

The uniform radial loads produce the deflection in the crown of arch (positive
toward the centre of arch)

pr’

n=0g; (10)

where
a 12 . 12 .

0= (1 —cosa) [(1 + ;;) (a — sina) + 2.88 = (a+ sin a) (10a)
A temperature change d, equal at all points of arch, gives a horizontal force
EJ 2asina
9 (1)
going through centre of gravity of the centre line, and a deflection of the crown
section

Hi=>5%¢

Nt = — o-der; (12)

o 1s the coefficient given by (10a). A good check of the foregoing equations is
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that for o = O they become equations for a straight beam fixed at both ends;
it follows by substituting infinite series for sin and cos and limiting for o = 0.

Is the connection between arch and foundation not rigid (anchoring of rein-
forcing bars), the arch at the abutments can crack and it approches the arch
with two hinges, especially in a thin arch. In this case (fig. 4), neglecting the
influence of shear, as is possible with a thin arch, it works out that

12

X:p'r——Hc=%-21%sina, (13)
. 3 . i* 1 .

8=:'oz(.?—i-cos20¢)——-2—s1n20(.—{—?2~ a+?sm2a, (13a)
M = Xy (14)
For N and T we have equations (7), (8). The deflection of the crown of arch is

— o R
n= 0" ' (1)

12

m‘:l—C(;::a sina—l—a(l—2cosa)+%(a——sina)l (15a)

A temperature change, equal at all points of the arch, produces in the abutments
horizontal reactions

EJ i
H, = b —p 2 (16)
and the deflection of the crown
nm=—ow- -d¢cr (17)
Cam. Guidi1® transformed the equations for a hingeless arch, introducing
lengths instead of goniometrical functions. To the thrust N = — pyry, = — pr

in all sections there comes in both abutments an additional horizontal reaction
going through the centre of gravity of centre line; its value is (see fig. 1)

i2

—_Pr o1
AH=—-002 5 (18)
. s r—h 21 i2( 8 r——h)
V=1t _T-HZF 2T~ (18a)

The result represents the effects of the bending moment, the thrust and the
shear with B%: 3 (as for isotropical substances). An equal temperature

change d at all points of arch gives
__deE ts
- 6 &u 1‘2

acting in the axis of gravity of centre line. A uniform radial water pressure
produces the deflection of the crown of arch

e bt )
n_Eth{l+&,,2s =25 (10b)

Ht (113)
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The deflection produced by a constant temperature change 1s

doeEt

pr

n—n- (l?a)
this coincides with the equation (12) of Cain. Guidi facilitates the calculations
by means of numerous tables giving for different values of the central angle 2 «

S l 1 pr,
s 2r VE
sure, which appears with inclined axes (surface lines) of arches in multiple-arch
dams, and the effect of dead load for an arch with inclined axis, the arch of
variable section and the butresses of multiple-arch dams. H. Ritter® analyses the
arch of general form and with variable section.

A rapid preliminary calculation can be based on simple formulas given by
F. A. Noetzlil7. He neglects the effect of thrust and shear, replaces the centre
line approximately with a parabola and neglects the difference between the
length of arc and chord, assuming a low arch; thus he gets

the values of .f He also analyses the non-uniform water pres-

t.‘?
r2F2-

More accurate would be, instead of 0.94, the coefficient

h?1 ‘
(7 S5 o

its values arc given by Noetzli for various central angles and for various pro-
portions t/h in a diagram. The coefficient k. is not yet exact, but it considers

AH=—094p, (19)

kt=

the thrust and the shear 4(w1th approximation, using 1 instead of B— = 3); it

G
gives values very near to the exact ones, as W. A. Miller 18 proved. Noelzli gives
for effect of temperature the approximate formula

3

Ht_094beEh, (20)

on the same basis as equation (19); he supposes approximately H, acting at a
) h . . .
distance of 3 from the crown of centre line as for a parabolic arch. The shrin-

king of concrete produces the same effect as a drop of temperature of —35° F;
it gives, like a temperature change and in the same line of action, the horizontal
reaction

E.-As
1w @1)

if As signifies the shortening of centre line with shrinking of concrete.
The normal stresses and their values at intrados and extrados are determined

from M, N with

Hy=—094 ——

<8 (22)

. ==

1,2

Me E
" bt

it
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e = 9= distance of intrados and extrados from the cenire line. Or to the
. T
primary normal stress v, = — pf) t2’ constant for all the arch, are added the

additional stresses produced by the horizontal force AH acting in the line of
gravity of centre line; this force gives in each section a moment M and a
thrust N, and the extreme stresses v,,, are then determined by equation (22).
Guidi10 transforms for an arch of constant thickness the formulas for stresses
in the crown and abutment joint into a very simple form and adds, to facilitate
calculation, numerical tables of coefficients in the equations. The stress at the
crown is:

in the intrados
t Oy — O 1 [s—1 t
J\lz—p(T—p,l)—"SE(b_r_Hl_—'z—?—l)’ pl—:?(—"s__l-g')’ (233)

in the extrados

r t 0 — 0 1 (s—1 t

the stress at the abutment:

in the intrados

. ro €, 9—8) , L[l r—h( =t}
v1=—p(T+Hl)+8E(b?“1+2_2_.l>’“1=@LS——r—(1+_)- (24:&)

in the extrados

‘ r ‘ t 0 —0 ‘ 171 r—h t]
vam—p (f—ws) — B (g 250wy = =T (1— g et

| § T

These formulas assume the temperature change to vary in a section linearly
(fig.2) with a value d, at the intrados, d, at the extrados and d at the centre line.

The thickness of arch dams atteins very high values in the lower portions, in
proportion to the radius of curvature and the length of arch. Thus the main
condition of the usual analysis of arch, that the dimensions of sections should
be small in comparison with the radius of curvature and the length of arch, is
not fulfilled. For thick arches (great curvature) one gets the known more exact,
analysis leading to the variation of normal stresses according to the law of a
hyperbola, as H. Bellet1% remarks; he also tries a more exact calculation of the
effect of thrust and shear, but comes for normal stresses to the formula (of
Lamé) for a thick cylindrical shell because he supposes that the angle of two
adjacent sections does not change with deformation, which is true only for a
thick cylindrical shell Joaded with uniform radial forces.

From the assumption that plane sections remain plane, which for thick arches
leads to the hyperbolic law of normal stresses, B. F. Jakobsen20 derived a solution
for circular arch with constant sections, loaded with uniform radial pressures.
W. Cain?!, in his contribution to the discussion on Jakobsen’s paper, transformed
the final equations into a better form. He obtains (fig. 5)
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2 I'g

+2
X = pyrs—He = 2222 % qin g, (25)

o To

) . )

— (a+lsin2a)(1 +—‘—;)——1M+ 2.88£-—L2<a—lsin2a), (25a)
2 To (o Iy T 2

if r, signifies the radius of the neutral line, which differs here from the centre

line; the difference is

t
r—rI,=—=¢6=T1— ————r

log nat. (E) (26)
Ty

About any point M, of the neutral line, given with the angle ¢ of the radius OM,
with the axis of symmetry OC, the external forces at one side of the section OM,
give a 'moment

— COos cp) ; (27)

it is the moment about the point M, of the force X, acting to the right, substi-

sin o ..
from the centre O, viz. In

tuting the right half of arch, at a distance of r,
a

the centre of gravity of the neutral line. In the section given by the angle ¢ one

has also the thrust according to equation (7) N = Xcos¢ — p,r, and the
shear according to (8) T = Xsing; to the thrust — p, r, uniformly distributed
in the section there comes the force X formerly mentioned.

Moment M and thrust N gives at a distance z from the neutral line the nor-
mal stress

Y == e — - ——— (28)
N and v are positive as tensions, moment M is positive when acting clockwise
for forces on the left of the section, and z is positive for the outer side oi the
neutral line. From (28) one gets the stresses at the extrados with z —

. . t
r, -z =r, and at the intrados with z = — <§—C), To -+ z = 1,.

The water pressure produces a deflection of the crown (positive in the direc-
tion to the center O)
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_ P2TsTo
n — Wo E t ’ (29)

where *
i2

wo:—l—(l —cosa) [(a — sin a) (1 + —2) + 2.88
3’0 )

r i?
—+—5 (e +sina)|. (29a)
To To

With respect to formulas for thin arches the equations for thick arches give a
lesser tension and a greater compression; the effect of great curvature of arch
is therefore advantageous.

A constant temperature change gives a horizontal reaction
1? 2sina

I'02 Yo ’

acting in the line of gravity of the neutral line. The deflection of the crown

from temperature change is

Ht"—‘bEEt

(30)

Nt = — @, - OET,. (31)

To facilitate the computation with Cain’s formulas, F. H. Fowler 22 elaborated
for thin and thick arches diagrams for resulting normal stresses at intrados and
extrados of the crown and abutment joint. The numerical results show that the
shear can be neglected for t/r = 0.02 to 0.06.

The equations for thick arches give good results if the thickness of the arch
is not too great. For too great dimensions, such as sometimes appear in the
lower parts of arch dams, even this analysis is inexact. A correct calculation of
stresses should be based on the mathematical theory of elasticity; R. Chambaud 23
showed that it gives in this case very good results. He proceeds from the mathe-
matical theory of elasticity and introduces no other hypothesis than Hooke's law.
Chambaud gives the solution for an arch of rectangular section; it can be applied
to all thick arches (arch dams, tunnels and underground conduits), further to
thick cylindrical shells. This theory naturally gives complicated formulas, but
numerous diagrams allow a quick and simple application. The results correspond
very well to all surface conditions, except a small extent at the abutments; they
can be adapted for any distribution of external forces on the intrados and
extrados, and for any distribution of internal strains, therefore for various
shrinkings in several places (caused for instance by the method of construction)
or for irregular temperature changes. The solution is especially valuable, because
it usually gives much more favourable results than the theory of thick arches
previously mentioned. The usual theory of thick arches (and still more the
usual theory of thin arches based on linear distribution of stresses in sections)
leads as a rule to greater tensions on the intrados at the crown and especially
on the extrados at the abutments, where this theory indicates the weakest point
of dam. Great tensions would cause cracks in an arch without reinforcing and
the consequence would be that the uninjured masonry would form a new arch
able to resist safely the external forces; this was at first observed by J. Résall
(he supposed the “acting” arch parabolic), afterwards by M. Malterre2+ (with

* There is an error in Cain’s paper (Transact A.S.C.E., vol. 90, p.541, form. 109), as

clearly shows comparison with the preceding equation.
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the “acting” arch circular, of constant and variable thickness) and L. J. Mensch?25.
The exact calculation by the theory of Chambaud shows that the actual stresses
are much more favourable; especially the tensions on the extrados disappear
(which is particulary important for the impermeability of the dam), the tensions
on the intrados are limited at most to a small portion at the crown. The exact
solution gives on the whole few differences with respect to the usual theory of
thick arches as regards the effect of bending moments; a considerable difference
appears in the effect of thrust which outweighs the effect of bending moments
in thick arches, if exactly calculated. The differences in the stresses mainly
concern the neighbourhood of intrados. Moreover, the exact theory makes due
allowance for the shearing force. The usual theory of thick arches does not give
good results for too great thickness, because it is based on assumptions which are
not correct: it neglects the normal stresses in radial direction and determines
the normal stresses in sections, as though plane sections would remain plane
after deformation. Especially the last hypothesis is not right for curved bars
(arches), because there the determination of the effect of normal and shearing
stresses cannot be divided as for #traight bars. The exact theory gives for normal
stresses (in the direction of radius v,, of tangent to the arch v, and in the
direction of the axis of intrados v;) and for shearing stresses t (perpendicular
to- the axis in the radial section and in the cylindrical section) altogether curves;

fig. 6 shows these curves for the crown section C; C, and for the abutment A, A,
of an arch with radius r = t = C; G, = A; A,. Chambaud made the analysis
for an arch with external forces and stresses symmetrical to the plane of centre
lines. The application for other cases naturally gives only approximate results.

The analysis of the arch dam as a system of horizontal arches independently
withstanding the water pressure and the effects of temperature changes,
shrinking and swelling of concrete, can be very good if for instance when con-
structing in layers the connection of layers in a vertical direction is destroved; this
can be seen at sudden breaks of deflection lines of vertical sections??. This analysis
would be exact if the dam were actually divided into independent horizontal
arches with horizontal contraction joints, filled with asphalt and bent copper
sheets to obtain impermeability, as planned by A. Peiia Boeuf26. Otherwise this
analysis is only approximate.

Analysis of Arch Dam as a System of Horizontal Arches and Vertical Cantilevers.

In reality the horizontal arches hang together in a vertical direction and cannot
deform quite independently; this causes a reciprocal action of horizontal arches
in a vertical direction. A more exact analysis of arch dams considers the dam
as divided by horizontal sections into horizontal arches and by vertical radial
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sections into vertical cantilevers. Between these two systems are distributed the
external forces. The conditions of this distribution are given by the deformation
of the dam, which must be equal at every point for the two systems. If we
were to consider all the components of deformation at each point (three
components of displacement in three perpendicular axes and three com-
ponents of turning about these three axes), we should obtain an exact solution.
Since this method of calculation is almost impossible practically, it is simplified
by disregarding all turnings and the respective torsional stresses, by disregarding
also the tangential component of horizontal displacement and the respective
shearing stress. Moreover one can also disregard the vertical component of
displacement, if one considers the dam after deformation by the weight of
masonry is completed. There remains only the horizontal component of displace-
ment perpendicular to the centre line of horizontal arch (radial displacement),
and in consequence of this only one condition for each point where the cenire
line of supposed horizontal arch and the axis of vertical cantilever cross. Thus
we substitute for the dam a system of vertical cantilevers and horizontal arches
which simply (without restraining) support one another2?, The torsional stresses,
omitted by this method, in reality diminish a little the bending stresses and
increase security.

An exact analysis by this method would be difficult, because the displacement of
any point of the cantilever (or arch) depends on all loads acting on the can-
tilever (arch). The conditions of equal displacements of horizontal arches and
vertical cantilevers in all points therefore give equations, each of which contains
a great number of unknown quantities.

A. H. Woodard?® simplifies the calculation regarding the deformation of the
dam only in the vertical section through crowns of arches (where the dam is
highest); he supposes the arch under simple compression, determines the
deflection of the crown as for an arch with two hinges and takes the distri-
bution of water pressure between the system of horizontal arches and vertical
cantilevers, computed from the crown section, uniform along the arches.
R. Schirreffs29 endeavoured to improve the analysis by calculating the deflection
of the arch crown as for a hingeless arch, otherwise using the same method
of analysis; but he disregarded the effect of thrust and his formula is too com-
plicated and incorrect, as W. Cain1® showed. H. Bellet1® determines the distri-
bution of pressure between arches and cantilevers from a wrong supposition that
the strain of centre line of arch at any point equals zero.

H. Ritter® in a numerical example (in 1913) proceeded approximately, sup-
posing on each horizontal arch a uniform radial loading and determining its
value by equating the deflection of arch crown and vertical cantilever in the
middle vertical section. Analogically L. R. Jorgensen30 examines only the middle
vertical section, but computes the distribution of pressure only with a rough
approximation; L. J. Mensch3! uses for calculation of pressure distribution on
cantilever and horizontal arches the unsuitable condition of equality of internal
works. J. Résall also considers only the middle vertical section.

H. Ritter3? indicated the principle of a more exact calculation of load distri-
bution on vertical cantilevers and horizontal arches thus: The deflection at any
point M of the vertical cantilever A B (fig. 7) can be computed from its in-
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fluence line (viz. deflection line of the cantilever A B loated with P = 1 in the
point M): it has a value

m:ZP'nnnm (32)

if P’y designates a load acting at the point N on the cantilever. This deflection
equals the deflection of the horizontal arch at the same point with a load
P”, = P, — P’4; P, is the total load at the point N. We thus obtain as many
equations as we take horizontal elements, supposing that the loading of horizontal
arches is uniformly distributed and that there is in consequence only one value
P”, for each horizontal arch to compute from these equations. In this manner
we could proceed for any vertical section of the dam and we would find for
different vertical sections various loads on the horizontal arches; the loading of
these arches is therefore not uniform.

A. Stuckyt is the first to consider actually (in the analysis of the dam on
the river Jogue, made with the cooperation of prof. A. Rohn) all vertical canti-
levers and horizontal arches (both of variable sections) and to take account not
only of the different spans and rises of arches, but also of the different heights
of vertical sections, which have an essential influence on their stiffness and there-
fore on the distribution of water pressure on vertical cantilevers and horizontal

b B __B B

N

[

_

Fig 7. Fig. 8.

arches. The evolution of the resultant equations can be facilitated by solving
separately the system of equations concerning each vertical cantilever (considering
thereby only the loads on this cantilever). The approximate values calculated can
thus be improved from original equations by iterative calculation. Since the exact
fulfilment of suppositions of the analysis cannot be warranted for masonry dams
with respect to the execution and the material used, each analysis of dam is to
be considered as approximate: therefore the results of the first approximate
solution are often sufficient. The results can be checked by calculating the de-
flections of vertical cantilevers and horizontal arches for the determined distri-
bution of loads; it suffices if both deflections at the same point do not differ by
more than 10 0/.

A practical trial method was given by F. A. Noetzlil" and completed by
W. Cain33. It is first ascertained whether the horizontal arches act on the whole.
To this end we determine the deflection line A;M,B, (fig. 8) of the vertical
cantilever between two vertical radial sections in the middle of the dam, for the
whole water pressure AA’B. In addition, we determine the deflections of hori-
zontal arches, supposing them to bear the full water pressure. If the deflections
of the vertical cantilevers are throughout smaller than the deflections of the

70 E
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arches (line B;M;), the cantilevers bear all the load; the arches could be stressed
only if the temperature decreases and diminishes their deflection. This case
occurs if the thickness of the dam is calculated by neglecting the influence of
arches (as for a straight dam).

If the thickness of the dam is smaller, part of the water pressure is borne by
vertical cantilevers, part acts on horizontal arches. The vertical cantilever bears
at the base the full water pressure, because its deflection is very small there
(smaller than the deflect on of arch with full water pressure). From the base lo
the top of dam the load .of the arches increases approximately according to a
straight line AB’ (fig. 9); in the upper part of dam the arches, being stiff enough,
hinder the deflection of cantilever (deflect less than the cantilever and support it),
therefore act on the cantilever with reactions opposed to water pressure. From
the load diagram of water pressure AA’B the arches bear the part AB’B, the
vertical cantilever the part AA'BB’ (AA’CY is positive, C’B’B negative). We con-
sider the highest vertical section and assume on the arches an approximately
uniform loading. For the load diagram of the vertical cantilever it is easy to
obtain (best by calculating) the bending moments and to determine the deflection
curve of the cantilever as a funicular polygon to the loading diagram with
ordinates M?; J, 1s a constant moment of inertia, J the moment of inertia of
the section. At a chosen point C all the load is to be borne by the arch. We

A A

determine at G the deflection of the arch crown for full water pressure. If the
cantilever has at G a greater deflection y. than the arch, it is necessary to choose
the point G lower and repeat the calculation. The exact position of C is deter-
mined with a linear interpolation between the two points C;, C, formerly chosen
(after fig. 10, where G, C’;, G, €', are arch deflections and C, C”,, C, C”, can-
tilever deflections and the arch deflections throughout the height of dam.
Usually there will not be complete accordance. To obtain equal deflections not
only at C, but also on the top, we must change the load diagram for horizontal
arches by substituting the straight line C'B” for C’B’; the arches then support
diagram AC’B”B (AC’A’ is positive, C’B” B negative); the vertical cantilever
supports diagram AC'B”BA’. We change the point B” until we have at G
and B equal deflection of arch and cantilever. At other points the deflections
iieed not be the same, because the broken line A C’B” should be actually a curve.
We determine it by assuming on the arches a smaller (greater) load, where
the calculated arch deflection is greater (smaller) than the cantilever deflection.

The water pressure produces in canlilevers the greatest stresses in the lowest
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joint, where greater tensions can occur on the up-stream side. If there is no
reinforcement, horizontal cracks on the up-stream face at the base of dam can
appear. In this case vertical cantilever does not act as a beam perfectly fixed,
but only as a beam partially fixed or hinged at the base. We can then find the
right solution by trail, choosing the tangent to the deflection line at the base of
the cantilever, otherwise calculating as formerly indicated and ascertaining
whether the deflections of the cantilever coincide throughout with the arch
deflections.

R. Chambaud 23 also indicates a method of finding the division of loading
on horizontal arches and vertical cantilevers. He proceeds from any (approximate)
law for the part of water pressure carried by the arches, supposes in each
horizontal arch an approximately uniform loading and computes the deflections
of arch crowns and the deflections of cantilevers under the load carried by them.
For the second computation he introduces half the sum of these deflections,
determines from it the division of loading between arches and cantilever and
repeats the computation. Thus he can approach the exact values. He also con-
siders approximately the normal stresses in the vertical direction (of the axis
of arch) with their average value.

Fig. 10.

A. Rohn 3+ recommends for the first calculation this approximate method: The
vertical cantilever is supposed to carry from the load diagram AA’B (fig. 11)
of the whole water pressure the triangular part AA’D with the base AA’ = x

: = 1 1 b
= height of dam, and AD =n - x, where n = 5 to 9 forﬁ = 1.1to 1.8;
b is the length of dam at the top h its height. The rest of water pressure acts
on horizontal arches. Besides he always recommends consideration of the

uplift with a triangular load diagram A;C,A, (as for straight dams), where

AjAds =m-x for m <1; in the upper part of dam m = 0.8 suffices. For
a triangular section of dam the necessary thickness at the base is

y:n.xl/ —1.__; (33)
Y = weight of masonry in proportion to the weight of the same volume of

water. Form =1, n —= -}4—, Y = 2.3 the result would be y = 0.22 x.

The uniform distribution of radial pressures on horizontal arches assumed
in the majority of approximate methods of analysis, is not sufficiently exact.

70*
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The division of water pressure on horizontal arches and vertical cantilevers de-
pends very essentialy on the form of the cross-section of the valley. It is therefore
necessary for an exact analysis to consider not only one (the highest) cantilever,
but a greater number of vertical cantilevers and horizontal arches: it was thus
that A. Stucky14 proceeded. Another trial method was given by C. H. Howell
and A. C. Jaquith35, who choose a note uniform loading of arches, determine
for this loading the deflections of arches and for the remaining loading the
deflections of cantilevers and vary successive the loading of arches until they
get at all points practically equal deflections of arches and cantilevers. It is
necessary to make more trials in order to obtain a satisfactory coincidence. From
the resultant loading the stresses in arches and cantilevers can be computed.
In their analysis Howell and Jacquith omit the non-active extended parts of
arches and cantilevers and limit the final calculation of the dam (without
reinforcement) only to the parts working in compression: they always have
arches of variable section which they calculate omitting the influence of shear.

Comparison of several cases showed that the analysis of arch dam as a system
of independent horizontal arches is not exact and that it requires more masonry,
especially for calculating the arches in a rough approximation as thin cylindrical
shells, as was formerly the custom. The influence of vertical cantilevers should

B

Fig. 12. Fig. 13.

not be omitted, as it always appears and alters the loading and condition of stress
of horizontal arches. The last method of analysis is available for any profile
of the dam site, also for unsymmetrical profile. '

The influence of temperature changes, which can produce greater stresses
than water pressure can be computed in the same way as the latter. It can be
even substituted (Ritter?9) by a water pressure which gives the same deflections
of horizontal arches as temperature change; this equivalent water pressure is to
be divided over the system of vertical cantilevers and horizontal arches analogi-
cally as a real water pressure.

A trial solution of the influence of temperature change was given by
F. A. Noetzlil? and improved by W. Cain2l. We again suppose the dam to be
divided into vertical cantilevers and horizontal arches. The centre line of arch
ACB (fig. 12), fixed at the ends and otherwise free, would deform by tem-
perature change in AC/B; the displacement of the crown would be, according
to the formula (31) for thick arches

N = E’: —600-681'0.
This displacement is hindered by the reactions p’ of vertical cantilevers D CE;
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supposing them to be constant on the length of each arch, we have after (29)
the displacement

. __guei__ . P'IaTo
The resulting diplacement is
y=CC" =, (Tpt —2¢) (34)

The resulting deflection curve of vertical cantilever is D C” E”. The loading p’
will be determined by analysis of dam. In the base of dam there is

y:(l)oro(F')Eo—?'—bE>=O
therefore
, __oeEt

Po
Ty

We then choose at the crown a slight specific pressure (fig. 13) and in the
vertical section a curve for distribution of pressures p’ (in the first attempt we
can choose a straight line). For this loading we determine for the vertical

. . J . .
cantilever the bending moments M and the values M TO ; J is the moment of
inertia of the section of cantilever, J, a constant moment of inertia. The line
M 39 gives the loading diagram for deflection curve as a funicular line. The
analysis is correct if the deflections y of vertical cantilever coincide with the
deflections of arches computed from equation (34); the loading of arches
is given by p’ in the opposite direction as for vertical cantilevers. If there is no
coincidence, it is necessary to correct the computation by altering the loading
curve for p’.

The diminution of temperature can be combined with the shrinking of
concrete; if €' is the shrinking for unit of length, the resulting deflection of
arch crown is

y=CC" = 0o To (s’ —de— 1 rf); (34a)
t
the temperature change 9 is here negative, the reaction p’ of vertical cantilevers
(in the last equation positive) acts from the centre of arch. The shrinking of
concretc has the same influence as temperature change (diminution), which
would cause a shortening equal to that caused by shrinking.

An increase of temperature causes a deflection of dam up-stream for empty
reservoir; vertical sections also bend up-stream, which in vertical cantilevers
produces tensions in the down-stream surface of the lower part of dam. In the
arches, on the contrary, tensions are produced at the crown on the up-stream
face; there cracks can develop if there is no reinforcement. With reservoir full
and diminution of temperature the dam moves down-stream; there may be
a tension in the cantilever in the lower part on the up-stream face in the arches
tensions at crown on the down-stream face. For all tensions there should be
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adequate reinforcement; otherwise vertical cracks could occur gradually in the
arch crowns on both sides, which would affect the stability of dam very un-
favourably. It the distribution of loading on vertical cantilevers and horizontal
arches is neglected (only the resistance of arches is considered), wrong con-
struction can easily cause horizontal cracks, as the results of measurements
on some¢ dams appear to show17.

As concerns the amount of temperature changes, F. A. Noetzli17 therefore
recommends for higher dams at the base thicker at the top greatest temperature
change (4 259F) be considered, at the base no change and between them
linearly variable changes; for exact calculation we have not as yet enough
results of actual measurements. At Arrow-Rock dam3¢ the yearly change of
temperature at the top was found to be 270 F, at the base only 6.50 F. There
can also be several combinations of temperature changes on the up-stream
and down-stream face; it is particularly necessary to consider for an empty
reservoir the same largest drop of temperature on the up-stream and down-
stream face, and for a full reservoir different diminutions of temperature on the
up-stream face (to the lowest temperature of water) and on the down-stream
face (to the lowest temperature of air).

In thicker dams the temperature changes do not penetrate the whole dam
equally; a closer examination of it is given by A. Stuckyl4. G. Ippolito13
examines in detail the masonry and derives simple formulas for distribution
of temperature in the latter; they can be used for any masonry structure to
determine daily and yearly changes of temperature. The same author also
examines the influence of temperature rise on the hardening of concrete and
gives results of temperature measurements on several dams; these are but few
and do not permit safe conclusions to be arrived at. The calculations usually
give too large stresses from temperature changes if one considers the tem-
perature change constant or linearly variable through the thickness of dam,
which does not correspond to reality. The deformations caused by temperature
changes can also have a favourable influence on the stresses if there is unelastic
yielding in the abutments or in the interior of dam.

A simple formula for the penetration of temperature changes in the interior
of thick masonry, derived from American measurements, is given by H. Ritter?:

0,

3, —
37 x
where d is the temperature change in the masonry at a distance x from the

surface. d, the temperature change of air. G. Paaswell3? develops for this
case the formula

o= (35a)

5 — b, e+~ cos kx (35b)

k is a constant dependent on material and time: for concrete and the period of
one day k = 0.079, for concrete and the period of one year k = 0.00413.

Too great influence of temperature changes and shrinking of concrete can
be eliminated by contraction joints. For a dam calculated as gravity dam these
joints are statically inoffensive. For an arch dam too many contraction joints
are unfavourable with respect to stability.
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Analysis of Arch Dam as an Elastic Shell.

An arch dam is in reality an elastic shell, free on top and supported or fixed
on other parts of its circumference to the sides and bottom of the valley.
But the analysis of an arch dam as elastic shell is very difficult. It is necessary
to start from equilibrium and deformation of an infinitesimal element (as in
the analysis of flat plates) and to satisfy the boundary conditions at the abut-
ments and at the top of dam. The idea of this analysis was formulated generally
by G. Pigeaud 3.

B. A. Smith38 was the first to attempt to calculate an arch dam as an elastic
shell. He simplified his analysis, considering only the highest part of dam and
assuming in the horizontal direction throughoat the dam the same conditions
as for the highest section; he eliminated in this way the variability in horizontal
direction (dependence on central angle ¢). He considers the boundary conditions
only for the top and base of the vertical section; this is in reality in accordance
with the analysis of a vertical cylindrical shell of a reservoir. The connection
of elements in a horizontal direction is considered In stresses, but not in defor-
mation; it is only shown with a rough approximation that for central angles,
smaller than 1200, the deflection of the crown of horizontal arch can be com-
puted as for a full circle, substituting the real modulus of elasticity E, for

oy 2 : : , . :
the arch with 3 E,. Smith also considers the shearing forces in horizontal

planes and from equilibrium conditions of forces acting on the element t - ds - dy
(between two horizontal planes, two vertical radial planes and the up-stream
and ‘down-stream face of dam), from deformation of vertical cantilever by
bending moment and of horizontal arch by thrust (the bending moments in
arches are neglected) develops the fundamental equation

d? d*z\ E,

dy® (Cl dyg) + 12, tz=p; (36)
r, is the radius of up-stream face (fig. 14), p the external (water) pressure
uniformly distributed along the horizontal arch, t = thickness of dam,

C,=EJ = IIE E,;t3 is the flexural rigidity (for a vertical element of hori-

zontal length = unit of length), E, modulus of elasticity for vertical cantilever
(can be different from E, for horizontal arch, if there is another reinforcement),
z = radial deformation (deflection and y = depth measured from water
surface (at the top of dam) in the direction of vertical axis of dam surfaces.
The analysis erroneously considers the vertical cantilever as an independent
element, without connection with other elements; therefore Poisson’s ratio
escapes from the resulting equations.

Smith gives the analysis for a dam of constant thickness and for a dam of
trapezoidal vertical section. In the first case the solution is similar to the known
solution for cylindrical shell of reservoir; only Poisson’s ratio is not in the
results. For a thickness linearly variable the solution contains series in the
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