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IVbl

Calcul approche des dalles rectangulaires en beton arme
poui une chatge uniformement repartie ou hydrostatique

Näherungsmethode zur Berechnung von rechteckigen Platten
aus Eisenbeton bei gleichmässig verteilter

und hydrostatischer Belastung

Approximative method of analysis ior rectangular reinforced
concrete plates under uniformly distributed or hydrostatic load

PROF. IR. P. P. BIJLAARD
Technische Hoogeschool Delft, Technical adviser I. A. B. S. E.

Introduction

As a direct inlegralion of the differential equation of the plate is in
general not possible for rectangular plates, supported at Ihe edges, several
methods have been developed to cope with this difficulty, using double
and single Fourier series, differences equations, etc. Some of these
methods lead to sufficienlly accurate results. They are, however, rather
laborious, especially if all kinds of boundary conditions have to be taken
into aecount, whilst no usable general formulae for bending moments, etc.
are obtained. Il is true Marcus C) gave relalively simple formulae for
rectangular plates with uniformly distributed load, but these have not been
derived directly. They have been composed in such a manner that they
approximate as much as possible the results of his more accurate calculation

(2), which leads only lo numerical results.
At the other hand our method (3) is rather simple and gives a clear

insight in the way in which the plates carry the load. Moreover it leads

(') Marcus, Die vereinfachte Berechnung biegsamer Platten, Springer, Berlin, 1925.
(2) Marcus, Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung

biegsamer Platten, Springer, Berlin, 1924.
(3) BnLAinn, De Ingenieur. n° 26, 1934. n° 23, 1935; De Ingenieur in Ned. Indic, n° 12,

1935; Proc. Third Engineering Congress, Tokio, 1936.
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lo simple general formulae for the maximum
bending moments as functions of the ratio
s.= Z„/ZI of Ihe sides, which are similaiiy
built for all boundary conditions. for
uniformly distributed as well as for hydroslatic
load. Furthermore our formulae are more
accurate than those of Marcus.

Simply supported plates

Lei us consider first a rectangular plate (fig. 1« with simply
supported edges, carrying an arbilrary load q=f\x, vi. An arbilrary X-slrip,
X,, of this plate, having a breadth dy, will only have lo carry a vertical
load qx, Ihe remainder of Ihe load q being carried by Ihe vertical shearing
forces acting on its sides. The bending momenl per unit breadth of the
strip, due lo Ihis vertical load qx, we denole bv \1,,

3M,
As, however, also twisling momenls M„, and M„,-| r^-dy are

acling on the sides of the strip, which cause bending momenls M,.- per
unit breadth of its cross sections, Ihe real bending momenl per unit
breadth of the strip amounts lo

so that

We know thal (4)

M„

Mx M„, + Ma

m„ m. — mx.

DI 4^ +dx~

32w

(I)

(2)

(3)

(4) TtMosmiNKo, Theory of Plates and Shells, 1940, p.
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whilst

Myx=-D(l -v) d'w
dxdy

acting on strip XL as indicated in fig. 16. Consequently Ihe total moment
exercised per unit length of the strip by Ihe twisting momenls MaJ and

M^+^c/yis
öy

8MVJ

3y
dy D(l-v) dxdyrdy

acting on Ihe strip in Ihe opposite direction of the arrows in fig 15. Heiice
the bending moment Mx- per unit breadth of the strip, caused by the
twisting moments, amounls to

/''•* d3w
M*T -D(i -v) / d.c

x dxdy' D(l-v) d'w
dy-

I) 1 - v)
a-

a similar result being already obtained by Marcus.

But with eqs. (3) and (4) it follows now from eq. (2) thal

/ d2 w d'w
Mx„ - D |

whence we obtain, by changing x and y

M„„». - D
d' w

°f

ö'w
dy2

so that we draw the conclusion lhal

M„ M.

<5y2

(-1)

(•>)

(6)

(7)

Hence at any point of a rectangular plate with simply supporled edges
and arbilrary load, the bending moment M„ per unil breadth, lhat would
occur in an X-strip, if it had to carry its total vertical load g.,. as a simple
beam, without being discharged by Ihe twisting moments MBJ, is equal
to the bending momenl MBl,, occurring al Ihe same point in an Y-strip,
if it would have to carry ils total vertical load qtJ as a simple beam, whilst
of course

(lxJrqv q (8)

At Ihe other hand we know lhal, according lo eq. (3), whence M„
follows by changing x and y, we have

M* + My -D(l +v)
32 w +

82 w
(»)dx' '

3y

so that it follows from eqs. (5) and (6) that
M« + M, (l + v)M„ (l + v)M„r. (10)

With structures in reinforced concrele, where Poisson's ralio is usually
equated to zero, this yields
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or
and

M,+M, M» M,.

M„ M„„ — Wix.

(11)

(12)

(13)

q Furlhermore it follows from eq. (-i) and also
bv comparison of eqs. (1) and (12) that, with
7=0,

M.^ —My (14) and MyT= — Mx (15)

the latter equation following from the first one by changing x and y.
For example we shall use eq. (11) in order to find the bending

moment in the centre of a square plate wilh sides l which carries a
uniform load g=const. (fig. 2 a). As at the edges Mx M„=0 according
to eq. (10) in any section of a boundary strip Y„ the moment M„, will be
zero too, so that for these strips g„ must be zero. Therefore, according to
eq. (8), at x 0 and ;r Z the middlemost X-strip Xm has to carry a load

q, whilst at x=Z/2, on aecount of symmetry, qx=qy q IO so
that qx is distributed according to fig. 2b. Assuming a parabolic limitation
of qx we find that in the middle of Xm

1

48 2 "96 qP

so lhat, because in the centre of the plate Ma;=MB, eq. (11) yields

Mx My i Mav -^L- ql' 0.0365 qP

According to Nadai (5) the real bending moment with v 0 is
0.0368 qZ2, so that our result is sufficiently accurate.

In order to find the equation of the deflection surface we remark that
according to eq. (14) the moment Mx- in X„, is distributed as —M^,
consequently practically as the negative deflection wx of Xm, so that it may be

PT**"*1*!
(«) Nadai, Elastische Platten. Berlin, 1925.
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assumed to be caused by a fictituous load, being distributed according to
the second differential quolient of wx, consequently as —Mx. Assuming
again a parabolic limitation of the total fictituous load qj according lo
fig. 2c, it follows that

15 .7Mxm -g ql' — -^g- (q — q'm) P j^- qP

or q'xrn= 0.15 g. The deflection wx of Xm follows from qj by integrating
four times and dividing by EI. Assuming the deflections of the other
X-strips to be proportional to those of X,„, we obtain in Ihis way the
deflection surface of the square plate

—israr e> 5-«p+™p-«ie+«P)
(24 Ti — 65 r,3 -f 75 r,4 — 51 P -f 17 r,6) (16)

in which c,= x,'l and r, y/l and from which the bending and twisting
moments at any point may be calculated immediately. These are situated
fairly between Ihe values obtained by Marcus (2) and Lewe (6), as was
shown in our Ihird paper in footnote 3. In a similar way we found for
a square plate with a hydrostatic load q xp/l the deflection surface

*=«<aLnr. ^(2085-217P-42g+6lF)
2 187 675 E«7

(24 7) — 65 r,3 -4-75 V — 51 r,5 -f 17 y,6) (17)

Various boundary conditions

If an X-strip is for example fixed at two sides (fig. 3), the moment
yiT. — M„ thal would be caused in il by the twisting slresses ivx if it
were simply supported, being —M„m in the middle of the strip, will cause
moments (pxcM„m at the clamped edges (fig. 36 and 3c), by which at
the crossing M of the most loaded slrips Xm and Ym we gel, instead of
eqs. (12) and (13)

Mxm Mxv — <?Mym (18)

and Mvm Uyv — <p»M„,. (19)

As for example along X„, the moment Mxz — MH is about proportional
to the deflection wx of Xm, values <px or <b„ may be calculated if the ratios
of the ordinates of ivx or w„ are known.

Also to this effect we remark thal, by the twisting moments MXIJ

alone, the Y-strips, that cross Xm, would obtain defleclions w,,- according
to curve 1 in fig. 3d, being proportional lo M„T — MX. As al their
crossing with Xm their real defleclions coincide with the deflection wx of
X,„, given by curve 2, the part g„ they take there of the total load g will
be about proportional to wx — wy. being the distance between curves 1

and 2. Assuming a uniformly distributed load g, we therefore find Ihe

(•) Lewe, Pilzdecken, Berlin, 1926
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vertical load qx on X,„ by dra-
wing curve 3 at a distance q
above curve 2, load qx being
denoted by cross hatching. It
follows that near a clamped
edge the Y-strips cause an
excess load qcx on Xm instead
of discharging it. Value gci.
was computed from the
condition that the load qu, taken
by the boundary strip Yb, being
q„ =— (jrx at C, has to cancel
the bending moments

M,/T=-MJ,
caused by the twisting stresses
iux, in which M„ is the

moment Mx along the clamped edge. For a square plate wilh all edges built
in qcx is e.g. 0.61 q.

At the crossing M of Ihe most loaded strips (fig. 3a)

1xm-\-qVm=q ^20)

whilst the deflections of Xm and Y,„ in M must be equal. Expressing these
deflections in the maximum positive moments M,„, and M„„, and assuming
for that the same relations which hold for uniform load, this condition
gives us Ihe relation

um

ym y
AD

0
12

-''im M„ (21)

in which e—lu/lx, whilst for the six cases we considered (fig. 4, where
a single line denotes a simply supported and cross hatching a clamped
edge) fA is 1, 1, 1, 0.6, 32/45 and 27/32 respectively. Furlhermore in
fig. 3cZ the deflection ru„T of Y,„ is the result of the twisting moments M^,
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Fig. 4.

which cause in M a moment
— «PyMxm in Ym. At the other
hand wx may be considered to
be the resull of the actual
bending moment M„ in Ym, being
Mym in M, so that, according
to eq. (21) and fig. 3d we
have e.g.

- w„._

y,
® ®

7 Yy
'//.%%V; Y

'////////////
%
V
'/,Y,
7>
7/

Y,
7,

x,=

/////?///////,

<?„ M
Wx — Wyz Mym 4- OyMxm 1 -f (Ae

(22)

We could show (3) that for values s between 0.5 and 2 it is sufficiently accurate

to assume curve'1 in fig. 3d, the ordinates of which are proportional
to —Mr, as a parabola, if Mxm and M„m are considered as the maximum
positive moments in the strips and not always as those in M. Then also
curve 3, being proportional to iüx, may be easily found. For we showed
above here lhat the effect of the twisting stresses on Xm is equivalent to
that of a fictituous load proportional to —Mx, so that the deflection wx is
belween that by a uniform and that by a parabolic load, the latter being
indicated in fig. 3e. With known shapes of tvx and iuv values fx, <pM, cp,,

and <p„c can also be computed. The only unknown values in fig. 3cZ being
now q^ and qvm, we may calculate

M„ m (qxm -\-eqvm-r\- fqcx) lx- (23)

whilst in the same way we find

M„„ n(g„m + sfg„„+hge„)Z/. (24)

Consequently we have six equations, (18), (19), (20), (21), (23) and
(24), with six unknown values, g™, qvm, M„, M„„, M^ and M„m. In this
way we got the maximum positive moments Mxm and M„m, whence we
obtain also the clamping moments

M =M 4-fs MJ-T-»-xc -t**xrc \ yxc lllym

and M„c M„„c -f- <oyc Mm

For values s — lu/lx between 0.5 and 2 we got

iM,
wi th

qx s" + y^2 +

-¦ mqjl.*

T<I

and M„„, nq,/ly'

7/ fi- '
y£2 -L. a.rl

(25)

(26)

(27)
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Mxc=TncqJlJ and Mye

¦>x /- q < q > y.vc Ai/ ,4 _i _.2 _i_ „/ y *^s y

na '/2

e' + ys'
(28)

If we put gex and qey equal to their values for e=l, values ß, y, a!, etc.
are constants (7). Somewhat more accurate values could bc obtained,
however, by taking into accunt the Variation of qex and qn, with e. In
order to avoid that by this ß, y, a!, etc. would become functions of e, we
expressed qcx and qcy in q^ and qym, by which ß, y, a', etc. remained constant
in the intervals s 0.5 — 1 and s 1 — 2 (8). In table I, where cases I„ - VI„
refer to the 6 cases in fig. 4 and to uniform load, all values of eqs (27)
and (28) are given.

Only for the moments along the short clamped edges it is not allowed
to assume curve 1 in fig. 3cZ as a parabola. These clamping moments we
derived as follows. M„c for case II„ we found by superimposing on the
deflection of a square plate, wilh sides lx, for which M„c is known (see
also under here), a deflection of one of the clamped edges according to
that of the middle strip X„ in case s 2, yielding M„c — 0.057 qlx2.
Subsequently we found M„c for case IV„ and s 2 by remarking that
here the X-strips, with lengths lx, have the same rigidity as if they were
clamped with lengths IJ lx i/5 > so that M„c has about the same value

2
as for case II„ and e= -r— =1.34, being

|/5

M„c — 0.057 qlj2 — 0.127 gZ,2.

As, however, here qm 1.22 g instead of 1.32 g for case II„, we have to
multiplicate this value wilh about 2.22/2.32, yielding M„c — 0.120 gZx2.

Using the carry-over factors, mentioned under here, we computed from
these values Mxc and M„c /or e 0.5 and 2 for the other cases (fig. 4).
Demanding that dMc/de is continuous at s l and zero at s 0.5 and 2,
we obtain for e <^ 1 and e ^> 1 respectively

Mxc [—A + B(e —0.5)p]gZ„2 and M„c [— C + D(2 — e)"] gZx

(29)

(7) Bijlaard, De Ingenieur, n° 23, 1935.
(8) Bijlaabd, De Ingenieur in Ned. Indie. n° 12, 1935.
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in which A, B, C, D and p are given in table II. For case VI and £ <C 1

we got
Mxc [— 0.057 — 0.06 (e —0.5)2 + 0.35(£ —0.5)5]gZ+ (30)

In the same way we examined cases I and II (fig. 4) for hydrostalic
load q xp/lx. As we considered both cases separately xand disposed
already of the data for uniform load, we could approximate the shapes of
curves 1 and 3 (cf. fig. 3cZ), for which in case II we used curves of the
fifth and seventh degree respectively, still better than before. Eqs. (27)
and (28) hold here as well, the coefficienls being given in table III (cases
Ih and II„), in which Mxc„ and Mxc, refer to the upper (a; 0) and lower
edge (x=Zx). For the clamping moments at the shorler edges we got for
case II,, and e <^ 1

Mxcu 0.002(9 —40 e +22 £2)pZ/ and Mxc, 0.0066(4s — 9)ply2
(31)

whilst for £>1 the maximum clamping moment MBC — 0.028pZx\ The
better approximation appears from the fact, that with the values in
table III it follows from case II,, and s=la clamping moment for uniform
load p=g, being the sum of MICU and Mxcl, the value M« —0.0507 gZx2,

whilst with our values for case II„ in table I we find directly
Mxc — 0.0529 gZx2, Ihe accurate value being Mxc 0.0513 g+2 (9). In
the same way olher cases may be examined. It is, however, easier to determine

from our values for uniform load the carry-over factors c according
to the Cross method of moment distribution (fig. 5). It is for example
obvious that, with reference to Ihe moments at the middles of the edges,

__
M.ccvi — Ma-Cii

__
1 Mvciv — Mvcii

cx — TT ana — — \ i cx)
Mxeu 2 Ma.cn

In a similar way we calculated the influence values v of an edge moment M
(fig. 5) for the positive moments in the slab. Furthermore we calculated
the factors with which Ihe clamping moments at the middle of the sides
have to be mulliplicated to get the maximum edge moments. We found
for example the coefficienls for case VI,, for hydrostatic load (edge x 0

simply supporled), as given in lable III, by superimposing the influence
of a moment, opposite to Mxc„, on the moments for case II,,. We have e.g.
M^ivi Mxcjn-f- cxMxe„n • The clamping moments at the shorler sides are

M«, [— 0.0352(2 — e) + 0.072(1 — e)2 — 0.09(1 — t)3]ply2
and M„c [— 0.0367 + 0.0074(2 — e)'4]pZx3. (32)

Moreover, using the carry-over factors c, we are able to calculate
continuous floor slabs, starting from case II for all plates, according to the
Cross method, whereby we can also allow for the torsional rigidilies of
the beams. After having found the final edge moments we correct the
positive moments in the slabs by means of the partial influence values ty

of the edge moments, being valid if each edge moment varies separately.
These values <J> were calculated in another way by Bittner (I0) (his

values [i.). From our data for uniform and hydrostalic load we determined

(9) Timositenko. Theory of Plates and Shells, 1940, p. 228.
(10) BiTTNEn, Momententafeln und Einflussflüchen für kreuzweise bewehrte Eisenbeton,

platten, Vienne, 1938.
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values w and <p according to Bittner too for values £ 0.5 — 2. It is evident
l\j j\j

that for uniform load e.g. uy — — M„cV and that <p„= "cTM :—— so that,

in cases where this is easier, we can calculate a slab in this wa\ too (u).
In table IV we compared the clamping moments M„c according to our

formulae with those according to Timoshenko (12) for cases II„, IV„ and
V„ and £ 0.5, 1 and 2.

Resume

Par une methode approximative nous obtenons des formules simples
et generales nous permettant de determiner, avec une approximation
süffisante, les moments flechissants maxima positifs et negatifs. Ces moments
ainsi determines, nous pouvons calculer les coefficienls de Iransmission
utilises pour le calcul des dalles continues selon la methode de Cross.

Zusammenfassung

Durch ein Näherungsverfahren werden für die grössten positiven und
negativen Biegungsmomente einfache allgemeine Formeln von genügender

Genauigkeit erhalten. Mit den so berechneten Werten können die
Uebertragungskoeffizienten bestimmt werden, die es erlauben, durchlaufende

Platten auch nach dem Momentenverteilungsverfahren von Cross zu
berechnen.

Summary

By an approximative method simple general formulae have been
obtained for the maximum positive and negative bending moments,
which give more than sufficiently accurate results. From the data obtained
in this way the carry-over factors were calculated, by which the bending
moments in continuous floors may also be computed by the Cross method
of moment distribution.

(J1) These values o> and m have nolhing lo do with our values u> ep etc.v ' y fy ° v rv
(12) Timoshenko, Theory of Plates and Shells, 1940, pp. 228, 206 and 213 resp.
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