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The Relation of Data to Calculated Failure Probabilities

Rapport entre les differents facteurs dans le calcul de la probabilite de rupture

Die Beziehung der Daten zur berechneten Bruchwahrscheinlichkeit

N. C. LIND
Professor of Civil Engineering

University of Waterloo
Canada

By the methods of rational mechanics and the calculus of probability, we

can now process the probability distributions for loads and material strengths

relating to a proposed structure and calculate the 'probability of failure' to

any desired number of decimal places, regardless of how scanty the data is or
how poorly the curves fit the data. Clearly, the meaning of this calculated

probability needs to be studied critically before it can be used with confidence

in the design process. In particular, we must find ways to assess whether or

not the data is really sufficient to Warrant the probability Statements used in
the design.

The nature of probability has been studied extensively [1, 2], In relation
to the structural design problem the notion is fairly well defined; in most

studies of the structural safety problem, 'probability' is usually taken in the

sense of "probability-1" defined at length by CARNAP [2] (loosely called 'sub-

jective probability'), or it is left as an undefined notion; "probability-2"
('objective probability') cannot properly be assigned any meaning in this con-

text.
One way to e'mploy probability(-1) in problems of structural safety is to

adopt the viewpoint that it is merely a subjective measure of 'degree of

belief,' or 'strength of belief'. The relation of data to the probability of
failure is then very simple; data may rationally be assimilated into the input
probabilities by Bayesian methods [3]. The question of what constitutes a

sufficient amount of data to make a particular Statement about the probability
of failure, does not arise. Therefore, this paper is not relevant to 'Bayesian

design.'
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Alternatively, we may consider the probabilities associated with loads and

strengths to be inherently unknown, auxiliary quantities. Objective Statements

about the probability of failure can then be made in the usual terms of Statistical

inference, and the subjective element in the justification of the design
is greatly reduced. The viewpoint in the following, then, is that probability
is not an absolute notion; rather, it has meaning only in relation to a specified
body of evidence which, in this context, means: Actual results of load measurements,

materials tests, model tests, prototype tests, etc., called the data. The

advantage of this approach (when it is feasible) over the Bayesian approach is
that it leads to propositions about the probability of failure that can be

subjected to scientific inquiry.
Under normal conditions of practical design the data is, unfortunately,

insufficient to make objective Statements about the probability of failure of
a proposed structure; for example, future loads must be guessed from measurements

taken in the past. Nevertheless, it is instructive to study the rational inferences
about the probability of failure that are possible under certain idealized conditions

as modeis of reality, permitting us to estimate the amount of data required
under less ideal conditions. In the following we will derive such a relationship
(equation 12) between the necessary amount of data and various constants related
to the design value of the probability of failure.

Consider a structure drawn at random from an infinite population of like
structures and submitted to a Single scalar load S drawn at random from an

infinite population of loads. Let R denote the resistance of the structure,
defined in such a way that failure is the event R < S. Resistance R and load S

are assumed to be intrinsically positive, independent, continuous stochastic
variables with unknown probability densitles pD(R) and p„(S); information about

R S

these functions is assumed obtainable by random sampling. The data D is therefore

a set of n resistance values and n load values:
R S

D {Ri, i 1,..., nR; S j 1,..., ng). (1)

The probability of failure is

PF =$PR(R) Ps(S)dSdR; (2)
R<S

since p and p are unknown, p cannot be determined. The problem is instead
to compute a suitable estimator C called the calculated probability of failure.
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To make inferences about the probability of failure p it is necessary tor
derive suitable statistics of the stochastic variable C

r
The simplest way to obtain such an estimator is to draw from the data

D a sample W of n (<iu, <nc) pairs (R, S) of resistance and load values, at
random and without replacement, see Fig. 1. Then, W is a random sample of
the parent population {(R,S)), and the eiements of W are stochastically
independent. Let il, denote the number of outcomes of the failure event R < S

in the sample W. Evidently, il, is the total number of "successes" in n

independent Bernoulli trials with probability p of "success". Therefore,
F

il, is distributed according to the binomial distribution

b(l,n,pF) nppd-pp)11"1 (3)

with mean np and variance np (1-p It follows that the estimator f =iL,/n is

similarly distributed with mean m p variance a p (1-p )/n, and coefficient
^^____^____ F r r

of Variation v o"/m l/\/np /(1-p The relative failure frequency f is
* F F r

therefore an unbiased estimator of p It is discrete valued (f e {0, 1/n,

2/n, l}), so that in order to get sufficient resolution it is required that
n be large in comparison with unity. Assuming that n is greater than 9 and

F £

neglecting p in comparison with unity, it can be shown [4] that f is
approximately normally distributed with mean p and coefficient of Variation

In this context, the most appropriate way to indicate the precision of
an estimate of p is by means of confidence intervals [4]. First, a confidence

F

coefficient a is selected. Taking the distribution to be normal with mean C
r

and coefficient of Variation l/"\/nC gives the following approximate confidence
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limits for p computed from the calculated probability of failure:
F

L"= C (l-N"1(a)/v/nCl), L+« c (l+N"1(a)/^cI); (4)

N denotes the inverse function of the normal probability integral. In
a long sequence of repetitions the confidence interval between L and L will
contain the probability of failure p nearly a fraction a. of the time.

5 4
To illustrate, assume that the data D consists of n 10 and il 10

random samples of load and resistance, respectively. The largest random
4

sample W of independent eiements that can be drawn contains n 10 (R,S)-

pairs. Assume that il, nC 16 is the number of failure events in such a

sample. If a confidence coefficient a. 90 per cent is considered suitable,
we get from a table of the normal probability integral that N (0.9) 1.645.

Equations (4) then give L~ (1-0.41)0,, and L+ (1+0.41)^,. The followingF F
continued inequality may be written down:

46 16
(0.59) (T^zf) < p < (1.41) (f^-);10^ (5)

it may be asserted that this inequality is satisfied with probability 0.9.
In other words, chances are nine out of ten that the value of p lies between

F
0.00094 and 0.00226. Independent random pairing of load and resistance values

is clearly a very inefficient way of processing the data, in the present case
4 9

using only 10 out of a possible maximum of tLn 10 combinations of load
and strength.

• *

Fig. 2

t H H

Fig. 3
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Fig. 2 illustrates a sample consisting of a total of nn pairs obtained

by independent random sampling. Fig. 3 shows all the (R,S)- pairs that can

be formed from the data. The ordering of the pairs in this figure suggests a

stochastic dependence which, according to the sign of the correlation between

sample eiements, may either increase or decrease the variance of the estimated

probability of failure in comparison with independent random sampling using the

same sample size. Nevertheless, the relative failure frequency, C in the
r

sample is an unbiased estimator of the probability of failure,

m(CF) PF, (6)

since every sample element was obtained by random sampling. To compute the

variance, consider a sub-sample U. (Fig. 3) consisting of n pairs formed by

A conditional probability of failure at this load level, p., may be associa• VLatea

with the sub-sample:

fSi
pi =J PR(R)dR- (7)

0

As before, the eiements of the sub-sample constitute a sequence of n independent

random Bernoulli trials. The number of failure events, n., at load level
S. is therefore binomially distributed with mean iLP. and variance n^p (1-p.).
However, it is also observed that the n sub-samples constitute a sequence of

independent random samples, for the il resistance values may be considered to

be drawn a priori, thereby dividing the load ränge into il + 1 intervals
establishing for each interval an associated probability that a load value

will fall in the interval. As the loads are drawn independently and at random,

the outcomes n.(i 1, n are stochastically independent. Accordingly,

the estimator

has the mean value

i X1- V. - (9)1<CF) vü 2_.Vi

Rn Schlussbericht
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and the variance

2,^¦rbSv^-f (10)

Neglecting p. in comparison with unity for all i 1, n eliminating
1 ö

m(C from equations (7) and (9), and inserting the result into equation (10)
F

gives for the estimator C_ the coefficient of Variation
F

V(Cp) o-(CF)/m(CF) - 1/Vv^F (U)

Thus, as a good approximation, the coefficient of Variation of C has the

same value as if all ilii sample pairs had been obtained by independent random

sampling. We may therefore use equations (4) with n n„n to determine the

confidence limits for the probability of failure. To illustrate, let n il,
yielding 10 (R,S)-pairs, and assume that 16 of these pairs represent failures.
This data yields the same confidence interval as found above, equation (5). The

calculated probability of failure, C n /iLn according to Fig. 3, is believed

to utilize the data in the most efficient way possible.
The amount of data required for a specified confidence coefficient Cü, a

target "design" probability of failure P and a specified maximum width ßP

of the confidence interval (Symmetrie about P is easily computed from equation
r

(4) to be

ryig > [2N"1(a)/ß]2/PF (")

For example, assume that we seek to design the structure so that the

probability of failure "with 90 per cent confidence" (a 0.9) is a number
-3 -4between 10 and 10 We select the target probability of failure

-4
P 5.5 x 10 and choose ß 9/5.5 in order that the confidence limits

F -3 -4
(1 + ß)P_ eoineide with the specified limits p 10 and p 10

F FFEquation (12) gives the result that the produet n n must be greater than 7,500.
R S

For example, n must be greater than 150 is n equals 50. Alternatively, if
R S -6

we demand that the probability of failure equals 10 + 5%, with 957„ confxdence,
g

the required amount of data is increased to n n > 1.5 x 10 (50,000)(30,000).
R S

While the specific case studied here is greatly idealized, it serves to

give an idea of the amount of data required in probabilistic design, unless one

is content with giving merely a subjeetive meaning to the term 'probability of

100,
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failure'. The value of n n according to equation 12 may be taken as a rough
S R

lower bound for the data required to make an objective Statement about the

probability of failure in the form of a confidence interval. The amount of
data that, as a practical possibility, can be collected does not seem out of
Proportion to the amount required in probabilistic design, assuming that
reasonable Standards of precision are prescribed.
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Summary

Statistical considerations must be used to Supplement purely

probabilistic considerations in structural reliability studies if concepts

such as the probability of failure are to have more than a mere subjective

meaning. In this contribution, the amount of data required to make

confidence interval Statements about the probability of failure is

estimated by the methods of mathematical statistics.

Resume

Nous voulons ajouter des considerations statistiques aux

considerations probabilistiques des etudes de securite dans le
domaine de la construction, afin d'elever ces dernieres au-dessus

du niveau purement subjectif. Dans cette etude, nous proposons,
a l'aide des methodes de statistiques mathematiques, d'evaluer
la quantite requise de donnees pour etablir les intervalles
de confiance autour de la probabilite de ruine.
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Zusammenfassung

Ueber rein wahrscheinlichkeitstheoretische Ueberleguhgen
hinausgehende statistische Betrachtungen sind für die Studien
der Sicherheitskriterien im Hochbau erforderlich, falls Begriffe

wie "Bruchwahrscheinlichkeit" usw. mehr als mit bloss
subjektiver Bedeutung belegt sein sollen. In der vorliegenden
Arbeit wird aufgrund eines speziellen Modells eine Abschätzung
für den Bedarf an Datenmaterial vorgenommen, um Konfidenzgren-
zen für die berechnete Bruchwahrscheinlichkeit angeben zu
können.
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