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An "Equivalent Stiffness" Method for Suspension Roof Analysis

Une methode de "rigidite äquivalente" pour l'analyse de toits suspendus

Eine Methode der "äquivalenten Steifigkeit" zur Analyse von Hängedächern

DONALD P. GREENBERG
Dr.-Ing.

Cornell University
USA

1. INTRODUCTION

A method is derlved. to obtain the "equivalent stiffness" of a Single cable
subject to an initial uniform load. This method may be generalized to include
any type of vertical loading including triangulär, partial or point loading.
The equivalent stiffness is defined as the force required to cause a relative
unit displacerrent of the end points of the cable. This displacement is in the
direction of the chord connecting the end points.

Once the value of the equivalent stiffness is found, an initially para-
bolic cable in a cable network may be replaced by an imaginary straight bartype

element of equivalent stiffness. A schematic diagram of this bar-type
element is shown in Figure 1. The area of the bar is assumed equal to that of
the cable, while its length is assumed equal to that of the chord connecting
the end points of the cable. Thus, the bar-type element may be considered to
be conposed of a fictitious material with an "equivalent modulus of elasticity"
such that the resistance provided by the cable and the bar-type element in the
chordal direction are equal. The magnitude of this equivalent modulus depends
primarily upon the sag-span ratio, the existing stress level, and the true modulus

of elasticity of the cable material. The concept of an equivalent modulus
was first investigated by ISrnstd) with regard to the lateral stiffness
provided by the main cables of Suspension bridges to their supporting towers.

An idealized model of a cable roof system composed of parabolic cables can
be created from these imaginary bar-type members. The model may then be ana-
lyzed for stresses and deflections for any new loading condition. This procedure

may greatly sinplify the analysis of certain types of cable roof Systems
as well as improve the accuracy of the predicted results when compared to present

irethods of analysis.
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2. i\DVANTAGES OP IDEAITZED Bffi-TYPE MODELS

In present methods of analysis the cable network is generally represented
by a system of straight line cable segments connecting the nodal points (Figure
2). Stiffness equations are generated at each nodal point. The number and
location of the nodal points depend primarily upon: a) the area of the roof,
b) the spacing of the cable mesh, and c) the curvature of the roof surface.

Basically, these methods are
finite difference approaches,
where the continuous trajec-
tories of the cables are
represented by a series of dis-

~~ crete points. To solve the
stiffness equations, either
direct Solution methods, such
as matrix Inversion or
Gaussian elimination, or
iterative Solution methods
are utilized.W

i^^^,^^^^^^^^,^^
H + iH /lernen:typ y

/initial derlected
shape

BAR-TYPE ELEMENT REPRESENTATION
OP A UNIPORMLi' LOADED CABLE

Figure 1

Frequently these irethods of analysis are restricted by excessive computa-
tional time and limited machine storage capacity. A large number of nodal
points are required to sufficiently represent the true roof system. This
results in a large number of simultaneous equations. For cable roof structures,
the size of the resulting stiffness matrix often may exceed the direct storage
capacity of many present day Computers. In addition, even if the Computer's
storage capacity is sufficient, the machine time required to obtain a Solution
is often uneconomical. Iterative Solution techniques, although reducing the
storage problems and eliminating the need for matrix Inversion, do not always
converge due to the ill-conditioned aspects of the deflection equations.^'

Uli Li¦^rae nodal
Dolnts

//

X
true cable
Profile

There are two distinct advantages
to using the idealized bar-type
modeis to represent parabolic
cable segments. First, a smaller
number of nodal points is required
to represent the real structure,
since each cable may be replaced
by only one bar-type element.

CABLE NETWORK REPRESENTED
BT STRAIGHT LINE SEGMENTS
CONNECTING NODAL POINTS

Figure 2
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This reduces the size of the total structure stiffness matrix which in tum has
two decidedly beneficial results. The amount of computational machine time is
shortened with its obvious acconpanying economic advantages, and a smaller a-
mount of Information is required for input.

The second major advantage is that by using these bar-type modeis, each
cable is represented as a continuous element, and not a series of straight line
segments connected at discrete points. Thus, the true system is more accurate-
ly represented without an increase in the number of nodal points.

3. DERIVATION OF EQUATIONS FOR UNIFORM LOAD CASE

Assumptions

1. Small slopes compared to unity
2. Constant area per cable
3. Vertically applied uniform loading
4. Elastic material behavior
5. Initial profile of cable is parabolic
6. End points at equal elevation
7. Small changes in tension compared to the initial tension
8. Small displacements in the chordal direction compared to the initial

length.
The sag and the are length are expressed respectively by:

T2
„ _ wL
1 ~ W (1)

S L (1 + |^+ (2)
2 L

where: f sag
w load per unit length
L span length
H horizontal component of tension
S are length of the cable

From differentiation, Equations (1) and (2) become:

df -3fe. dL-^dH
4H 8H2

df ^dL- JdH (3)

p

and, ^ (i _ |l_) dL + (l|f) df (4)
J-i

By Substitution of Equation (3) into Equation (4),
2 2

ds (1 + 1| ^) dL - (i| y dH ¦ (5)

(3)The elastic elongation for a change in horizontal tension dH, is:
AS fo ÄE • to * (6)

where: A area of the cable
E modulus of elasticity
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If only vertical loads are applied, the horizontal component of tension in
the cable doeä not vary with the length, and thus the value of the change in
horizontal tension, dH, is also constant. The integral of Equation (6) becomes:

,c,dHfSds,dH/„OTN ,„nAS
ÄE o to <* ÄE (2S " L) (7)

Substituting the value for the are length from Equation (2);

d" [-14]JS-Ä |LtüiVI (8)

For small changes in are length, AS -*• ds, and therefore Equations (5) and
(8) must be equal. Thus:

§[it44(lt2K?)ffl'-Jf£« (9)

Rearranging Equation (9),

dH 2 L (10)

p T + 2k L-I6f!+ (L 3 L}
3 LH ^

4AE ;

Now consider the extension of a straight bar-type element of length, L,
cross-sectional «area, A, and subjected to a change in tension, AH. This extension

is expressed by the following:
AL fg- L (11)

e

where E equivalent modulus of elasticity
Rearranging:

f M k
e AL • A (12)

As AL «approaches zero, the ratio of AH/AL approaches the derivative dH/dL.
Thus, by Substitution of Equation (10) into Equation (12), the equivalent modulus

of elasticity of an imaginary bar which will exhibit the same lateral
stiffness as the true cable is obtained. Thus,

(1 + ^-^)
E S k 3^2 (13)

e dL * A

1 + 44
(ii£ _i_) + hl)1

3 L2
* H/A; + <¦

E
;
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Equation (13) is the expression derived for the equivalent modulus.
Alternative ly, the expression for the equivalent stiffness of an idealized bartype

element can be written as:

k
e

E A
e

(1 + ^4u+ 3l2;

i +
16 r2 fc L

16 f2 1 .x A
3 L2s(i6 r jL) +1

3 T2 ' H/A; v

where k equivalent stiffness of the bar-type element

4. EFFECT 0F~PARAMETERS

A. Sag/span ratio
The most important parameter in calculating the equivalent modulus of

elasticity is the sag/span ratio. A plot of the Variation of the equivalent
modulus of elasticity versus sag/span ratios is shown in Figure 3- As the
sag increases for a given span, the lateral resistance offered by the cable
decreases. /Is the sag/span ratio decreases, the cables become flatter, and
the equivalent modulus of elasticity approaches the real modulus. This is

2 2
easily explained mathematically since all the terms of f /L in Equation (13)
approach zero, and the equation reduces to:

E
1

1
E

EQUIVALENT MODULUS OP ELASTICITT
VS.

SAG/SPAN RATIO

2« f*
"3?'

r16 r' - * i« i
~* i7.

\ 1

30000

Term I
15000

Term II ls lnslgnlricant
In this reRion

\ E - 25000 ksi
o - 100 ksi

5000

2/100 V100 6/100 8/100 10/100 12/100 11/100 16/100

Sau/Span Ratio

Figure 3
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Two examples for calculating the equivalent modulus of elasticity are
given below:

E_

Example A

Small sag/span ratio
E 25000 ksi
f/L 1/100

1 + (8.0x10"^)

1.33xlO-5 + <4.00xlO~5

1.0008
5.33xlO~5

18,750 ksi E

Example B

Large sag/span ratio
E 25000 ksi
f/L 10/100

1 + (8.0xl0~2)
1.43x10"3 + 4.21xl0~5

1.08

1.4721x10-3 731 ksi

From these two examples it can be seen that the first term in the denomin-
ator plays the dominant role for all but very small sag/span ratios.

5. EXAMPLE OF PROPOSED AIR FORCE MUSEUM*

The advantages of the use of the bar-type element representation may best
be illustrated by the method used to determine the forces and displacements of
the proposed Air Force Museum in Dayton, Ohio.** A photograph of the archi-
tect's model is shown in Figure 4.

&

I

M3DEL OF PROPOSED MR FORCE MUSEUM

Figure 4

*The project was designed by the architectural firm of Roche, Dinkeloo and
tesociates of Hamden, Connecticut. Severud iAssociates of New York City served
as the Consulting engineers.

**The analysis of the stresses and deflections of the Suspension roof was
the responsibility of the author. The task of obtaining the idealized model
and wrlting the Computer program was done Jointly with Associate Professors
Richard White and Peter Gergely of Cornell University.
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ring

Plan750

AIR PORCE MUSEUM
SUSPENSION ROOP STRUCTURE

Figure 5

The roof is a Suspension roof covering a large trapezoidal area. The
structural system, which consists of primary main straight cables supporting
sets of parallel secondary parabolic cables is shown in plan and section view
in Figure 5. The vertical supports are provided only at the four corners of
the trapezoid, and a concrete trapezoidal compression ring around the perimeter
absorbs the thrusts from the main cables.

The use of a Standard representation technique for the parabolic cables
in the roof would be unwieldy; this would require such a large number of nodal
points to represent the roof to sufficient accuracy that the direct core storage

capacity of the available Computer would be exceeded.*** In addition, the
machine time required to solve the necessary set of simultaneous equations
would have been uneconomical.

total
Initial lo^ —

final load - i
dead load —

shaded area
represents load

rerovedV**
«mmmmTO

Or—

All secondary cables, which were
initially of parabolic profile,
were replaced by the ideal!zed
bar-type elements. The properties
of these bar-type elements were
determined by equations similar
to those previously derived,
except that they were generalized
to include a set of three partial
vertical loads per cable.

SECONDARY CABLE

PARTIAL LOADING DIAGRAM

Figure 6

***The available Computer was a CDC 1604.
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By specifying the lengths and magnitudes of the line loadings to be added or
removed from the initial loading (Figure 6), each secondary cable could then
be subjected to a variety of loadings. Thus, the idealized model of the roof
enabled analysis of the system for any set of asymmetric or point loading
required by code. The resulting idealized model, consisting of only 74 nodal
points, is schematically shown in Figure 7- The Springs shown in this figure
represent the idealized bar-type elements.

Idealized
oar-type
elements

Numbers represent nodal points
using cycllcal numberlnit, scheme
Only one-half of the nodal points of the actual model are shown

Figure 7

All vertical loads were applied to the secondary cables incrementally to con-
form with the liirtltations of the derivation. Secondary cable reactions were
then applied to the main cable network, which included the stiffness of the
secondary cables. The deformation equations of the total Suspension roof
were formed using Siev's^) method of analysis which guarantees a convergent
Solution. This formulation assumes elastic material behavior and includes
the effects of changes in geometry due to large deformations. Using the
schematic representation shown in Figure 7, the nodal points were cyclically num-
bered in such a manner, that combined with the use of diagonal subscripting,
the storage requirements of the structural stiffness matrix were minlmized.
A Gaussian elimination process, adapted for diagonal subscripting, was used
to solve the resulting set of simultaneous equations. A description of the
Computer program is shown following. The system was successfully analyzed
for both uniform loading, and partial loading cases.
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Computer Program for 4Qnalysis of i\ir Force Museum

Using "Equivalent Stiffness" Msthod

1. Begin Program.

2. Read initial equilibrium conditions (tensions, loads, geometry), material
properties, types and increments of loading.

3. Conpute initial lengths of primary cables.

4. Compute unstressed lengths of primary cables to use as a base for calcu-
lating future tensions.

5. Conpute lengths of imaginary bar-type elements representing secondary
cables.

6. Compute incremental loads from the secondary cables which will be applied
to the total structure and find new secondary cable profiles and tensions.

7. Compute equivalent modulus of elasticity of bar-type elements.

8. Generate total structural stiffness matrix based on current conditions of
geometry, loads, and tensions, including the stiffness contribution of the
bar-type elements. Store as a diagonally-subscripted band matrix.

9. Apply load increments from (6) to the total structure.

10. Solve for incremental deflections in each direction at each nodal point
using the stiffness equations and a Gaussian elimination technique adapted
for diagonal-subscripting.

11. Conpute new geometry and tensions from the linear Solutions of (10).

12. Sum equilibrium at each Joint to determine unbalance in each direction due
to the "linearization" of the deflection equations.

13. Using current geometry and tensions from (11), reload the structure using
the unbalanced residuals from (12) and return to (8).

14. Repeat until unbalanced loads become negligible. Solution is then con-
verged for one increment of load.

15. If final load condition has not yet been reached, add another load incre¬
ment by retuming to (6).

16. Repeat until final load condition has been attained.

17. Print final geometry, stresses, and total deflections, including secondary
cable profiles.

18. End Program.

g. 23 Vorbericht
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7. SUMMARY

A method Is presented to derive the "equivalent stiffness" of a unifornüy
loaded, parabolic cable which depends primarily on the sag/span ratio of the
cable. To simplify the analysis of certain Suspension structures, parabolic
cables may be replaced by imaginary bar-type elements of equivalent stiffness.
This replacement reduces the number of nodal points required to accurately
represent these specific structures, and thus has the advantage of reducing both
the Computer Solution time and the input data.
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