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1. Introduction

In this paper a computational method of two-dimensional cable structure
is proposed, in which emphasis is laid on the problem of determination of
structural member lengths. In construction of cable structures füll know-
ledge about structural member forces under given loading conditions and
especially, about the determination of correct length of each member is
indispensable so that the completed strucbure forms strictly a shape of
required geometry. When cable structures are constructed by connecting and
tensioning many members with certain lengths unstrained length then their
final shape should agree with those prescribed beforehand. Unsuitable choice
of unstrained lengths of members makes it impossible to set up the desired
structure, that there may be found many members left unstrained even in
completed state.

From another point of view, we may say that the very problem is to know
the completed shape and stress state of the cable structures when the structural
members with certain lengths are assembled with some boundary members anchored
with initial tension.

The authors report here on the nonlinear analysis of two-dimensional
cable structure covering the above-mentioned problems, and on the experimental
work which was done so as to certify the pertinency of the theory.

The theory is not limited to stress and deformation analysis of structures
under given conditions initial member forces and geometry but makes it
possible not only to clarify the stress and deformation states of cable
structures but also to determine the correct unstrained lengths of members
which are needed to set up the structure with desired geometry.

Computation Starts from the estimate of pretension in each member utilizing
the method of least Squares, and then equilibrium state is determined by energy
method. Computation is repeated, changing the values of pretention step by
step, until the final shape of the structure is sufficiently conformed to
prescribed one.

Laboratory experiment was made on a large-sized cable truss model of
23.6m length. In this kind of experiment the influence of errors upon displacement

measurement should be strictly restricted to minimum, for deformation
itself is the dominant factor to determine an equilibrium state. As the
accuracy in setting-up and measurement of the model, however, is evidently
restricted to a certain limit, relative errors should be made as small as
possible by employing a large-sized model. Experimental results are shown
and compared vith theoretical values.
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2. Statical Analysis

2-1. Basic Assumptions
Following assumptions are made in the analysis: (i) Stress-strain relationship
of the material is linear, (ii) Bending stiffness of the member is

neglected. (iii) Every loads act only at joints. The members are straight
between the joints. (iv) Joints are considered to be frictionless hinges.

2-2. Estimate of Initial Tension by the Method of Least Square
Fig. 1 shows a Joint j where N members are

assembled. N member forces Pjn(n=l...N) and
two external forces Fix Fly act at this Joint.
Equilibrium conditions at Joint j are written
in the form

ERn(Xj-Xn)/Ljn=Fjx

EP(Y,-VnK4n F
jYT '] •jn-i-jy (l)

When the structure is in equilibrium, Eq.
holds at all joints, i. e.

T- P =F

(l)

rpj>

PpS

JN

(2)
Fig. 1. Force system at a

Joint
where T is an equilibrium matrix of order
(fxm) consisting of direction cosines of every members, P is a (mxl) vector
of every member forces and IF is a (fX 1) vector of external forces. m and f
mean the numbers of members and degrees of freedom respectively. We suppose
here f>m, that is, the system to be treated is a structural mechanism, which is
often the case in cable truss structures. In such cases Eq. (2) cannot be solved
uniquely and the consideration of finite deformation is needed.

Now, Eq. (2) can be written in the form

X • P F r (3)
where To is «an equilibrium matrix which satisfies the prescribed configuration
condition, IP0 is an internal force vector which satisfies Eq. (2) approximately
and ir is the vector of unbalanced forces at every joints. We now estimate the
most probable values of IP0 making unbalanced force vector II" minimum. The

Euclidian norm of ir is
II r f= (¥0 IP0 - IF )T (T0IP0 - IF) PTTjT0 IP0 - 2 IP0TT0 F FTF (k)

The necessary and sufficient condition to reduce II ir II2 to minimum is obviously
311 II* II2/ 3 Poi 0 i wnicn gives the normal equations as follows,

T0TT0 P T0TF (5)
Eq. (5) can be solved uniquely and gives the most probable values of member

forces at the required state To which are utilized as the initial values for
finite deformation analysis which follows. It is not always easy to solve Eq.
(5) directly with sufficient accuracy, since the calculation of inverse matrix

ToT To )"' is contained in its procedure. We adopted Golub's method (l) with
successful results.

2-3. Finite Deformation Analysis by Energy Method
The approximate values of IP0 have thus been obtained, but the unbalanced

forces ir still exist at the joints. In order to make these unbalanced forces
vanish finite deformation analysis is carried out utilizing the theory based

upon the principle of minimum potential energy. Buchholdt's works ((2), (3))
with regard to this problem furnish us much information.

The total potential energy of the cable structure is shown as

W=JT> FT* (6)
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where X is the displacement vector of joints, and Us is the strain energy of
each member and is shown in the form

Us Ujn=joePjnde--( po e E Ae/ 2 L)jn (7)

where P0jn i ejn (EA)jn and Ljn are initial tension, total elongation, exten-
sional rigidity and final length of member j n respectively, further,

äl,=J-{AX.Ax.AV.AyaiA4ih(M}jn (8)

where AX Xn-Xj Ax=Xn-Xj etc. (cf. Fig. 2)
The principle of minimum potential energy

leads to the equilibrium conditions at every
joints, i. e.

3W aw
ax, *" '3y, '

where

w | •],» 0 (9) (Xn.Vn.) Pjn

3W _ v" 9UJn 3ejn
ax 3 ejn 3xj

Fjx

.vfi£(Ax*Ax)-Fjx
n LJ'n

(10)

In order to find the displacement vector x
which satisfies Eq. (9), the conjugate gradient
method is used. Letting xt be the displacement
vector at the r-th step of repeated calculation,
yr*' at the (r+l)-th step is obtained by the
relation

^>n

vT.XirYi
xn

y^r w

*r+l=;/+Srvr (11)

Initial State

n L)n

Equilibrium State

Fig. 2. Equilibrium at a
Joint

where Sr is a line element along the descent
vector vr to minimizeW that is, Sr minimizes

q(Sr) W(>rr*Srvr) (12)
Fletcher-Reeves method (l) is effective to

find the value of descent vector Vr Its sequence of calculation is as follows:
(i) for r=l, put

v' { (vx)j }f- { -w/**r-)*=*° (13)
x° may be assumed to be zero vector.

(ii) for r=2 - (f+1) calculate
vr=-g,r+[(g,r)T(gr)/(gr-')T(gir-,)]-vr-1 m)

where

g= {--(gx)j— --}, { 3W/3XJ }f=yr
(iii) for r=f+2 turn to (i).
Z-k. Evaluation of Member Lengths

The main purpose of our analysis is to find the correct member lengths at
unstrained State. Combining the method of analysis mentioned above, we can find
the required unstrained lengths of every members. Assembling such members the
structure having desired shape can be obtained. When the completed state of the
structure is thus obtained, it is not difficult to analyse it under any
additional loading condition. The flow diagram of analysis is shown in Fig. 3-
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3. Model Experiment

Fig. k shows the cable truss model
which is to be thought of as a model of
catwalk for long-spanned Suspension bridge

about 1,000m long with scale 1:40.
Pieces of piano wire cut in calculated
unstrained lengths were assembled to form the
cable truss, which was subjected to
concentrated loads at every joints
corresponding to dead loads of prototype structure)
and finally tensioned by pulling and anchoring

the both ends of the lower chord member.
Table 1 shows the prescribed coordinates

and concentrated vertical loads (dead loads
of every joints. A part of least Square
Solution for member forces is shown in Table
2, which is used as input data for subsequent
finite deformation analysis. By this
analysis the Joint coordinates are obtained
as shown in Table 3 X-coordinates omitted

The theoretical values in Table 3 (Th.)
seem to agree fairly well with the prescribed
one in Table 1. From this result the
unstrained lengths of members are determined,
which makes it possible to set up the model
in required geometry. The experimental
values (Ex.) at the completed state of the
model are also shown in Table J>. Differences
between theoretical and experimental values
are very small for the size of the model.

Table k shows the result with regard
to member forces, and Fig. 5 shows deflection

INPUT:X,Y,F,E,A,Restr.
HI

Transformation Matrix: To

I Nodal Equations I

Least Sq. Solution: R
OSE

x 0

Unbalanced Forces: VWl
I

Euclidean Norm:
yes

Descent Vector:x—
S - Minimizinq q(S) |

.r=M
LZ x Sv

Pm(0
yes

Output : x P

I OUTPUT: Unstrained Lenqth:Lo H

Fig. 3« Flow diagram of
computation

23.570 m.

Main Rope( 3 98 mm diq
f I «f..

<II 12

_

21 22 |23
IS

\jHAn3ffr_Rop«? (0,9 rrjjTI_fJiQj

Slorm Rop,*(2.0mm tilg.) E=2.05a 10* Kq/mm1

23.610m

Fig. k. Cable truss model

curves of cable truss due to additional concentrated load live load applied
at the mid-span. In Figs. 6 and 7 the load vs. deflection curves and load vs.
member force curves are shown respectively. Every experimental results seem to
agree very well with theoretical values.
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Main Ro De Storm Rope
No.of

Joint

Coordinates Load

(kg)
No.of

Joint
Coordinates Load

(kg)X (mm) Y(mm) X(mm) Y(mm)

1 0 0 0 14 -20 4125 0

2 1930 605 26.9 15 2713 3374 4.4

3 34.37 1001 23.7 16 4220 3046 3.0

a, 5001 134.1 21.0 17 56<.0 2792 2.6

5 6183 1550 16.9 18 6787 2625 2.4

6 7223 1702 12.8 19 8021 2485 2.5

7 7868 1780 7.1 20 923«. 2385 2.2

8 8168 1812 9.0 21 10206 2333 1.7

9 9056 1893 9.3 22 10956 2309 1.6

10 9406 1918 8.6 23 11785 2300 1.6

1 1 10206 1963 11.6

12 10956 1989 11.8

13 11785| 1999 12.«.

Member PoUg)

M- 1 799.4

3 775.4

5 764.4

7 7625

10 760.1

12 759.0

S- 1 207.4

3 206.9

6 204.6

9 204.1

D- 1 13.0

4 3.8

7 4.1

10 4.3

13 5.7

15 2.9

Table 1. Prescribed shape and loads
for cable truss model

Table 2. Least
Square Solution

Ma i n Rope Storm Rope

No.of

Joint
Y-Coordinates

Diff.
No.of

Joint

Y-Coordinates
Diff.

Ex. Th. Ex. Th.
1 0 0 0 14 4125 4125 0

2 603 601 2 15 3371 3371 0

3 1000 998 2 16 3044 3044 0

4 1344 1340 4 17 2795 2791 4

5 1555 1550 5 18 2633 2625 8

6 1709 1702 7 19 2495 2486 9

7 1787 1782 5 20 2 395 2388 7

8 1823 1814 9 21 2345 2337 6

9 1904 1895 9 22 2320 2314 6

10 1931 1921 10 23 2310 2305 5

11 1975 1968 7 Ex.= Experimental Value

12 2000 1994 6 Th.= Theoretical Value

13 2010 2004 6
Diff. Ex.-Th.

Unit : mm

Slorm Rope Honqer Rc pe

Member Member Force ftatio
ex." Th; %

Member Membe

-E-,.-j
Force Ratio
Th 1 °/0

Mem-
ber

.Merr.be Force

Th.

M-l
2

3

4

S

799 | B00
t

99 9

779 787 99 0

776 778 99 7

772 771 100 1

773 766 101-0

768 766 100 3

759
'

763 [ 99.0
— 763, —
707, 760, 93.0

713 [ 760 : 94 0

753 1 759j 99-0
738J 759, 97-0

S-l
2

3

4

__S

6

200 1

205

210

198.
205 ;

204

196 | 102

195 1 105

D-1 15 11

2 5_
12

5

5

194 108

l**J 1P.2

194 | 106

194~[ 105

195, 104

194 I 106

194 105

j

_3_
4

7

4

5

6

10 6

5 36

7

8_

9

10_

12

7

8
9

203

206

204

7

8
_ÜL-

10

5

5

9 10 5

10 10 3

11 10 5
1

12 5 3

Unit : kg

Table *+. Member forces of
cable truss model

Table 3. Joint coordinates of
cable truss model

10 kg

Main Rope

Storm Rope

Theoretical Curve

Experimental Value

Theo etic

• Experimental value

pt.2 - M-
pt-4

o> 800
^—~^^~~~ M-<

pt.8

pt-9
Force

plJI «u ?00

Z Theoretical curve
p!13 • Experimental vaiue

10 20 30 40

Load applied al pt.l3(kg)

Fig. 5- Deflection curves Fig. 6. Load vs. deflec-
due to load at mid-span tion curves'

10 20 30 4,0

Load applied at pt 131kg)

Fig. 7- Load vs.
member force curves
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k. Vibrational Analysis and Experiment
'f-l. Method of Analysis

Equation of motion of the cable structure can be written in the form

IM x+ IK * F (15)
where IM and IK mean mass and stiffness matrices respectively. Stiffness
matrix IK is the superposition of every member stiffness matrices IKjn [kik]jn
(i,k=l... A). kiie are obtained by Castigliano's theorem, i. e.

kik 32 Ujn/axj 3xk
_

(16)
where Ujn is the strain energy of member jn as given by Eqs. (7) and (8).

Frequency equation is
det | IM - A IK I 0

of which roots give natural frequencies of the structure. Householder's
method was successfully used to give the roots of Eq. (17)•

(17)

k-Z. Exper iment
Vibrational tests were

carried out on the model
structure. Natural frequencies

and vibrational modes

are obtained by giving har-
monic excitation to the
model. Results are shown in
Fig. 8 with sufficient agreement

between theory «and

experiment.
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Tension in
Storm Rope

Vibrational Mode
Ist Mode Symmetrie 2 nd Mode (Antisymmetric)

P 150kg

I

/^~^-L-L_.
"x-4- I

P=200kg

I /^^t^4-- I

P=250kg

i

/-—
'

^v^- I
'

Natural Frequency

p 1 st 2 nd
(kg) Ex. Th. Ex. Th.
150 1.4.2 1.4,3 1.51 1.65

200 1.47 1.48 1.61 1.70

250 1.51 1.53 1.73 1.74

Fig.
Unit : ser?

Vibrational mode and natural frequency
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Summary
A computational method of two-dimensional cable assembly is proposed, where

emphasis is laid on the problem of determination of member lengths, so that the
final shape of the structure satisfies the configuration condition prescribed
beforehand. Experimental study was made on a large-sized model of a cable truss.
The results of both statical and dynamical experiments showed good agreement with
theoretical values.
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