
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 10 (1976)

Rubrik: Theme IIa: Optimization concepts and techniques in structural design

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 14.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


IIa

Comments by the Author of the Introductory Report

Remarques de l'auteur du rapport introductif

Bemerkungen des Verfassers des Einführungsberichtes

A.B. TEMPLEMAN
Department of Civil Engineering

University of Liverpool
Liverpool, Great Britain

Optimization Concepts & Techniques in Structural Design

In preparing the Introductory Report for Theme II, 'Progress in
Structural Optimization' the three reporters each took a specific aspect of
the theme. My objective was to provide an introduction to Structural
Optimization; to describe its philosophical goals and to outline in brief
and simple terms some of the mathematical techniques which are most
frequently used to solve structural optimization problems. It was
intended to be a 'beginner's guide' to the topic which would be expanded in
more detail by the other Reporters and by the authors of papers in the
Preliminary Report.

I will not dwell on an introduction to structural optimization but
will assume that you are familiär with it from the Introductory Report.
Towards the end of the Report I have remarked that by 1970 most of the
simple problems of structural optimization had been solved, only the
difficult ones being left. I think this point is demonstrated very well by
the six papers in the Preliminary Report under Theme IIa. None of them
deals with simple, straightforward problems; they all are concerned with
difficult aspects of the topic and they all give a very fair indication of
the present-day complexities of structural optimization.

I would like to consider first the papers by Anraku and by Balasubramonian
and Iyer since they represent the forefront of technologically difficult
problems. Anraku is concerned with designing steel frames to withstand
dynamic earthquake loadings. Balasubramonian and Iyer are concerned with
random variable variable loadings. It is significant that throughout my

Introductory Report I have not mentionedloadings such as these. Much of
the research done in structural optimization over the last twenty years has
considered only deterministic static loads. Only in the last few years have
researchers begun to look at optimum design for dynamic or non-deterministic
loads. The reason for this is that the complexity of the problems increases
dramatically as one moves away from deterministic static loads and this is
an area of work which still requires much research. It is also an
essential area for future research. Structural design methods and codes of
practice are now moving towards a greater recognition of the probabilistic
nature of loadings. Limit State concepts in which safety factors against
many different possible occurrences are assessed are also becoming widely
accepted. If structural optimization is to retain any relevance for the
practising engineer it is essential that it too should be able to handle
dynamic loads, probabilistic loads and limit State concepts.
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The papers by Anraku and by Balasubramonian and Iyer are therefore
welcomed because they are pointing in the right direction for the future of
practical structural optimization. However, Balasubramonian and Iyer's
paper dealing with structural optimization under random loading effects is
entirely theoretical. One of the main reasons why structural optimization
methods are not now used more widely in practical design is that there has
too often been a large gap between what is correct in theory and what works
in practice. This is particularly so when using applied probabilistics.
There is a world of difference between defining in theoretical terms the
probability of failure of a structure and actually evaluating it accurately
for a real-world structure. Nevertheless Balasubramonian and Iyer have
made a start in rationalising the effects of random loadings.

Anraku1s paper deals with optimum design of frames for earthquake
loading - once again a technologically complex form of loading. Some codes
of practice incorporate requirements for designing against earthquakes and
Anraku is to be complimented on atterapting to extend structural optimization
into this difficult area of work. As an optimization method Anraku has used
sequential linear programming. This method is often used when no other
method is available or when the problem is very complicated. Unfortunately
it is on these highly nonlinear problems that its performance is worst and

it is evident from Anraku's paper that he has experienced difficulties with
this method. He comments that an accurate analysis of the dynamic loading
is essential if the method is to converge and it appears from his Figure 6

that his optimized design violates some design restrictions by as much as
20%. Both these effects are inherent in the sequential linear programming
method. Any linearisation of a highly nonlinear model is bound to be both
sensitive to error and inaccurate.

The paper by Brozzetti et dl is a complete contrast to the preceding
papers. It is concerned with a very practical, pragmatic approach to using
a commercially available Computer package program for designing steel
structures. In particular they consider the minimum weight design of
practical steel frames so as to satisfy a large number of limit state criteria.
The paper highlights the philosophical point that structural optimization is
not a mathematical discipline but is, and will always continue to be, an

engineering discipline. The objective of structural optimization is to
produce the best possible engineering structure. Sometimes precise
mathematical methods will allow this to be done mathematically but usually
the practical limitations of codes of practice, methods of construction and
aesthetics.make a completely mathematical formulation of the design problem
impossible. Here the expertise of the engineer is essential. Sometimes
those researching new structural optimization methods ignore practical
considerations or make dubious assumptions in order to force a practical
problem into a mathematically amenable form. While this may be possible for
research purposes it is not possible for practical design purposes.
Practical structural optimization very often has to be an inexact process
relying sometimes upon rigorous mathematics, sometimes upon heuristics and

always relying upon engineering experience. Brozzetti et dl do not
describe their optimization technique in detail - it seems to be sequential
linear programming but coupled with a lot of engineering knowledge in order
to produce real-world structural designs. In their paper they demonstrate
that in order to produce really economical designs it is necessary to
include the nonlinear interactions of axial forces and bending moments in
steel framed structures. Very often these interactions are ignored by
researchers when studying these structures since they introduce awkward
mathematical nonlinearities.

The remaining three papers all deal with almost classical topics in
structural optimization. Structural optimization has always been concerned
with two basic questions - one practical, the other more theoretical. The

practical question is - 'How can I design the most efficient structure to
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perform a specific task?' The more theoretical question is - 'What are the
funadmental laws which govern structural efficiency?1 It is important to
distinguish between these two questions and theoretical work which attempts
to answer the second question should not be criticised because it seems

irrelevant to practical design. Work in theoretical structural optimization
is important and essential because it adds to our fundamental knowledge of
structural behaviour. An increased awareness of why some structures are
more efficient than others will eventually benefit practical design
engineers but the immediate practical relevance of such work may not be

apparent.
Nakamura and Nagase consider the optimum rigid-plastic design of

multistorey plane frames for multiple load cases. In my Introductory Report I
mention in Section 4.4 that optimum rigid plastic design can be represented
as a linear programming problem. Nakamura and Nagase have done this and have
then considered some of the more advanced aspects of linear programming
theory using duality theory in order to reduce the size of the problem and
solve it rapidly. This area of work, optimum rigid-plastic design is much
researched and it can truthfully be said that our knowledge of the mechanics
of structures in the plastic regime has been greatly advanced by such work.
Nakamura and Nagase have made an important contribution to this topic by
considering multiple loading cases and their paper is well worth further
study. They do not claim to be able to produce an optimum practical design
but their method can be used for rapidly producing an efficient and economical
initial design which can then be analysed and modified in minor ways to
satisfy engineering criteria. I commend their treatment and uses of
duality and I believe their work could be developed to form the basis of
really efficient design programs for practical structural design.

The two final papers, one by myself and one by Lipp and Thierauf both
deal with the same classical problem. How can one design truss-type
structures for minimum weight in the presence of restrictions upon member

stresses, nodal displacements, member size limits? The optimum design of
trusses has always been a subject of much research for several reasons.
First of all trusses are practical engineering structures and so it is a

relevant area of work. Secondly, the problem is a nonlinear one of a most
interesting mathematical form and thirdly the methods which can be used to
design trusses can also, with minimal modifications, be used to optimally
design certain classes of more complex finite element plate structures.
Perhaps the major difficulty which any optimum truss design method has to
face is that of problem size. For each truss member there is usually one
variable (the cross-sectional area) for which an optimal value is to be found.
Trusses of several hundred members are not uncommon so for these structures
the optimum design problem expressed mathematically is nonlinear, has
several hundred variables and even more constraints.

A straightforward numerical search for an optimum of such a large
problem is not possible as it is wasteful of time and Computer resources.
Recently engineers have looked more deeply at this problem and have found
that by examining the theory of optimality more carefully new, more rapid
design methods for trusses can be developed. My own paper explores this
topic further and describes how duality principles can be used to develop
new design methods. The paper by Lipp and Thierauf is concerned with the
same approach - indeed the mathematics of the two papers is remarkably
similar. I do not have time in this summary to talk about the differences
and similarities in these papers in detail but I would like to add a final
comment. In my Introductory Report I mention that duality might prove to
be a mathematical concept of great value to those interested in the optimum
design of large structures. My own paper reflects this of course but it
should be noted that the Lipp-Thierauf paper is also concerned with
duality via the Lagrange multiplier technique thus strengthening my earlier
opinion.
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Comments by the Author of the Introductory Report

Remarques de l'auteur du rapport introductif

Bemerkungen des Verfassers des Einführungsberichtes

FRED MOSES
Professor of Civil Engineering

Case Western Reserve University
Cleveland

Ohio, USA

System and Geometrical Optimization for Linear and
Non-Linear Structural Behaviour

Please accept by apologies for being unable to attend and report
personally to this meeting but circumstances beyond my control have led to
my absence. I offer my best wishes for the success of this session and I
thank in advance Dr. Templeman for substituting on my behalf.

Many discussions at earlier IABSE sessions have considered optimization.
Professor Courbon defined optimization as designing and constructing a

structure at the lowest cost with the objeet of fulfilling a well-defined
purpose. Cost consideration must be given to safety, service life,
maintenance and future adaptability. Within this broad context, the speciality
of structural optimization arose to provide specific design purposes and
methods which will aid in reaching an optimum structure. Thus, in the same

way that matrix methods or finite elements aid in structural analysis,
techniques of structural optimization have been developed to improve design
procedures. Its applicability depends as much on reducing the ultimate cost
of the structure as on savings in time and cost for the design engineer.

Historically, optimization has used simple design rules to check optimum
designs. Gradually, more sophisticated mathematical methods applied with
Computer programs arose to systematically search and locate optimum
structures.

A description of formal optimization methods taken from fields of
mathematical programming and Operations Research has been presented by
Dr. Templeman in his survey paper published in the Introductory Report.
Such methods have found widespread application in the design of structural
elements which are described by a number of design variables and constraints
determined by codes of practice.

Figure 1 of my Introductory Report shows examples of such element
designs. There is an example of a welded box girder for which I have had
occasion to design large numbers for crane structures. Another example,
is the welded plate girder which we designed based on the rather complex
provisions for unbraced members in the AISC specifications. Also shown is
a prestressed concrete beam with eleven design variables. The element design
is controlled by contraints on loading and prestress force and deformations.
Other element designs reported include welded columns, stiffened ship plates,
shear walls, prestressed plates and reinforced concrete beams.

Element optimization has led to a number of Computer programs whose

function is to efficiently design a variety of elements and perform the
tedious calculations required by the designer in trying to proportion such
elements. The programs have usually been based on penalty or geometrie

SB
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programming methods of optimization. Professors Ohkubo and Okumura in their
Preliminary Report paper have derived the optimum design of elements such
as bridge girders and truss members using the method of sequential linear
programming. This was then adapted by them to a branch and bound procedure
for solving discrete variables such as steel type and flange thickness.
A different approach to the optimization of element, in this case concrete
bridges, is presented by Ulizkij and Jegoruschkin. It uses influence
factors for predicting the behaviour of the bridge and therefore simplifies
subsequent optimisation.

A combination of elements as in a total structural framework requires
a different approach to optimization. Any changes in the design on the
path to the optimum may subsequently require complete reanalysis of the
structure to determine new stresses and deflections. In Figure 2 of my
Introductory Report, a grillage is shown in which redistribution of forces
occurs following each design change. The optimum design procedure for this
case was reported by Moses and Onoda. Other examples of System optimization
are statically indeterminate trusses and frames.

A system optimization, to be efficient, requires techniques such as the
sequential linear programming shown by Ohkubo and Okumura. It is important
that the number of cycles of reanalysis does not become large leading to
excessive demands for Computer time.

Inclusion of gross geometrical variables of the structures represents
an important improvement in the class of problems for which optimization may
be applied. Figure 4 of my Introductory Report shows a transmission tower
in which the tower shape and location of nodes is permitted to change
leading to significant reductions in structural weight. The left figure is
the original design while the right is an optimized case. The optimization
takes place automatically with a program using methods of minimisation
working with respect to the geometrie or shape design variables.

Another example of geometrie optimization is the arch dam reported by
Vitiello and shown in Fig. 5 of my Introductory Report. The mesh shown is
the finite element analysis while Xj - X4 are the geometrie design variables.
Such applications show that major improvements in structural efficiency can
often come from variations in geometrie design variables. This is
investigated for arches and Suspension bridges by Professor Hirai and
Yoshimura in their Preliminary Report.

Form and type of structure represent a high level of optimization for
which programs have only recently been attempted. Figure 6 from my

Introductory Report paper shows a schematic diagram for optimizing the cost
of Single storey factory buildings. The variables include structural layout
such as bay spacing and also the type of joists, girders, columns and
foundation including material type and detailed design variables. The

design methods, automatically performed by the Computer, can lead to
important structural savings and can be updated following changes in
individual construction and material costs.

Bomhard in the Preliminary Report shows a comparison of structural
form with an illustration of beams, arches and suspensions to cope with
long-span structures. Suruga and Maeda have developed a very interesting
concept of a decision matrix to compare structural forms for their application

to floor Systems of long-span bridges. Each type of floor system such
as composite girder or orthotropic deck is rated according to cost,
construction and performance before a final decision can be made. This
leads to a multi-objeetive criteria for optimization which may have

important applications to other examples such as comparing economy with
safety. The inclusion of safety directly in the optimization methodology is
covered by Tegze and Lenkei with an example of collapse analysis of
statically indeterminate plane structures.

The inter-relationship of safety and economy of structure has been

recognised by many authors, but more effort is required to bring these
factors into both the code specifications and the programs for optimum
design.
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Comments by the General Reporter

Remarques du rapporteur general

Bemerkungen des Generalberichterstatters

YUKIO MAEDA
Professor of Civil Engineering

Osaka University
Suita, Osaka, Japan

Examples of Computer-Aided Optimal Design
of Structures — General Report

The main subject of Theme II is on "Progress in Structural Optimization",
which was originally proposed by the Japanese National Group of IABSE, because

it was intended to stimulate and encourage Japanese engineers to apply the concept

and method of optimization to problems of structural design, since the

structural optimization has very recently been introduced into Japan. Along this
intention we are very thankful for the three excellent Introductory Reports.

Dr. Gellatly and Mr. Dupree presented a very excellent paper as an

introductory report on applied structural optimization in terms of examples of com-

puter-aided optimal design of structures. They covered two different approaches

to the optimum design of complex structural Systems, emphasizing the practical
aspects of design problems intended for producing a useful tool for designers.

The first approach, "Optimality Criteria Approach" will be accepted by

designers because of its simplicity and effectiveness. The approach to the weight

minimization of fixed-geometry structures with constraints based on the use of

optimality criteria, appears to offer considerable advantage over mathematical-

programming based methods. At comparative studies, the present method seems to

reach a similar or better design in considerably fewer iterations than most

numerical search methods with the reduction of computational costs.
They presented five examples, and also Dr. Gellatly discussed this approach

at his other paper ' at an example of "Twenty-five-bar Transmission Tower" in
which, using the current program, convergence was obtained in seven iterations
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to get its minimum weight, although, using a numerical search method, over one

hundred analyses might have been required.
These results are very encouraging us, because they indicate that some, if

not all, of the difficulties encountered in large-scale optimization problems

for the very large number of variables in finite element representation of real

structures, can be eliminated through this type of approach. However, certain
problems may still remain to be unsolved, particularly with regard to convergence

characteristics.

The second approach is labeled Sieve-Search Procedure developed at Bell
Aerospace Company, the guiding philosophy of which is that an optimum system

is an optimum arrangement of pre-optimized components. The results obtained from

the design studies on high-speed vessels and a design study on a complete bridge

structure have indicated that, firstly, the method will permit the füll Variation
of construction method, materials and configuration as well as component sizing,
and secondly, this method is also an efficient cost-effective approach to
automated optimum design.

Dr. Gellatly and Mr. Dupree suggested finally that the ideal Solution for
optimization problems would possibly appear to be a combination of the two

approaches, in which the sieve-serach defines configuration and non-continuous

variables and the optimality criteria method will be used for refinement of the

design, expecting a considerable potential for overall system optimization at

various design problems.

We have been expecting a number of papers to be presented at the Preliminary
Report under the Stimulus and for the discussions of the Introductory Reports.
For the Sub-Theme IIc, the following five papers have been accepted:

1. The paper presented by Mr. Gurujee

The paper shouldhavebeen discussed at Theme IIa. He proposed a general

optimization algorithm for a structure. A structural optimization problem can

be generally solved as a sequence of analysis-programming cycles by the
mathematical programming. In the optimization process which the author proposed in
the form of a chart shown in Fig.l at the Preliminary Report, p.179, the relation

between the changes in the behavior variables due to a specified change in
each of the design variables, is found and stored in the form of "Sensitivity
Matrix". Then, the programming problem can be solved by using the penalty function

method. In this paper, however, he did not show any specific examples
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to which his proposed method was applied.

2. The paper presented by Prof. Yamada and Mr. Furukawa

They treated the optimal design of a system of tower and pier of a Suspension

bridge, on the elastic foundation subjected to earthquake ground motion.

They showed an example how to combine mathematical programming and dynamic

structural analysis through response spectrum for a dynamic loading problem,

referring to Figs. 1 and 2 at the Preliminary Report, p.184. To simplify very
complicated real dynamic behavior of the system, two design variables were

selected: longitudinal width of the pier and stiffness of the tower. A generalized

cost was selected as the objective function, and requirements for stress of

the tower and displacement of the pier at its top, and buckling of the tower,

overturning of the pier, and physical limits, were constraints.

Since the problem is non-linear and undifferential, the Sequential
Unconstrained Minimization Technique by Powell's direct search method was applied

to optimization, probably because the method is more reliable in terms of

guaranteed convergence if the first derivatives or no derivatives are available.
At a numerical example, the authors found out that the generalized cost is
greatly affected by the modulud of elasticity of the foundation. This problem

is overall system optimization of a simple tower-and -pier system. Shape and

geometry optimization and combination with detailed element optimization will
be a future problem.

3. The paper presented by Prof. Konishi and Prof. Maeda

The paper on "Total Cost Optimum Design of I-Section Girders for Bridge

Construction" treated examples of detailed design optimization of main elements

of girder bridges. Generally, at the problem of bridges, cost optimization is
selected as the objective function, but the cost used to be defined material
cost only or material plus overall fabrication cost. At the present paper, the

objective function consists of material and fabrication costs, which cover costs

of full-scale drawing, machining, shop welding, shop assembly and shop painting
base on actual detailed informations obtained at fabricating shops in Japan.

A computer-aided optimum design of girders by the method of "Sequential
Linear Programming" was ülustrated at I-shaped, deck-type, welded plate girders
with five different span lengths, and sixteen design variables including
material selection (See Fig.2 at the Preliminary Report, p.192). The influence
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of material and size selections on the total cost was discussed in detail, to
help designers carry out a detailed element design efficiently from the point
of optimization, taking into consideration not only material cost, but also

shop fabrication cost.

For a specific or individual bridge, it would be required to study on an

overall optimization design including transportation and erection costs for a

System of main girders, laterals and decks.

4. The paper presented by Professor Schindler

He proposed an optimization method to combine design-oriented approach and

computer-oriented approach, in which a designer can search for a ränge of
approximation near an optimum value with a design program, within the capacity
of a Computer, not spending so much money and time for Computer calculation.

He ülustrated his method at the optimum design of a railway truss bridge
shown in Abb.l at the Preliminary Report, p.196, taking into aecount three kinds

of deck system two kinds of steel, two kinds of bridge class, five kinds of

span length. The objective function was total steel weight, and the design
variables were span length, number of panels, height of the truss, and width of
chord members. For various truss heights, steel weights were calculated by a

Computer with parameters of span length and number of panels. By comparison of
each steel weight, the minimum weight was found out for a certain value of span

length and of number of panels.

This approach is not straightforward, but rather comparative or selective.
Sometimes depending onaproblem, this approach may save the time and money for

a Computer more than mathematical programming methods. This kind of
approach could be examined in contrast with a study presented by Prof. Ohkubo

at Theme IIb ' who proposed a sub-optimizing method for trusses.

5. The paper presented by Messrs. Tanaka, Kamemura and Maruyasu

They introduced the total computer-aided design system for girder bridges.
which has recently been developed at Nippon Kokan Company, Japan. Automated

Computer techniques for design have advanced so that various types of detailed
element design and selection among alternatives for minimum cost can be carried
out. In this sense, the proposed Computer System is a well advanced method for
automated design of a girder type bridge in its element and overall system.
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As the authors pointed out, such a Computer program could be used for lowering

cost, increasing standardization of elements and also evaluating the effects
of changing constraints on weight, cost and behavior. The authors discussed

conceptually the interaction between optimum design and automated design, but

they did not show concretely with an Illustration how to incorporate optimization

into the automated design program.

The proposed Computer system should be examined in contrast with the flow

chart of Sieve-Search Optimization for bridge design proposed by the Introductory
3)

Reporters, Dr. Gellatly and Mr. Dupree

As a concluding remark, at the Prepared Discussion nore demonstrations of

structural optimization are welcome in terms of examples to encourage designers

to utilize optimization techniques at their routine office practice, and also

to discuss what kinds of problems have been encountered at practical designs.

References:
1) R.A. Gellatly & L. Berke, "Optimality-criterion-based Algorithms", Optimum

Structural Design, ed. by Gallagher 6, Zienkievicz, John Wiley, 1973, p.44.
2) S. Ohkubo & T. Okumura, "Structural System Optimization Based on Sub-op-

timizing Method of Member Elements", Prel. Rept. lOth Congress, IABSE,1976.
3) R.A. Gellatly & D.M. Dupree,"Examples of Computer-Aided Optimal Design

of Structures", Introductory Rept., lOth Congress of IABSE, 1975.
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Optimum Design of Cable-Stayed Bridges using an Optimality Parameter

Calcul de ponts haubannes ä l'aide d'un parametre d'optimisation

Die Berechnung von Schrägseilbrücken mit einem Optimierungsparameter

HISASHI DAIGUJI YOSHIKAZU YAMADA
Chief Engineer Professor of Civil Engineering

Tech. & Eng. Div., Harumoto Iron Works Co., Ltd. Kyoto University
Osaka, Japan Kyoto, Japan

INTRODUCTION

The optimization discussed in this paper is applied for the design of
the overall super-structure of cable-stayed bridges. Then the hierarchy
of this study is belonged to category 3 described in the introductory report
of the lOth congress by Templeman!1). The optimization method developed
here is a kind of the optimality criterion method discussed by Templeman,
Gellatly and Dupree C1) (2)

Up to the present many nonlinear programming techniques have been
developed and applied for the optimum design of bridge super-structures,
but successful applications are very few. Because the fully stressed design
for a common type of super-structure such as girder bridge is a convenient
design method and gives the satisfactory economical result. Therefore from
the practical point of view, the optimum design without considering the
price of sub-structure may be important for only some specific type of
bridges such as cable-stayed bridges, Suspension bridges.

In this study, an optimality condition parameter is obtained by a mean
of the numerical calculation and the parameter is used to determine the
economically proportional sizes of the cable and girder.

PRECONDITIONS FOR THE NUMERICAL PROCEDURE

To determine an optimality parameter by numerical process, the following

preconditions must be given.
(1) Utilization of the structural nature of cable-stayed bridges is very

important to find out the optimality condition. Fig. 1, 2 show the static
behavior of cable-stayed bridges due to dead loads and live loads.
These examples show that the each rigidity value of cable and girder is not
main factor of changing the section force distribution. It is obvious
that the main influence to the girder section force is a rigidity ratio,
X EG-IG/EC'AC. where, EG is the modulus of elasticity of girder, IG is
the moment of inertia of girder, EC is the modulus of elasticity of cable,
AC is the cable area.
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(2) The price ratio of materials including the cost of fabrication and
erection is assumed as follow.

structural steel : high tensile steel : cable =1 : 1.15 : 2.0

(3) Fig. 3 is the analyzing structural System which rigidity ratio is
assumed as:

Ttry EGX)/ECX2 Xj: moment of inertia of girder
X2: cable area

Fig. 4 is the actual redesign structure which rigidity ratio is
expressed by: NG

EG/NG'ZE IGn IGn: moment of inertia of girder
frcal= t\P ACn: cable areari=i

EC r j- /\Cn NC, NG: number of cable and girder

12>
ACl

«;s
n i
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Fig. 3 Assuming Member System Fig- 4 Actual Member System

The approximate design process must be carried out by keeping the following
ctiteria. 0.9< Ttry/ freaK 1.1
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(4) The section and material compositions of stiffening girder are
ülustrated in Fig. 5, 6. The price of girder member is determined by the
element design based on the fully stressed design.

bu

Fig. 5 Girder Section

CTTT
TYPE I TYPE 2 TYPE 3

I 1 S"1 ¦¦• SM 50 (HIGH TENSILE)

Fig. 6 Material Composition of Girder

3. DETERMINATION OF AN OPTIMALITY PARAMETER

An optimality parameter is determined after carried out the next 2

step procedure.

(1) Characteristic Parameter (Step 1)

The basic structure to be effectively prestressed is determined by
the grid search procedure, because two design variables are employed for
the global System optimization. The cost evaluation is made by the following

equation.
NG NC

Z(X!,X2) ZI price G(Xi,X2) + ZI price C(X!,X2)
m=l n=l

Xj: moment of inertia of stiffening girder
X2: cable area
price G: price evaluation of girder depend on Xj,X2
price C: price evaluation of cable depend °n Xu,X2

The characteristic parameter at the grid point is expressed as:

K E EG-IG/EC-AC-HG2
IG
AC

HG

moment of inertia of stiffening girder
cable area
web depth

(2) Determination of an Optimality Parameter (Step 2)

Prestressing forces (external loads) are introduced into the cable of
basic structural System determined by above procedure. In this step,
prestressing forces are design variables (Fig. 7). In case of two design
variables, an optimality parameter minimizing the total cost is also
selected among the grid points number of characteristic parameters, and it
is expressed by the following nondimensional parameter.

KOPT EG-IGOPT/EC-ACOPT-HGOPT2 ,<^>X Xi e

7 '\8 ">^I0 I
ll

Fig- Prestressing System
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NUMERICAL MODELS AND RESULTS

Numerical calculation is carried out for nine cases of analyzing models.
Structural models of 2-span and 3-span bridges are ülustrated in Fig. 8, 9.

The differences of analyzing models are indicated belows.

2-span Bridge 3-span Bridge

Tower Web Steel Tower Web

Case Height Thick Weight Other Case Height Thick KE

1 30 m 10 mm 3.3 t/m 7 30 m 10 mm 2.58
2 30 m 14 mm 3.3 t/m 8 30 m 14 mm 2.64
3 30 m 10 mm 3.3 t/m Knie Type 9 30 m 14 mm 2.96
4 30 m 10 mm 5.3 t/m
S 35 m 10 am 3.3 t/m
6 40 m 10 mm

-^fT-30,35

3.3 t/m

40" S* ' fr VI"

2a5O-lO0"' _. 3 o SPjjJJ

_25J^
;0^ I

(f^^6]>--KAs10 li I2^»5^V^7^ B^9^9~jl

2a5>IOO~ _5a_5Q^25p"
450"

20 50-IOQ^I
J

Fig. 8 2 Span Model Fig. 9 3 Span Model

Table 1 Numerical Result of Parameters
Numerical results of
characteristic
parameter and optimality
parameter are listed in
Table 1. The KE

parameter of the cable-
girder System determined

by the fully
stressed design is in
the small ränge (3."v
5.). On the other
hand the KE parameter
determined by the
approximate design
process developed in this
study is in the fairly
large ränge (1.^8.).
Prestressing forces are
introduced into the
suitable basic structure

which cable components

are not fully stre
obvious that KE value re
stressing forces.

ICASE DESIGN STEP KE PARAMETER, KOPT PARAMETER

i

1

2

a füllt stress '
4.0 - 5.0

2. 48

B BAS!CS*RUCTUrREa9 2 ~ 7.56 i

2. 5 5 1C l?S. ARRANCEKENT 2.4 7 - £89

2

SPAN

-
B BASIC STRUCTURE Ü9 6 - 7 88

1

C PS ARRANGEJVENT25 4 ~ 2.96 2. 4 9

3
B BASIC STRUCTURE 0.9 2 - 7.7 3

1

C IpS ARRANGEIV1ENT;Z4 3 ~ 2.90 2. 4 3

4
B jBASIC STRUCTURE 0.92 ~ 7.03
C PSARRANGEMENT 2.5 3 - 2 89 Z 55

2. 45
5

6

8 'BASIC S"RuCTuRE 0.9 2 ~ 7.05
C PSARRANGErVENT2.4 1 - 2.89
B BASIC STRUCTURE0.92 ~ 7. 50 |

C iPSARRANGElVB^T 2.4 l ~ 2.89 2 41

7
A IFULLT STRESS 3.2 2 - 4.7 3
B BASIC STRUCTURE;0.9 2 ~ 5.6 7

2 58 1

2. 46

5 C PSARRANGEMENT 2.1 4 - 2.5 8
Q.

8
B BASIC STRUCTURE:0.96 - 5.8 1

2. 27 i
l/l

C KARRANGEMENT2.25 -2 65
wr,

9
B BASIC STRUCTURE 0.96 ~ 5.81
C PS ARRANGEMENT 2.53 - 2 96 '

2 53
1

TOYOSATfl. BR. SPAN 805-216- 80 5 PWS 2 87
SUEHIR0 BR. SPAN 109 -250 • 109 (PWS) 2. 89
ONOMICHI BR SPAN 85 -215- 85 (LOCKED- COI^I | 2. 39

ssed. From the results of case 7 "v- case 9, it is
duces about 15 percents by introducing the pre-

AN EXAMPLE OF THE DESIGN USING AN OPTIMALITY PARAMETER

The main difference of this method from the usual design method is the
use of the parameter KOPT » 2.5 obtained by numerical calculation as shown
in Fig. 10.
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dead load 10.0 t/m
line load 50.0 t
uniform load 3.5 t
impact 0.2
optimality

parameter K0PT=2.5
assuming rigidity

girder IG=1.0 m

cable AC=0.046

Fig. 10.
Design Conditions
and Basic Dimensions

io ii a^rl»^ J^sJfrtcL

¦2P»-HXrJ. 5850-250' 2»3t>- IOOf

4 SOO
IBOOO
9 000 4 SOO

I 1- "

v r 4
7 OOO

h0...

The optimum bending moment arranged by prestressing forces and the
moment inertia of girder members are also ülustrated in Fig. 11.

By using the optimality parameter, structural designer can get the
reasonable sections of girder and prestressing forces of cable-stayed
bridges by one time trial. The assuming rigidity of analyzing System
determined by using an optimality parameter is very close to the real
rigidity of the final structure.

6. CONCLUSION

Unexperienced structural
engineer may feels some difficulties

to design the economical
cable-stayed bridge. Because
allowable stress guarantee the
safety of structures, but it does
not always guarantee the economical

condition. The prices and
strength of the cable and steel
girder are extremely different.
Furthermore the arrangement of
the bending stress of the stiffening

girder causes the more
complicated problem. Therefore the
economical criterion for cable-
stayed bridges may be important
as same as the factor of safety.

Finally the conclusions of
the basic study for the
optimality criterion method are
outlined by the next Statements.

*^ ^-—JO MlL»_-

-M(0-L)mJn M(D-L)mox
l i

l 1

000 I—*—* 1 1—
-LS i A_ /a

eE-^A

vt* r~<a^
\-rs

ln(r

Xl • 2 (XX) ton X2 • I 250 ton

T| 3 4 j S
1 6 j 7

Ii I 1» | I» ' U | la | le It i le I It
O9l7;iO29l03l 7Jlj029H029P3l7]0.9l71094610.917

PRICE EVALUATION • 2. 444 TON

(1) The optimality parameter
value of the radial type of
the cable-stayed bridge based
on the price ratio (structural
steel : cable =1:2) exists in the ränge of 2.0 % 3.0.

Fig. 11. Optimum Design

(2) The moment of inertia of stiffenin
uniform along the girder axis by effe

g girder can be considered as
ctively prestressed.
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SUMMARY

A convenient optimization method using an optimality parameter has been
discussed. The optimality parameter is based on the structural nature and the approximate

design procedure. This parameter is used to determine the optimum rigidity
ratio of the cable-girder system after introducing the prestressing forces. The

Optimum design using an optimality parameter will be easily accepted by structural
engineers as the economical criterion.

RESUME

Une möthode pratique d'optimisation ä l'aide d'un parametre d'optimisation
est presentee. Le parametre d'optimisation est obtenu ä partir du caractere
structural et de la methode approximative de calcul. Ce parametre est employe pour
determiner la rigidite la plus favorable du cäble et de la poutre apres avoir introduit

les forces de precontrainte. Le calcul ä l'aide d'un parametre d'optimisation
sera acceptö par les ingenieurs comme un critere economique.

ZUSAMMENFASSUNG

Eine anwendbare Optimierungsmethode mit einem Optimierungsparameter wird
dargestellt. Der Optimierungsparameter wird aufgrund des TragwerksSystems und der
Näherungsberechnungsmethode bestimmt. Mit diesem Parameter werden die günstigsten
Seil- und Trägersteifigkeiten unter Berücksichtigung der Vorspannkräfte bestimmt.
Die Berechnung mit einem Optimierungsparameter wird von den Ingenieuren zur
Steigerung der Wirtschaftlichkeit angenommen werden.
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Preponderance of Idealization in Structural Optimization

Preponderance de l'idealisation dans les problemes d'optimisation structurale

Die überragende Bedeutung der Idealisierungen bei der Optimierung von Tragwerken

RENE MAQUOI JACQUES RONDAL
National Foundation for Belgian Scientific Research Assistant

(F.N.R.S.) University of Liege
Liege, Belgium Liege, Belgium

The optimal design of a structure may be divided in two steps.
In the first one - the idealization - the structural problem is put in
following mathematical formulation :

"Find X such that

and

fk (X) < 0 for k 1,2,... m

-y

h. (X) 0 for j 1,2,... 1

J

(1)

F (X) minimum (maximum) "

where X is a vector which contains the design variables,
f and h are the constraints of the problem,

and F is the objective function to optimize.
The second step - the Solution prooess implies (a) the choiee of the solving
procedure and (b) the search of the Solution of the problem formulated as in
(1).

In the opinion of the authors, a good idealization is the basic condition
for obtaining a good value of the Solution, while a more or less refined
mathematical treatment of it plays a rather secondary role |l|

In many papers of the literature, emphasis is too often brought on the
choiee of the Solution procedure rather than on that of a heuristic which
does not modify in anyway the sense of the actual problem.

So long as the structural problem is small - about ten variables and
constraints - many methods are available in the literature. However,various
numerical experiments have shown that the choiee of a method depends on the
problem to be solved, for most of the algorithms cannot be used econoirically in
all cases |2|. As a consequence, conclusions concerning the use ränge and the
efficiency of an algorithm for a structural problem can rarely be extended to
another one.
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If emphasis is almost brought on the idealization, the designer may be

sure of obtaining a realistic Solution of the problem and, in addition, important

simplifications in the mathematical treatment of the second step become

possible. Indeed, on one way, a judicious choiee of variables or an ingenious
variable transformation often enable to present the complex problem in a more
simple form, and, on another way, by means of a previous evaluation of the
several variables, the designer can establish a hierarchy of the variables and
divide the complex problem into smaller ones, which are then more easier to
solve quickly.

For example, in |3|, MYLANDER demonstrates that a rather simple variable
transformation changes a mathematical non-linear and non-convex problem into a

linear programming system. It is worthwhile to recall the following basic
non-linear problem which is considered as a very difficult one. The objective
function is : c

f(x) bQ + aQl xj +
_l2 aoj x.) h - min

subject to constraints :
5

0 < a^ x1 + l a.. x.) Xj < b. i 1,2,3 (2)

x, » 0 ; 1.2 < x2 < 2.4 ; 20.0 < x., * 60

9.0 « x4 ^ 9.3 ; 6.5 < x5 « 7.0.
where the values of the constants are :

aQ1 - 8,720,288.795 a», - 155,011.1055

aQ2 - 150,512.524 a22 4,360.5334

a03 - 156.695 a23 12.9492

aQ4 - 476,470.319 a24 10,236.8839

aQ5 - 729,482.825 a25 13,176.7859

an - 145,421.4004 a31 - 326,669.5059

a12 2,931.1506 a32 7,390.6840

a13 - 40.4279 a33 - 27.8987

au 5,106.1920 a34 16,643.0759

a15 15,711.3600 a35 30,988.1459
b - 24,345.0 b0 294,000.0

o Z

b, 294,000.0 b3 277,200.0

By putting, according to MYLANDER

yi Xj xi i=2,3,4,5
and (4)

h xl
above non-linear problem takes following linear formulation :

g(y) b0 + E am- ^i ¦* min

5 J-1 °J J

0* sa^y^b, i 1, 2, 3
(5)

y1 > 0 i 1, 2,..., 5
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y2 - 1.2 y1 >0 ; 2.4 y1 - y2 » 0

y3 - 20.0 yj > 0 ; 60.0 yj - y3 >, 0

y4 - 9.0 yx >, 0 ; 9.3 yx - y4 >, 0

y5 - 6.5 yj » 0 ; 7.0 yl - y& >. 0.

which may directly solved by means of the classical simplex routine.

The optimal Solution, obtained after six iterations, is given by :

g - 5,280,344.9

y, 4.53743 ; y2 10.88983 ; y3 272.24584 (6)

y4 42.19811 ; yg 31.76202

which in terms of the original variables gives f - 5,280,344.9

x, 4.53743 ; x2 2.40000 ; x3 60.00000 ,-,s

x4 9.30000 ; x5 7.00000.

The Solution of the original problem by means of non-linear programming
methods |4, 5| lead, after a lot of iterations, to values of f which are 2 or
3 % below the true optimum but, in some cases, with value of the variable x,
which is about 50 % erroneous.

In |6|, the authors show how a suitable choiee of the behaviour model
for a complex structural design - indeterminate prestressed bridges - leads to
a benefit similar to that obtained by MYLANDER.

The idealization of the problem is based on an approach with sensitivity
coefficients, as that proposed by GURUJEE |7|, and on a variable transformation;
it is then allowed to solve this complex design problem by means of linear
programming, without the actual problem be denaturated and taking aecount of all
the technological requirements (cover thickness, anchorage dimensions, redundant

effects of prestressing, friction losses, anchorage slippage,...). After
the variable transformation, the problem remains partially non-linear but the
authors have shown in |8| that the non-linear term, being of the order of 1 %

with respect to its corresponding linear component, may be neglected in practice.

The authors would like to conclude by saying that for optimum design, as
for all the other engineering activities, mathematics are a good servant but a
bad master.
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SUMMARY

In structural optimization problems, it is nearly always observed that, in
the search for a realistic Solution, the suitability of idealization is more
important than the choiee of the solving algorithm.

RESUME

Dans les problemes de dimensionnement optimal, il est generalement constate
que la recherche d'une Solution realiste depend davantage de 1'idealisation du

probleme que du choix de l'algorithme de resolution.

ZUSAMMENFASSUNG

Bei der Optimierung von Tragwerken wird allgemein festgestellt, dass die
Suche nach einer realistischen Lösung mehr von der Idealisierung des Problems
als von der Auswahl des Lösungsalgorithmus abhängt.
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Minimum Weight Plastic Design of Regulär Rectangular Plane Frames

Calcul plastique pour un poids minimum de cadres plans rectangulaires

Plastische Bemessung auf Minimalgewicht für rechteckige, ebene Rahmen

TSUNEYOSHI NAKAMURA
Associate Professor

Department of Architecture, Kyoto University
Kyoto, Japan

1. INTRODUCTION
Structural engineers have been concerned more with practical

computational techniques for optimum structural designs than with
theoretical results. On the other hand, scientific investigations
on optimality criteria and optimal structures have been carried out
mostly by researchers in the field of structural or applied mechanics.

These two approaches are mutually compensating in order to
develop more rational methods of structural designs.

The introductory report by A.B.Templeman has been primarily
concerned with the hierarchy of optimum structural design problems
and the corresponding computational techniques. Reference is made
in his report to the linear theory of minimum weight plastic design
and to the advantage of linear programming. It should also be
recognized that the theoretical results on optimality criteria and
optimal structures not only have the scientific significance but also
lay the foundations and stimulate new ideas for developing practical
computational techniques.

The purpose of this discussion is to call attention to the
recent results [2-10] by the author and his colleagues on some general
solutions derived analytically in closed forms to the problems of
minimum weight plastic design of regulär rectangular plane frames of
practical interest and then to point out the theoretical and practical

significances of those solutions.
2. FRAME MOMENT FOR REGULÄR RECTANGULAR FRAME

Fig.l shows a regulär rectangular plane frame and one set of
vertical and lateral design loads. The geometrical regularity in
such a frame not only is reflected in design loads but also charac-
terizes its structural behaviors and optimal plastic designs. In
many practical design problems, the story shear resultant increases
rapidly from the top floor toward lower stories as compared with
the Variation of vertical gravity loads. In those countries where
frames must withstand against strong-motion earthquakes and strong
gusts, fairly large lateral design loads are assigned. Under these
circumstances, the first step of analytical treatment of a Foulkes-
type problem is to assume an extremely deteriorated collapse mecha-
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Fig.l
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nism shown in Fig.2, in which simple plastic hinges have formed at
almost all the potentially critical sections except at the midspan
sections of some particular bay(s) to be found as a part of the
Solution. Fig.3 shows that the corresponding bending moment
diagram at plastic collapse may be conceived as the result of two-fold
superpositions of decomposed diagrams. Each decomposed diagram is
such that the moment equilibrium is maintained at the four corners
with the same absolute value in the manner shown in Fig.3. This
equal corner moment associated with this elementary moment diagram
is called a "frame moment". A restricted minimization may then be
carried out analytically in terms of the frame moments, and some
statical conditions are derived under which the assumed bending
moment diagram corresponds indeed to a general Solution. It is then
shown that the Foulkes mechanism condition can also be satisfied
for a class of frames satisfying two simple geometrical conditions
as shown in Fig.2.



TSUNEYOSHI NAKAMURA 101

Fig.3
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3. APPLICATION OF FRAME MOMENT DEC0MP0SITION TECHNIQUE
The two general solutions mutually exclusive and compensating

on a design chart [2] not only clarify the general features of the
classes of the minimum weight designs, but also provide a basis on
which some modified general solutions can be derived to problems
formulated more realistically by incorporating the axial force-bend-
ing moment interaction yield conditions for idealized beams and
columns [3] shown in Fig.4. Fig.5 shows a part of modified Foulkes
mechanism in a theory [4] in which only the idealized columns are
required to satisfy the interaction yield condition shown in Fig.4.
The regularity in the frame geometry enables one again to derive
the general solutions and the statical and geometrical conditions
analytically in closed forms [3, 4].

For the problem where reaction constraints have been incorporated
within the framework of Foulkes1 theory, a bay shear distribution

law has been derived in [5] also on the basis of the concept
of the frame moment and of the afore-mentioned two-fold superposition

procedure.
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For the problem of multi-story multi-span frames to be designed
for five sets of design loads, a kinematical restricted maxi-

mization procedure has been developed in [6] by combining the
primal-dual method of LP with a semi-inverse approach similar to
[2]. Some general solutions have thereby been derived analytically
in closed forms. Fig.6 shows a portal frame obeying an idealized
interaction yield condition and subjected to two sets of design
loads. Fig.7 shows a fundamental design chart for this frame.
This chart together with the theory in [7] constitutes the foundation

for a possible analytical attempt of incorporating the result
of [3] and [4] in [6].
4. SIGNIFICANCE OF THE CLOSED FORM GENERAL SOLUTIONS

The theoretical significance of these general solutions are
now obvious. Each general Solution provides a basis for developing
practically useful general solutions to problems of more realistic
formulations, though some modifications may become necessary for
the topmost few stories. The afore-mentioned results may be said
to provide ample grounds for the fruitfulness of this successive
refining process.

For practical application, these solutions must first be modified

for the effect of inelastic stability and member design
requirements. The author and his colleagues have already clarified
to a certain extent through numerical large-deflection analyses
that minimum weight frames can indeed withstand against static al-
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Fig. 6
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Fig.7 Design chart for a portal frame subjected to two sets of design loads

ternating lateral loads [8] and strong-motion earthquake disturbances
[9] and are not particularly imperfection sensitive [10]. Itshould also be noted that the afore-mentioned solutions are the

necessary consequences of the one-sided optimization using an
approximate "failure" design criterion aside from the "serviceability"
design criterion to be satisfied in practice.

Yet it can be said that the afore-mentioned solutions have the
following significances: (i) they clarify the intrinsic features of
the minimum weight plastic designs of regulär rectangular frames at
various levels considerably well; (ii) they will provide good
initial solutions, if properly incorporated in a program, to start a
numerical search for an optimal Solution under additional
constraints and may also be utilized as some Standards for programverification. (iii) It may be well expected that the closed form
solutions will be useful for seeking for optimum span length
combinations analytically.
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SUMMARY

The frame moment decomposition technique due to the author and its appli<-
cations to several more realistically formulated problems have been briefly
described. The theoretical and practical significances of the analytical approach
to the minimum weight plastic design problems have been explained in reference
to the papers by the author.

RESUME

On decrit la methode de decomposition des moments du cadre, proposee par
l'auteur, et ses applications pratiques. La valeur theorique et pratique de cette
methode de calcul plastique, pour un poids minimum, est discutee.

ZUSAMMENFASSUNG

Die vom Autor entwickelte Methode der Momentenzerlegung sowie deren praktische

Anwendungsmöglichkeiten werden beschrieben. Der theoretische und praktische
Wert dieser Methode der plastischen Bemessung auf Minimalgewicht wird untersucht.
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1. Introduction

Sound mathematical idealizations of practical design problems lead as a

rule to highly nonlinear, and possibly nonconvex, programming problems.
The mai'ri 'effort in the field of computerized design methods should therefore

be concentrated upon the implementation of versatile numerical procedures

capable of solving, at least in principle, general mathematical programming pro_

blems. It is obvious that particular problems can be solved more cheaply by

means of 'ad hoc' techniques exploiting their special properties, but it is the

authors' opinion that the general approach should yield the major improvements

to structural optimization, at the present stage of its development.

In this note, the attention is focussed on sequential unconstrained
minimization techniques, which seem to be among the most interesting approaches for
general automated design routines. A new kind of penalty function is introduced,

and applied to a typical design problem, with the aim of assessing its ca^

pabilities.

2. Mathematical formulation

We consider the following type of problem

minimize f(x-)
(i=l, n; j=l, ...,m) (1)

subject to g.(x.) <^ 0

From problem (1) the following parametric problem is derived
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mi
III

nimize f(x.) + £ < 1 + g,(x.) >a
1

j=l J n

where the symbol <•> has the meaning

<•> max (0, ¦)

and the parameter a ranges over the open interval (1, + <=°).

Each inequality constraint g _< 0 is accounted for by a penalty term

p(g) <l+g>a (3)

From fig. 1 it is apparent that function (3) is neither an interior nor an exte_

rior penalty function.

p=<l+g>

a=2

>g

p=a<q

P

^->g

(a) (b) (c)

Fig. 1: Proposed penalty function (a) versus interior (b) and exterior (c)

penalty functions.

The main properties of formulation (2) may be stated as follows:

i) if problem (1) has a (local) Solution, a Solution of problem (2) will ap¬

proach it, when a approaches infinity;
ii) in contrast with interior penalty functions, penalty function (3) is def^.

ned over the ränge -<*> < g < + °°;

iii) in contrast with exterior formulations, formulation (2) yields feasible
minima for sufficiently large values of a, i.e. the Solution of problem

(1) is approached from the inside of its feasible region.
Properties ii) and iii) give an obvious advantage to penalty function (3)

over interior and exterior penalty functions, respectively.

3. Allowable stress design of a truss with assigned topology

If a minimum weight design is sought, the objective function is easily ex
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pressed in terms of member cross-sectional areas and Joint coordinates. For each

member and each load condition, the following constraints are considered

g es/es -1 < 0

(4)

g_ o/o~ -1 <^ 0

where a (o~) is the allowable tension (compression) stress of the considered mem

ber. If member buckling is aecounted for, the compression limit o depends on the

(minimum) radius of gyration of the member cross-section. For a given type of

cross-section, the radius of gyration can usefully be expressed as a function of
the area, thus leaving only one design variable for each member. A second set of

constraints will impose a minimum admissible value to each area. Displacement cojn

straints may be obviously included.
The major task is to compute the stress and its gradient (the displacement

method of analysis is of course preferable). Special attention must be devoted

to the fact that stress constraints (4) are not defined over the entire design

space: in fact, there exist (unfeasible) designs for which in one or more members

the stress grows to infinity. This difficulty can be cured by introducing suitable
modifications of the stress constraints (4) outside the feasible region, and by

adopting a careful minimization strategy.

4. Numerical results

An algorithm (AUDE) for the numerical Solution of a_utomated jtesign
problems, based on the described formulation, has been developed. The minimization (2)
is performed, for a sequence of suitably increasing (integer) values of a, using
the Davidon-Fletcher-Powell method. Two-point cubic fit for successive unidirec-
tional searches is used. Size and geometry variables are treated simultaneously.

The results obtained for a sample design problem, relative to a steel

planar truss, are represented in fig.2. The lower chord is assumed to be straight
and made up of six bars,long 5 m each.The total span of the upper chord is 30 m

also, but its shape is free. All members are tubulär, and their thickness is suppo_

sed to be adequately represented by the relationship

t 1.5 + 0.02 D (t,D in mm)

D being the diameter. Load conditions are specified by a single 10,000 kg concen_

trated load, moving along the lower chord. The allowable tension stress is assi-
2

gned a value of 2,400 Kg/cm and the allowable compression stress is computed in
terms of the member slenderness ratio according to the Italian Code requirements.
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Fig. 2: Truss design
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The lower chord should not undergo vertical displacements greater than 1/800 of
the span. The truss should be designed for minimum weight.

Taking into aecount the obvious symmetry of the optimal solution(s), the

above stated problem can be treated with 12 size variables, 6 geometry variables,

and 3 load conditions. The optimal design obtained by AUDE is depicted in
2 2

fig. 2a, where the member areas (in cm are also reported. Note that 1.1 cm

was the minimum allowable area used in the computation. The weight of the optj_

mum truss is 479 Kg, its height 8.29 m.

If now the distance H between the supports if given a fixed value, the ge£

metry variables reduce to 5, and the optimum weight should obviously increase.

Fig. 2b shows the Solution obtained for H 5 m. For H 1 m two local optima

have been detected (figs. 2c, d), the second one being a good candidate for the

global Solution.
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In each of these calculations, the parameter o was increased until a value

of about 8000, and 200 t 250 re-analyses were performed. Fig. 3 shows the

sequences of minima relative to the four cases of fig. 2. As it
is seen, after a drastic change on the first response surface, the objective
function approaches rather smoothly its asymptotic value.

SUMMARY

An exponential penalty function is introduced and applied to a typical
nonlinear and nonconvex design problem. Some results on geometry optimization of
plane trusses are presented and discussed.

jRESUME

On introduit une fonction de penalisation exponentielle, et on l'applique ä
un probleme typiquement non lineaire et non convexe d'optimisation structurale.
On presente et on discute quelques resultats relatifs ä l'optimisation geometrique
de structures reticuiees planes.

ZUSAMMENFASSUNG

Eine exponentielle Straffunktion wird auf ein typisch nichtlineares und
nichtkonvexes Tragwerksproblem angewandt. Einige Ergebnisse über die Optimierung

der Geometrie von ebenen Fachwerken werden angegeben und besprochen.
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1. Einleitung
Die analytischen Methoden des konstruktiven Ingenieurbaus sind in den letzten

Jahren durch verstärkten Einsatz von Digitalrechnern mehr und mehr verfeinert
worden. Das dabei erreichte hohe Niveau ist die Folge einer langen Tradition
und einer daraus resultierenden Formalisierung der Berechnungsverfahren.

Abgesehen von weiteren - sicherlich wichtigen - Verbesserungen (Berücksichtigung
nichtlinearen Werkstoffverhaltens und großer Verformungen) sind jedoch

keine grundlegend neuen Erkenntnisse mehr zu erwarten. Anders liegen die
Verhältnisse bei der Tragwerkssynthese, bei der die Charakteristika des Bauwerkes
als Unbekannte betrachtet und im Hinblick auf ein Bewertungskriterium unter
Beachtung von technologisch - mechanischen Restriktionen festgelegt oder optimiert
werden. Hier befindet man sich erst am Anfang einer Entwicklung, die sicherlich
auch Rückwirkung auf die Tragwerksanalyse selbst haben wird.

Innerhalb der Synthese kommt den Optimierungsmethoden tragende Bedeutung
zu, da erst mit ihrer Hilfe Syntheseprobleme zu lösen sind. Die Vielzahl der
Optimierungen, die nur unzureichend die spezifischen Belange der Ingenieurpraxis

berücksichtigen, gibt Veranlassung - in Ergänzung zum Aufsatz von TEMP-
LEMANN [E, S. 46 ff] einige kritische Anmerkungen zu machen.

2. Kritische Anmerkungen

Zwei Ursachen sind hauptsächlich dafür verantwortlich, daß die Optimierung
zu zweifelhaften, da nur akademisch interessanten Lösungen führen kann:

- unrealistisch konzipierte Optimierungsmodelle,
- rein mathematisch orientierte Lösungsverfahren.

Im folgenden soll hierauf kurz eingegangen und einige Anregungen zur Oberwindung

einer Fehlentwicklung dargelegt werden.

2.1. Konzeption des Optimierungsmodells
Aus der Fülle akademischer Beispiele soll der beidseitig eingespannte

Biegeträger minimalen Gewichtes als besonders typisches Beispiel dafür, daß die
gefundene "Optimallösung" irrelevant ist, herausgegriffen werden (siehe Bild 1).
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Ergebnis bei konstant gehaltener Steghohe

Das gefundene Optimum ist die Folge eines
schlecht konzipierten (ill - conditioned)
Optimierungsmodells, das sich im Normalfall immer
aus den drei Elementen

- Optimierungsvariablen
- Optimierungskriterium
- Optimierungsrestriktionen
zusammensetzt. Ist auch nur eine dieser Größen/ ZZC 4f4 /\ unzutreffend formuliert, zum Beispiel die Ziel-

I A. P V |n=const funktion, verzerren sich die Optimierungsergeb¬
nisse. Viel weitreichendere Folgen stellen sich
allerdings ein, wenn Restriktionen fehlen,
fehlerbehaftet sind oder nicht in die Form gebracht
werden können, wie es das später benutzte
Lösungsverfahren verlangt, weil in diesem Fall der
Lösungsraum ein völlig anderes Aussehen haben

kann als in Wirklichkeit und somit andere Optima möglich sind. So hätte sich
bei dem obengenannten Biegeträger mit Sicherheit eine andere Lösung ergeben,
wenn technologische Restriktionen (Kontinuität der Kontur) berücksichtigt worden

wären.

Bild 1: Optimierung des
Gewichtes eines beidseitig ein
gespannten Trägers,
ein "akademisches Beispiel"
nach Hupfer (1)

|l,neqr|

Will man praxisrelevante Optimierungsergebnisse sicherstellen, müssen
alle drei Optimierungselemente ingenieurmäßig aufgebaut sein. Das ist aber im
allgemeinen nur dann möglich, wenn man lediglich die Algorithmisierbarkeit der
drei Elemente und nicht bestimmte mathematisch erzwungene Ausdrücke fordert.

2.2. Wahl des richtigen Lösungsverfahrens

Viele der vorgeschlagenen, heute gebräuchlichen Lösungsverfahren orientieren
sich an der Denkart der Mathematiker, für jeweils eng abgegrenzte Problemklassen

Lösungsmethoden zu erstellen, die nur unter bestimmten Voraussetzungen
(hinsichtlich Konvexität, Stetigkeit, Differenzierbarkeit und bestimmter Formen
der Nichtlinearität, etc.) anwendbar sind. Beispielsweise informiert das Bild

»sKoeifizienitn 2 liber die vielfältigen Varianten alleinmatrix
bei differenzierbarer Zielfunktion. Im
Bereich der technischen Optimierung gibt es
jedoch nur selten Fälle, die derartig
mathematisch klassifizierbar sind. Infolgedessen

braucht der Ingenieur eine Art "Ge-
nerallöser", der universell anwendbar,
flexibel und effizient ist. Die Effizienz -
ein bislang nicht eindeutig definierter
Begriff - soll dabei u.a. danach beurteilt
werden,

- wie groß der Arbeitsaufwand zur
Anpassung des Lösungsverfahrens an ein
beliebig nichtlineares Optimierungsproblem

ist,
- wie groß der Arbeitsaufwand zur

Anpassung der Zielfunktion und Restriktionen

an das Lösungsverfahren ist,
- wie groß der Rechenzeitbedarf (CPU-

Bild 2- time) bei bestimmten Testfunktionen
Klassifikation nichtlinearer ist,
differenzierbarer Optimierungs- - wie 9roß der Kernspeicherbedarf ist,
aufgaben - wie das Konvergenzverhalten bei pa-
nach Collatz Wetterling (2) thologischen Fällen ist.
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Da insbesondere der Arbeitsaufwand zur Anpassung an Gegebenheiten erhebliche
Kosten verursacht, muß der universellen Anwendbarkeit eines Lösungsverfahrens
- unabhängig von der Klasse des Optimierungsproblems - größter Stellenwert
eingeräumt werden. Die meisten der derzeitigen Lösungsverfahren genügen einer
solchen Flexibilitätsforderung nicht. Die sogenannte Evolutionsstrategie
dagegen [3J, [ 4 ], die vom Verfasser mit Erfolg bei der Optimierung von Scha-
lontragwerken eingesetzt wurde [4], [5], und im folgenden kurz vorgestellt
werden soll, genügt dieser Forderung und kommt - bei entsprechender Weiterentwicklung

- dem lang gesuchten "Generallöser" einen Schritt näher.

3. Evolutionsstrategie
Die Evolutionsstrategie ist ein sequentiell arbeitendes, iteratives sto-

chastisches Suchverfahren mit Lernfähigkeit, bei dem die Suchschrittweite den
Verhältnissen des jeweiligen Suchraumes angepaßt und selbst optimiert wird.
Da die Suchschrittweite eine Zufallsvariable ist, kann man die Strategie als
Monte-Carlo-Simulation höherer Stufe bezeichnen, deren Effizienz im Vergleich
zu anderen Verfahren sich besonders bei vielen (ab IO Variablen) bemerkbar
macht. Sie darf aber auf keinen Fall mit der eigentlichen Monte-Carlo-Simulation

verwechselt werden, weil ihr methodisches Vorgehen erheblich vom
bekannten Monte-Carlo-Verfahren abweicht.

Das "Geheimnis" des Erfolgs und der Ausbaufähigkeit dieser Strategie ist
darin begründet, daß die innere Logik des Verfahrens Optimierungsmechanismen
der biologischen Vererbung, deren optimierender Effekt die Biologie tausendfach
beweist, simuliert.

Durch eine einfache Konvergenzregel wird erreicht, daß optimale
Fortschrittsgeschwindigkeit erzielt wird. Diese ist dann gegeben, wenn im
Durchschnitt nach jeweils 5 zufälligen Suchvorgängen 1 Erfolg (Qualitätsverbesserung)

erreicht wird. Andernfalls ist die Suchschrittweite (besser die Streuung
der Suchschrittweite) zu vergrößern oder zu verkleinern. (Bild 3 zeigt die

prinzipielle Arbeitsweise der Strategie an einem Beispiel).
Höhenlinien der Ziellunklion F(x,.x.)

Bild 3:
Arbeitsweise der Evolutionsstrategie

an einem zweidimensionalem

Beispiel
4. Abschließende Bemerkung

Mit der Evolutionsstrategie besitzt der Ingenieur ein geeignetes Werkzeug,

um Optimierungsprobleme im Konstruktiven Ingenieurbau zu lösen. Da die
Routine in programmierter Form vorliegt und flexibel anwendbar ist, braucht
sich der Benutzer nur noch um das problemabhängige Optimierungsmodell zu
kümmern, eine Aufgabe, die jeder Ingenieur ohne große Mühe bewältigen kann.
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ZUSAMMENFASSUNG

Es werden kritische Anmerkungen zum Aufbau eines auf die Praxis ausgerichteten
Optimierungsmodells gemacht und die universell anwendbare Evolutionsstrategie
wird als Lösungsverfahren technischer Optimierungsprobleme vorgestellt.

SUMMARY

Some critical remarks are made for the establishing of practical optimization

models. Furthermore, a generally applicable Solution method, the "evolution

strategy" is proposed.

RESUME

Des considerations critiques sont faites pour 1'etablissement de modeles
d'optimisation repondant aux besoins de la pratique. La methode de la "Strategie
evolutive" peut etre utilisee de fagon universelle pour resoudre des problemes
techniques.
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1. INTRODUCTION.

Since 25 years we have been acquainted with the development of optimization-
techniques for the design of structures. The first programs were mainly based on
the "mechanism" approach of limit analysis.
After a general matrix theory for structures became available about 1966, design-
programs based on the equilibrium method were developed [1].
Formulating a minimum-weight design, based on the equilibrium method, with only
stress-limitations as constraint conditions, leads to a problem of linear
programming (L.P.).
In practice, however, a design with only stress-limitations is not acceptable.
The building codes require a number of additional constraint conditions, for
instance with relation to stability and rotation capacity (fig. 3). Often these
special conditions are strongly non-linear and they can be linearized only in the
neighbourhood of a Solution, so that one has to pass on to a non-linear programming

technique.

2. CORA.

Recently a design program has been developed in the Netherlands (named CORA)

for the design of braced steel frames. The designs meet the requirements by the
national authority. Moreover, it is possible to distinguish between welded Joint
connections with or without stiffeners. Given an accepted input of geometry and
loading (fig. 1), the program automatically produces the design of the frames
using a sequential linear programming formulation (fig. 2). The introduction of
the special constraint conditions means that a very large linear programming
problem has to be solved a number of times. The Solution has been found in
applying a sophisticated L.P. algorithm and in the approximation of the constraint
conditions by one plane with the aid of the method of least Squares. Instead of
five sets of constraint conditions (fig. k) only one set has to be taken into
consideration (fig. 5). It proved that 3 or h iterations were sufficient to
obtain the theoretically exaet values of the Solution.

Problems arose from the wish to develop an instrument which will really be
used in practice. This means that it should not be too expensive in use and that
it should fit realistic structures. The more difficult problems however were
formed by the codes themselves. In drawing up these codes the committee has had
in mind of course a more or less sensible structural engineer and a proper structure.

But in applying these rules and codes in an automated design program



116 IIa - CORA'S LESSON

irrevocably gaps and inconsistencies prove to be present in the codes. The
Computer is not a sensible structural engineer and he stumbles in the pitfalls
caused by these gaps. Especially a mathematical optimization technique is a
master in finding the inadmissible minima, as we noticed to our regrets several
times.

3. THE LESSON.

The experience gained with this program has led us to the insight that if,in developing a design-process, one has to make allowance for requirements made
by the government or a local authority, the design-program has to be separated
from these prescriptions or codes. This applies to computer-aided design and the
more so to computer-automated design. The reasons for this opinion - which we
believe should be generally accepted - are:

a. The codes and prescriptions contain gaps and inconsistencies, which
will always be recognized by the optimization-technique and unfortunately ex-
ploited.

b. The programmer who builds the design-program is not allowed to improve
these inconsistencies.

c. By integrating the code into the design-program the program becomes
dependent on this code. Codes have a temporary character. Adapting a design-
program to code-changes will in general be very expensive or even impossible.

d. Working up codes into a form which is understandable by the Computer
is a lot of work which can best be left to those who draw up the codes instead
of to every individual programmer.

k. CONCLUSION.

If - at least for the Building Industry - we want to leave behind us the
more or less trivial examples, to proceed with our design-techniques to real
life structures, we have to create the possibility to develop C.A.D.-programs
that are independent from the codes. Therefore the codes have to be brought into
a computer-readible form for instance in the way - indicated by Fenves [3]
by means of Decision Logic Tables. If this effort has led to success, the codes
can be changed without consequences for the design-program (of course it will
have consequences for the design itself).
Because the programs will be less vulnerable, Software development for C.A.D.
will become more populär. Two consequences seem to be of particular importance:

a. To develop C.A.D.-programs that can make codes of different countries
accessible. This will make the Software less dependent and less "national".

b. To study beforehand the effect of proposed code-changes, e.g. on
economies or safety.
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SUMMARY

During the last three years a computerprogram (CORA) has been developed in
the Netherlands for the design of braced steelframes. The frames designed with
this program meet the requirements, made by the national authority. The building
code requirements have been integrated into the design program, which has led to
a very complex problem. The experience gained by solving this problem, has led
to the insight, among other things, that design programs should be separated from
rules and requirements in the building codes.

RESUME

Pendant les derniers trois ans un programme d'ordinateur (CORA) a ete
developpe aux Pays-Bas pour le dimensionnement des ossatures en acier. Les ossatures

dimensionnees avec ce programme satisfont aux conditions posees par les
regles nationales pour les structures en acier. Les regles ont ete inserees
dans le programme de dimensionnement ce qui a conduit ä un probleme tres complique.
L'experience a conduit ä la conclusion que les programmes de dimensionnement doivent
etre separees des conditions dans les regles ou codes.

ZUSAMMENFASSUNG

Während der letzten drei Jahre ist in den Niederlanden ein Computerprogramm
(CORA) für das Entwerfen von Rahmentrargwerke aus Stahl entwickelt worden. Die

Tragwerke die mit diesem Programm entworfen sind, erfüllen die Forderungen der nationalen
Behörden. Die bautechnischen Anordnungen sind in das Entwurfsprogramm

aufgenommen worden, was zu einem sehr komplizierten Problem geführt hat. Die Erfahrungen
haben zu der Ansicht geführt, dass Entwurfsprogramme unabhängig und separat von
Regeln und Forderungen in bautechnischen Anordnungen sein sollen.
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