Zeitschrift:	IABSE congress report = Rapport du congrès AIPC = IVBH Kongressbericht
Band:	10 (1976)
Artikel:	A differentiated approach to structural fire engineering design
Autor:	Pettersson, Ove
DOI:	https://doi.org/10.5169/seals-10431

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 08.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A Differentiated Approach to Structural Fire Engineering Design

Une méthode différenciée pour la détermination de la sécurité au feu des éléments de structure

Ein differenziertes Verfahren für die brandtechnische Dimensionierung von Baukonstruktionen

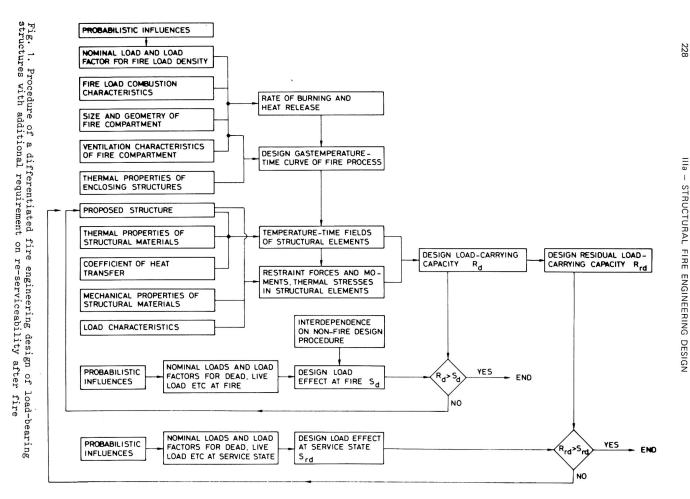
OVE PETTERSSON Dr. Techn., Professor Civil Engineering Department, Lund University Lund, Sweden

A development of analytical design procedures, based on differentiated functional requirements, within different fields of the overall fire safety concept is an important task of the future fire research. Such procedures, successively replacing the present, internationally prevalent, schematic design methods, are necessary for getting an improved economy and for enabling more well-defined fire safety analyses. A derivation of such analytical design systems is also in agreement with the present trend of development of the building codes and regulations in many countries towards an increased extent of functionally based requirements and performance criteria.

For fire exposed load-bearing structures and partitions, an essential step in the direction of the described development was taken in the Swedish Standard Specifications of 1967 by introducing different alternatives of structural fire engineering design, leading to a different degree of accuracy and a different amount of engineering design work. This differentiated view is underlined further in the new edition of the standard specifications, in force from 1976.

A differentiated fire engineering design of load-bearing structures, as approved in the Swedish Standard Specifications, comprises a thorough determination of [1, 2, 3, 4, 5, 6, 7]

(a) the fire load characteristics,


(b) the gastemperature-time curve of the fire compartment as a function of the fire load density, the ventilation characteristics of the fire compartment, and the thermal properties of the structures enclosing the fire compartment, (c) the temperature-time fields, and

(d) the structural behaviour and minimum load-bearing capacity of the fire exposed structure for a complete process of fire development.

The components of the design system as well as the appurtenant functional requirements are summarized in Fig. 1 for interior load-bearing structures. The survey covers the general case of application with additional requirement on reserviceability of the structure after a fire exposure.

As concerns the fire exposure characteristics, the Swedish Standard Specifications generally permit a structural fire engineering design on the basis of a gastemperature-time curve, calculated in each individual case from the heat and mass balance equations of the fire compartment with regard taken to the combustion characteristics of the fire load, the ventilation of the fire compartment, and the thermal properties of the enclosing structures of the fire compartment.

As a provisional solution, the structural fire engineering design may be based on differentiated gastemperature-time curves of the complete process of fire development, specified in the code. These fire exposure curves, exemplified in Fig. 2, are approximate curves, generally determined on the assumption of ventilation controlled compartment fires [8, 9, 10]. One principle reason for choosing this assumption as a general basis in this connection is dictated by the great difficulty in finding representative values of the free surface area and the

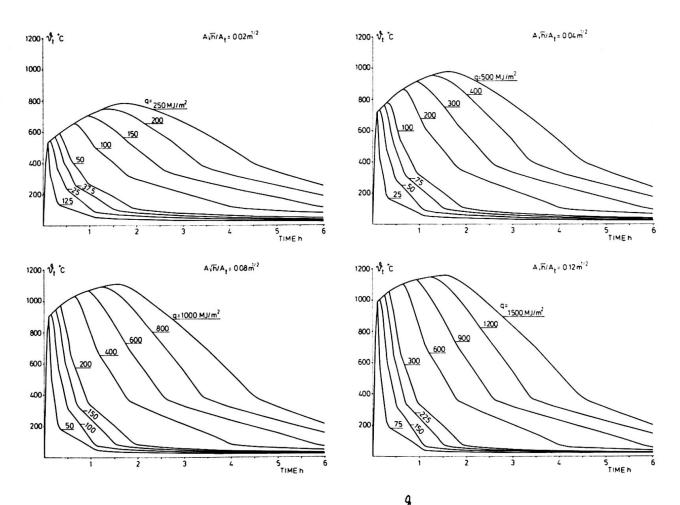


Fig. 2. Gastemperature-time curves $\sqrt[n]{t}$ -t of the complete process of fire development for different values of the fire load density q and the opening factor $A\sqrt{h}/A_t$. Fire compartment, type A

porosity properties of real fire loads of furniture, textiles, and other interior decorations, which are essential quantities for a combustion description of a fuel bed controlled fire but of minor importance for the development of ventilation controlled fires. Another principle reason is related to the fact that the gastemperature-time curves themselves do not constitute the primary interest of the problem in this connection but an intermediate part of a determination of the decisive quantity, viz. the minimum load-bearing capacity of the structure during a complete fire process. For fuel bed controlled fires, the assumption of ventilation control leads to a structural fire engineering design which will be on the safe side in practically every case, giving an overestimation of the fire duration. For the minimum load-bearing capacity, the gastemperature-time curves specified in the code are giving reasonably correct results, which has been verified in [3, 4, 10].

The fire exposure curves, specified in the code, apply to a compartment with surrounding structures of a material with a thermal conductivity $\lambda = 0.81 \text{ W} \cdot \text{m}^{-1} \cdot ^{\circ}\text{C}^{-1}$ and a heat capacity $\rho_{c} = 1.67 \text{ MJ} \cdot \text{m}^{-3} \cdot ^{\circ}\text{C}^{-1}$ - fire compartment, type A. Entrance parameters for the curves are the fire load density q (MJ \cdot m^{-2}), and the ventilation characteristics of the fire compartment, expressed by the opening factor $A\sqrt{h}/A_{t}$ (m^{1/2}). A = the total area of the window and door openings (m²), h = the mean value of the heights of window and door openings, weighed with respect to each individual opening area (m), and A_{t} = the total interior area of the surface

bounding the compartment, opening areas included (m^2) . The fire load density q is defined according to the formula

$$q = \frac{1}{A_{t}} \Sigma m_{v} H_{v} \qquad (MJ \cdot m^{-2})$$

where m_v = the total weight (kg), and H_v = the effective heat value (MJ·kg⁻¹) for each individual combustible material v of the fire compartment.

In the design procedure, a transfer can be done between fire compartments of different thermal properties of the surrounding structures according to simple rules, based on fictitious values of the opening factor and the fire load density [3, 4, 5, 7]. By introducing such a transfer system, design diagrams and tables - facilitating a practical application - can be limited to one type of fire compartment, viz. type A.

A differentiated design according to the described procedure can be carried through in practice today in a comparatively general extent for fire exposed steel structures. The practical application then is facilitated by the availability of a manual [4], comprising a comprehensive design basis in the form of tables and diagrams which directly are giving the maximum steel temperature for a differentiated, complete fire process and the corresponding load-bearing capacity. The manual has been approved for a general practical use in Sweden by the National Board of Physical Planning and Building.

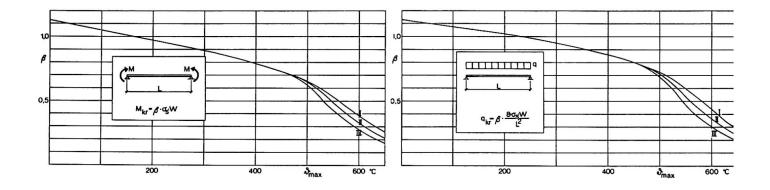
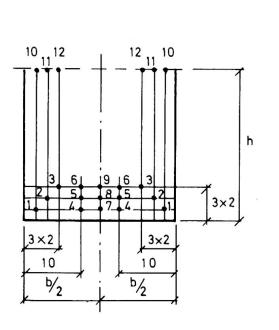


Fig. 3. Load-bearing capacity (M_{kr}, q_{kr}) for two types of loading at a simply supported steel beam of constant I cross section. Curves I, II, and III correspond to a rate of heating of 100, 20, and $4^{\circ}C \cdot \min^{-1}$, respectively, and a rate of subsequent cooling = 1/3 of rate of heating.

 ϑ_{\max} = maximum steel temperature, σ_s = yield point stress at ordinary room temperature, and W = elastic modulus of cross section

In comparison with steel structures, fire exposed reinforced and prestressed concrete structures generally are characterized by an essentially more complicated thermal and mechanical behaviour. In consequence, the basis of a differentiated structural fire engineering analysis and design is considerably more incomplete for concrete structures - cf., for instance, [5, 6, 7, 11], in which summary reports are given on the present state of knowledge. Completing the manual on fire exposed steel structures [4], another manual is in course of preparation - to be edited by the National Board of Physical Planning and Building - with the purpose to facilitate the practical application of the differentiated design procedure also to other types of load-bearing structures - reinforced and prestressed concrete structures, aluminium structures, and wooden structures. A design guidance for fire exposed partitions of various materials is included, too.


Fragmentary examples of the design basis quoted are given in Fig. 3 $\begin{bmatrix} 4 \end{bmatrix}$, Table 1 $\begin{bmatrix} 4 \end{bmatrix}$, and Table 2 $\begin{bmatrix} 7 \end{bmatrix}$.

OVE PETTERSSON

Table 1. Maximum steel temperature ϑ_{max} for a fire exposed, insulated steel structure at varying fictitious fire load density qf (MJ·m⁻²), and structural parameter $A_{i\lambda i}/V_{s}d_{i}$) (W·m^{-3.o}C⁻¹). Fictitious opening factor (AVh/At)f = 0.04 ml/2. A_{i} = interior jacket surface area of insulation per unit length (m), d_{i} = thickness of insulation (m), λ_{i} = thermal conductivity of insulating material (W·m^{-1.o}C⁻¹), and V_{s} = volume of steel structure per unit length (m²)

50 25 25 50 35	35	200 50	400 70	600 85	1000	1500	2000	3000	4000	6000	8000	10000
50 35		Sec.	70	85								
75 45 100 50 200 85 300 115 400 140 500 170	65 80 135 180 225	75 100 125 210 275 345 415	115 155 190 310 410 505 585	150 200 245 385 500 605 685	115 200 260 320 490 615 720	140 245 325 395 575 700 800 860	170 290 380 450 635 755 845 895	210 350 450 525 710 815 .890	245 395 500 575 755 845	290 450 565 640 800 875	330 505 615 685 825 890	365 540 650 715 835 895

Table 2. Maximum temperature ϑ_{max} during a complete process of fire development in different points of a rectangular concrete beam, fire exposed from below on three surfaces, at varying values of the fictitious fire load density $q_f(MJ \cdot m^{-2})$, and the cross-sectional width b (m). Fictitious opening factor $(A\sqrt{h}/At)_f = 0.04 \text{ m}^{1/2}$. The temperature values are computed for a cross-sectional height h = 0.2 m but are applicable with sufficient accuracy also to other values of h > 0.2 m

q _f	ъ/2	1	2	3	4	5	6	7	8	9	10	11	12
50	0.04 0.06 0.08 0.10 0.125 0.15 0.20 0.30	345 335 335 335 335 335 335 335 335 335	260 185 180 180 180 180 180 180	170 135 125 120 120 120 120	210 210 205 205 205	125 125 120 115 110	105 100 95 95 95	300 230 210 205 205 205 205	260 185 145 125 110 105 105	240 170 135 105 95 90 85 85	225 210 205 205 205 205 205 205	215 140 115 110 110 105 105	140 105 95 85 85 85 85
100	0.04 0.06 0.08 0.10 0.125 0.15 0.20 0.30	500 480 480 480 480 480 480 480 480	425 325 300 295 295 295 295 295	295 235 210 200 200 200 200	315 310 310 310 310 305	215 200 190 185 180	190 170 155 150 150	465 370 325 315 305 305 305 305	425 315 255 215 180 175 175 175	400 295 230 190 150 135 120 120	380 315 305 305 305 305 305 305	370 245 185 180 175 175 175 175	245 180 140 125 125 120 120
200	0.04 0.06 0.08 0.10 0.125 0.15 0.20 0.30	690 650 645 645 645 645 645 645	610 495 450 435 435 435 435 430 430	460 375 335 315 315 315 315 315	455 450 445 440 440	345 325 305 300 295	315 270 245 240 235	655 545 480 455 435 435 435 435 435	610 485 400 345 295 280 270 265	585 460 370 315 245 210 190 190	570 460 435 435 435 435 435 435 435	555 400 310 280 275 270 270 270	395 300 235 200 195 190 190
300	0.04 0.06 0.08 0.10 0.125 0.15 0.20 0.30	795 755 740 740 740 740 740 740 740	740 625 570 550 545 540 540 540 540	585 490 440 415 410 410 410 410	565 550 535 535 535 530	455 425 400 390 385	415 370 330 320 315	775 670 600 565 535 525 520 520	740 610 515 455 390 365 350 345	7.20 585 485 415 335 290 260 250	705 580 535 525 525 520 520 520	690 520 415 370 355 350 350 350 345	520 400 320 275 265 260 255

The summarily presented, differentiated design procedure is to be seen as an attempt to build up a logical system for a structural fire engineering design, based on functional requirements. The system is well devoted to stimulate the architects and structural engineers to solve the fire engineering problems in a qualified way over a design procedure which is equivalent to the non-fire, structural design, conventionally applied. The design system is not homogeneous, as regards the present basis of knowledge for the different design steps, which could be put forward as a criticism of the system. However, such a remark is not essential. Instead, this fact should be used as an important information on how to systematize a future research for enabling a successive improvement of the design system

References

- 1. PETTERSSON, O.: Structural Fire Engineering Research Today and Tomorrow. Acta Polytechnica Scandinavica, Ci 33, Stockholm, 1965.
- PETTERSSON, O.: Principles of Fire Engineering Design and Fire Safety of Tall Buildings. ASCE-IABSE International Conference on Planning and Design of Tall Buildings, Lehigh University, Pa. August 21-26, 1972, Summary Report, Technical Committee 8, Conference Preprints, Vol. DS.
- 3. PETTERSSON, O.: The Connection Between a Real Fire Exposure and the Heating Conditions According to Standard Fire Resistance Tests - With Special Application to Steel Structures. European Convention for Constructional Steelwork, Chapter II, CECM-III-74-2E.
- 4. MAGNUSSON, S.E., PETTERSSON, O., and THOR, J.: Brandteknisk dimensionering av stålkonstruktioner (Fire Engineering Design of Steel Structures). Manual, issued by theSwedish Institute of Steel Construction, Stockholm, 1974.
- ANDERBERG, Y., PETTERSSON, O., THELANDERSSON, S., and WICKSTRÖM, U.: A Differentiated Design of Fire Exposed Concrete Structures. FIP VII Congress, New York, May 26 - June 1, 1974.
- PETTERSSON, O.: Post-Behaviour of Concrete Structures Subjected to Fire. CEB-FIP-IABSE-RILEM. Inter-Association Colloquium on Behaviour in Service of Concrete Structures, Liège, June 4-6, 1975.
- PETTERSSON, O.: Theoretical Design of Fire Exposed Structures. UTI-CISCO Seminar "La Sécurité de la Construction face à l'Incendie", Saint-Rémy-lès-Chevreuse, November 18-20, 1975.
- MAGNUSSON, S.E., and THELANDERSSON, S.: Temperature-Time Curves for the Complete Process of Fire Development - A Theoretical Study of Wood Fuel Fires in Enclosed Spaces. Acta Polytechnica Scandinavica, Ci 65, Stockholm, 1970.
- 9. MAGNUSSON, S.E., and THELANDERSSON, S.: Comments on Rate of Gas Flow and Rate of Burning for Fires in Enclosures. Division of Structural Mechanics and Concrete Construction, Lund Institute of Technology, Bulletin 19, Lund, 1971.
- 10. MAGNUSSON, S.E., and THELANDERSSON, S.: A Discussion of Compartment Fires. Fire Technology, Vol. 10, No. 3, August 1974.
- 11. KORDINA, K., SCHNEIDER, U., HAKSEVER, A., and KLINGSCH, W.: Zur Berechnung von Stahlbetonkonstruktionen im Brandfall. Technische Universität, Braunschweig, 1975

SUMMARY

On the basis of the general functional requirements, a differentiated, analytical procedure is presented for a fire engineering design of loadbearing structures. Examples are given. The method is approved for a general practical use in Sweden by the National Board of Physical Planning and Building.

RESUME

Sur la base des fonctions générales des constructions une méthode analytique différenciée est présentée pour la détermination de la sécurité au feu des éléments de structure. Des exemples sont donnés. La méthode est approuvée par les autorités pour l'utilisation pratique en Suède.

ZUSAMMENFASSUNG

Es wird ein differenziertes Verfahren für die brandtechnische Dimensionierung von Baukonstruktionen beschrieben, das sich auf direkte Funktionsforderungen stützt. Das Verfahren ist von den Behörden für eine generelle, praktische Anwendung in Schweden zugelassen.