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FORMULATION OF THE ELEMENT EQUATION

An incremental formulation is developed here, under the assumption of large
displacement but small strain. The key point of the formulation is the descrip-
tion of nodal locations by the coordinates themselves instead of by mere dis-
placements. A local coordinate system (x* y* z*) is introduced which is at any
time on the element itself, and the element force-displacement relation is as-
sumed to be linear in this local system. The geometrical nonlinearity is consid-
ered only through the nonlinear transforming relations of displacement components
between the space-fixed global coordinate system (x y z) and the element-fixed
local coordinate system. The transformations are evaluated rigorously without
neglecting small terms, so that incremental relations satisfy equilibrium condi-
tions after deformation as accurately as poissible.

SOLUTION PROCEDURE

To construct and solve structural equilibrium equations, an effective correc-
tive iteration solution procedure is also originally developed. The process,
outlined in the following, makes use of physical properties of each term in the
derived element equation. At first, the changes of transformation matrix and
rigid body rotation in the element equation, AT and Ar respectively, are linear-
ized with respect to incremental displacement Au at the n-th equilibrium state A.
And the transformation matrix after the increment, T(n+I1), is estimated at the
same state A. Hence the element incremental equation is written in the following

quasitangential form.
= +K +
Af (Kf Ku K)AAu

Then summing up the element incremental equations thus approximated for overall
structure and solving them, the first approximation of the nt+l-th equilibrium
state C is obtained. Secondly, AT and Ar are linearized at the midpoint B bet-
ween A and C, meanwhile T(n+1) is approximated at the above obtained first ap-
proximating state C. Thus the element incremental equation is written as

Af=(Kf+Ku+K)B,CAu

Thus the second approximating solution, denoted by D, can be obtained. Then
afterwards in iterations, AT and Ar as well as T(n+I1) are all evaluated by using
the just preceding approximating solution, and only the incremental displacement
Au is treated as unknown variable. Namely, for the k+l-th approximation

Af—hk=KkAu

is used, where

_=T . T X 0
Kz TeK* T s =Ty T KRBT (50 ) 0y * T ()
and
AT=Tk-T(n) 5 Ar=rk-r(n)

The iteration is continued until satisfactory convergence is obtained.

FEATURES OF THE PROPOSED METHQOD

- With mere incremental calculations and without special techniques such as
eigenvalue analysis, not only snap-through and limit point phenomina but also
bifurcation can be pursued.

- Even for an extraordinary large increment, numerical stability exists and
sufficient accuracy is obtained.

- As the consequence of the above characteristics, calculating time can be re-
duced considerably.
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