Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 12 (1984)

Artikel: Steel bridge girders, cost optimization

Autor: Haas, G. / Ostenfeld, Klaus H.

DOI: https://doi.org/10.5169/seals-12239

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

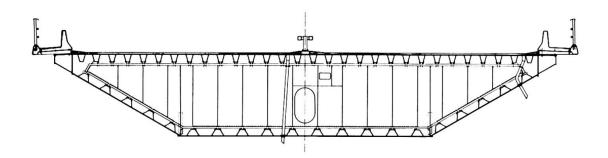
Download PDF: 15.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Steel Bridge Girders, Cost Optimization

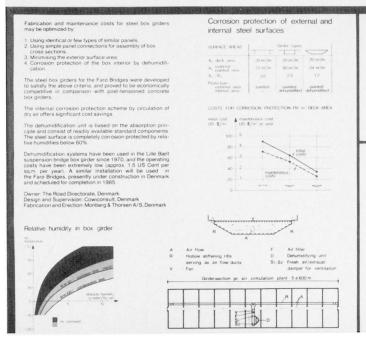
G. HAAS and Klaus H. OSTENFELD

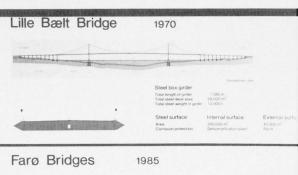
Cowiconsult
Consulting Engineers and Planners
Virum, Denmark

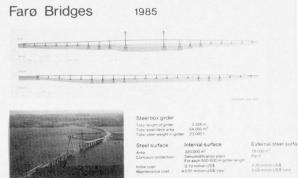

The steel box girder for the 3.3 km long bridge at $Far\phi$, Denmark has been made competitive by use of unusual design and construction methods.

A considerable saving has been possible by omission of painting of internal surfaces of the box girder, which amounts to more than 80% of the total steel surface. The corrosion protection of these surfaces is accomplished by ventilation by means of dehumidified air. The six dehumidification units represent low initial investment and are very economical in operation, each covering 5-600 m of bridge girder length. The external surface of the box girder to be painted has been reduced to a minimum by choice of a special cross section shape (refer to Far ϕ bridge cross section below) with smooth exterior permitting an inexpensive initial painting cost and low maintenance.

The girder is composed of uniform steel panels welded by automatic welding, and a special assembly detail between exterior panels and diaphragms each 4 m has been detailed so as to require minimum of tight tolerance control during fabrication.


The box girder has been fabricated in a ship yard, all welded in full span sections each 80 m, and erected by simple lowering directly onto the pier tops. The girder continuity over full bridge length (1.6 km and 1.7 km) is subsequently established by field welding of box girders over the piers.


The bridge connection at $Far\phi$, which is part of European main highway E4, is presently under construction and is scheduled for completion Summer 1985.



Farø Bridge Cross Section

STEEL BRIDGE GIRDERS, COST OPTIMIZATION

