Zeitschrift:	IABSE congress report = Rapport du congrès AIPC = IVBH Kongressbericht		
Band:	12 (1984)		
Artikel:	Beam to-column-connections with composite beams		
Autor:	Osano, Hiroshi / Nakao, Masami / Unno, Sanzo		
DOI:	https://doi.org/10.5169/seals-12289		

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 15.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beam to-Column-Connections with Composite Beams

Hiroshi OSANO	Masami NAKAO	Sanzo UNNO	Takeo NAKA
Res. Assoc.	Prof. Dr.	Prof. Dr.	Prof. emeritus
Tokyo Denki Univ	Tokyo Denki Univ.	Tokyo Denki Univ.	Univ. of Tokyo
Tokyo, Japan	Tokyo, Japan	Tokyo, Japan	Tokyo, Japan

This research deals with the contribution of reinforced concrete slab of composite beams on the strength and the deformation capacity of steel beam-to-column connections subjected to seismic loading.

Dimension and configuration of specimens are shown in figure 1 and table 1. Relative yield strength of panel-zone to that of adjoining members is expressed marks "Rpy" and "sRpy" in table 1. Those are considered to be the key parameter on the evaluations of strength, deformation capacity and energy absorption of beam-to-column connections.

Figures 4a-4c are the summary of representative relations between load and shear deformation of panel-zone. Vertical axis represents the ratio of load to calculated yield strength of beam-to-column connection composed of bare steel beams and column, while horizontal axis represents the ratio of shear deformation of panel-zone to calculated yield shear deformation. Dotted lines in figures 4a-4c show the test results of beam-to-column connections of the same configuration without concrete slab. The reinforcing effect of steel beam-tocolumn connections by the reinforced concrete slabs of composite beam is illustrated.

A model to take the effect of concrete slab into consideration is proposed in figure 5. In this model, the strength of panel-zone is considered to increase by the enlargement of nominal volume of panel-zone as shown in the figure 5. Relation between "sRpy" (relative yield strength of panel-zone to that of adjoining steel members) and strength, deformation capacity and energy absorption are shown in figures 6a-6d with the other test results of beam-tocolumn connections composed of bare steel beams and column. The empirical formulas in figures 6a-6d are obtained by regression analyses on the test results of beam-to-column connections composed of bare steel beams and column. Shiftings to the estimated results of yield strength of enlarged panel-zone are indicated by arrows. The seismic behavior of steel beam-to-column connections with composite beams can be evaluated by making use of the model in figure 5 and empirical formulas in figures 6a-6d.

BEAM-TO-COLUMN CONNECTIONS WITH COMPOSITE BEAMS

POSTERS

1177