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CALCULATION OF LATERAL TRUSS IN SUSPENSION
BRIDGES. |

DIE BERECHNUNG VON WINDVERBANDEN BEI HANGEBRUCKEN. -

CALCUL DU TREILLIS LATERAL DES PONTS SUSPENDUS.
ARNE SELBERG, Division Engineer, Norwegian State Highways, Oslo.

During the last years several treatises have been published dealing with
the subject of suspension bridges under lateral loadings. All of these trea-
tises, with exception of the one written by L. MoisseilFF and F. LIENHARD 3,
deal only with suspension spans symmetrical about the center, and simply
supported at the towers. The method presented by L. Morsseirr and F. LIEN-
HARD is not restricted to this special class, but depends on a very laborious
numerical solution by successive approx1mat10n

In the present paper it is intended to give a method permitting direct
stress computation of suspension bridges of any form, with the lateral truss
continuous or simply supported over any number of spans, the only con-
dition being constant stiffness /E of the lateral truss within each span. The
method presents an improvement and extension of a previously published
work 7 dealing with symmetrical suspension bridges of one span with sym-
metrical lateral loads.

Deduction of Fundamental Equations.

The followmg equations are based on the assumption that the spacing
of the hangers is small compared with the length of the span. A further
assumption is that the deformations are so small that the vertical distance
between cable and roadway may be replaced by the length of the hangers
h(x).

We indicate wind pressure against truss, lower half of hangers and any
live load by W,(x), the same against upper half of hangers and cable by
W.(x), combined dead and live load per unit length of roadway by ¢(x),
and the combined cable tension due to dead and live load by H.

Using notations from Figs. 1 and 2 the following equation for the la-
teral deflection of the cables A4(x) is obtained:

We(x)dx 4+ ¢ (x) ()(x)‘ha)ilﬂ)— dx = — HA" (x)dx,
o (7 (p) — d(x) — 4(x)
) = = W) — g0 20 (1)

For the lateral deflection of the lateral truss:

Wi(x)dx — g (x) O~ AE

o Ve — —av = — M (x)dx = (IEV (x)"dx,



312 A. Selberg

d(x) — A(x)
IR )

In these equations 4(x) indicates the lateral deflection of the cable and
d(x) the same for the lateral truss.

The wind forces W,(x) and W (x) and the corresponding deforma-
tions will produce some change in the cable tension H = H, -+ H, to
H-=H, - H, + H, where H,, -+ H; is the cable tension due to dead and
live load and H, is the additional tension due to lateral loads.

The length of the cable element dZ under dead and live load is 4% =
dx®-}-dy?, dx and dy being projections in horizontal and vertical directions
respectively. Due to the lateral forces as for instance wind pressure, the
length of the cable element will change to dL -+ edL with projections dx -+ dé
along the span, dy - dy and d 4 in vertical and lateral directions respectively.
We have:

or: (IEd'(x))) = — M"(x) = W (x) — g(x)

(dL + edL)? = (dx + d &2 + (dy + d 1) + d A

Assuming d£2 to be a small quantity of higher order we obtain the
following equations:

H, _1},2 10
poam L= o | (') dx+jy1, dx—}—fz—J(q) dx,
or:

g o= g | @reya—y fuar s fonras. ®

For the vertical deformation # the following expression may be ob-
tained :

H

X
_ _ H,16f smh smh ( —7) H, H
LE’

Hee — —y, where ¢=1/

c
cosh o

I is the moment of inertia of the stiffening girder Inserting this ex-
pression for # in equation (3) and neglecting the therm - ‘ (n")2dx as a small
quantity of higher order, we obtain:

H 1 { (A (x))2 dx __3IH
1= L 1672 2 ¢ 32
+ [ ( tanh 5 1)+ 1]

ferwpa @

E A 3lH

cc

Equation (4) determines H, and thus H=H,, -+ H, -+ H,.

it may be shown that the additional cable tension H; is small, usually
less than 10/, of H and thus of no importance in comparison -with H,
and H,. We get for instance in the cal’culdted example: For lateral truss
hinged at the towers H,= 42,6 tons or 0,959/,, of H which is 44700 tons.
For continuous lateral truss we get H,~ 13, 3 tons or 0,39/,, of H.

The increase in cable force in this excep.tlonally long suspension bridge
s insignificant and as /, will be comparatively less in smaller bridges we
may always put ;=0 and H = H, + H, without making any error noti-
ceable in the results of the computations.
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By putting H,=0 and H —H, | H, = constant for a given vertical
loading of the bridge, the principle of superposition will be valid for all
lateral loadings. In other words we may divide the lateral loadings into
symmetrical and asymmetrical parts and treat these independently of each
other. This will in many cases simplify the computations considerably, but
is otherwise of no importance for the deductions.

We return to equations (1) and (2). These can only be solved by labo-
rious numerical computations by successive approximations 3. Especially in
the case of unsymmetrical bridges or complicated distribution of the lateral
forces W (x) these computations become very troublesome.

If we can put the stiffness of the lateral truss /E = constant within
each span, the equations (1) and (2) may be solved to any degree of accu-
racy. We rewrite the equations:

d(x) — 4
HA" (x) = — We(x) — g (x) *(x)‘hw({)”y (5)
and:
TES () = M) = W) — g T A0 ©)
We introduce the following substitution into equations (5) and (6):
g(x 995—)/;(;;1 ) _ D A,sinar %C — B, — B, 1}. (7)

By this substitution equations (5) and (6) become directly integrable
and we have only to take into account the different boundary conditions
at the ends of each span.

Solution for Bridges with Continuous or Discontinuous
Lateral Truss.

From as suspension bridge with an arbitrary number of spans we cut
out one span, as shown in Figs. 1 and 2, for closer examination.
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Fig. 1

In the investigation we at first consider the moments at the supports
M, and M, as known, and indicate their deformations of the simply sup-
ported lateral truss with M,0,(x) and M,d,(x), where J,,(x) and J,(x) in-
dicate the deformations due to moments M,,=1 and M, =1 respectively.
For a constant stiffness of the lateral truss we have:
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' 2 | —x l — x\2
M 0n () = Mu g5, ‘1*(1 *(7))

w2 =)

M, 0, (x) = M, 6F7 T 1'> 7))
Due to the lateral forces on the span under consideration and on the
neighbour spans, the towers will suffer certain deflections, see Fig. 3. These

deformations of the towers called », » and & must be assumed given or de-

termined by a preliminary computation.
7

£ |
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Fig. 2 Fig. 3

Introducing substitution (7) into equation (5) and integrating twice
we obtain:

1 ‘ Ar . x 1 L "
A(x)—— [T[*J-‘ 2H2};2 S]nﬂr)z~+‘2*HBO i 6H1‘B[V +Cx+D
1
By introducing: — ﬁ”W(.(x)dx = A;I‘{” = A,(x), which is equal to the lateral
deflection of a free hanging cable under the lateral load W, (x), and the
boundary conditions X= A(x) = and x =/; A(x) = oy We obtain D= 7;
— B, -t AL A ’
C=— 2Hl OHH_ ,and with all this introduced in the equation:

A, . X B , B ,
Ax) = Ay (x) + WIZ S sinar T + 2;—1 (x2— Ix) + 6'14;1 (x3 — 2x)

l— x X :
-T“ + Y 2 . (8)

By integrating equation (6) twice in the same way as done above, and

taking into account the boundary conditions at the supports we get:

M(x) = My(x) + My, L= +M Z “Isinn ri——-li(x“——lx)

+ M

— g; (45— 3), | 9)

where M,(x) is the moment on the simply supported truss under the load
W,(x). M,, and M, are the moments at the supports and are temporarily con-
sidered to be known.
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By integrating the equation (9) twice we obtain the following equation:

d(x) = do(*) + Mmm(x) + My 0n(x) — 415 Z L sinzr - [

,,,@P_ — 3 3 B 5 2,.3 4
—{—2451( 21x +lx)+36015(3x 102x% 4 Titx)
l— x X '
+ o+ (10)

where d,(x) is the deflection of the simply supported truss under the load
W .(x), the deflection due to the moments at supports M,0,,(x) and M,d,(x)
and the boundary conditions §(0) =v; (/) = .

We have thus found the necessary expressions for computing 6(x) and
A(x). It remains to determine the constants A,; B, and B,, The moments
M, and M, are still considered to be known.

To determine the coefficients A,, B, and B, we produce another set of
equations by demanding the substitution (7) to be satisfied when we intro-
duce d(x) and A(x) from equations (8) and (10) into equation (7), or:

h( x  h(x) /z(x) \
O(x) — A(x A SN T oo == —22 B, —. B, ,——a 5
; X B .
-+ Mmdm(x) + Mndn(x) TTE Z 4 Sln r- l -4 22]05 (x“ — 21/x3 -+ lax)
. B, i - \ -
+ 3607F (Bx® —102x3 + Tltx) 4 — - — A, (x)
P KA x By B, Y3 ]2 = X
T S g g ) ey B B = =
Arranging this yields the following equation:
h(x) , I 2 ) : X (/z(x) xt—2[x3 4 By
ZA'(q(x) Bt e ) = B+
B x:;lx) (h (x) x | 3x>—107x% + Tl'x x8 — [? x) .
om ) TGt 3607E ~em )T O™
[—x X
+ MuOm(x) + Mydn(x) — Ag (x) — & ~—l—~—§l R (11)

As we have n —v=_£&.

To determine the series D>, A, with 2 terms we must demand equation
(11) to be satisfied for £ 2 different values of x. Two of these values
naturally will be for x=0 and x=/. For these values we get:

_ 90 q(J) 7 (0)
B, 50/1(0 and E/z(l) _50}7@. (12)

The two constants B, and B, may thus be computed directly when the
deflections of the towers are known.,

In equation (11) remains as unknown coefficients only A4,, as M,, and M,
are considered to be known. To determine the series with £ terms the ne-
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cessary equations are produced by demanding equation (11) to be satisfied
for the values x,, x,,...x;. For all other values of x the equation (11) will
be approximately satisfied.

How many terms Ay, A,, As,... must enter into a computation depends
on the size of the bridge and the loadings. For smaller bridges 1—2 terms
and for larger ones 3—5 terms will be sufficient.

As mentioned before, we may assume the principle of superposition
valid without restriction. For bridges symmetrical about the centre the la-
teral loadings may be divided into a symmetrical and an asymmetrical part
and we may determine the coefficients A, by a set of equations correspon-
ding to the symmetrical loading for » odd, and one corresponding to an
asymmetrical loading for » even. Especially for very big bridges where the
series have to be determined by many terms this will mean a considerable
reduction of the computations.

Equation (11) gives an expression for A, of the form:

A= + BMpn + 72 M

The first term o, is the value we get for 4, when the lateral truss is hinged
at the towers.

It now remains to determine the moments at the supports M,, and M,.
This is obtained by putting &’(/),, = #’(0), at the towers, the index m and »
refers to the number of the span under consideration. For the slope of the
lateral truss we have:

&(x) = & 5, 5, P oA ud
(l) = (U(x) + Mm m(.V) + M,l n(X) -_ m‘ 2}3* COSJ’["—I—

4x3—0/x2+ ® 15x+— 30/2x% 4+ Ti4 1

+ B 24 /E + B 55001 E — o= (1)
For the ends of the span we get:
Y] Y 4  / 7 l} 13
' (0) = 0 (0) + Mpdm(0) + M,0,(0) — TF E r3 + B, 5ATE
103 Vi — Yy
+Biseore T (14)
’ ’ . 4 ’ 13 Ar
0'({) = do(l) + MuOn(l) + Mydn(l) — ;3—152;5’(_ 1)
A 8/° vy — ¥,
Boggre = Bige0ore t 1

where M,, and M, also enter into the coefficients A,.
As we assume the stiffness of the lateral truss to be constant within
each span, we get directly:
l g l ’ L F Ay /
3!E’ dm(l) — and dn (O) - 67E-a ()n (l) —_— 315'

By putting the slope of the ends of two neighbour spans meeting at
the tower m equal, and arranging the equations in regard to the unknown
quantities A, M,, and M, we obtain an equation of the form:

amM; + bpM;yy + ciM, = do,. (15)

9, (0) =
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For each tower we get an equation of this form, and the moments at
the towers are determined by solving a set of linear equations of the type
of equation (15).

When the moments at the towers have been found, these are introduced
into the formula for the coefficients A, which are of the form:

Ar = &, *E" ﬁrMm j\" ern)

and thus all data necessary for computing load transfers, shearing forces,
moments and deformations in a continuous lateral truss have been found.

In order to carry out a complete calculation of the lateral truss and the
towers we have in addition to equations (8), (9) and (10) also to deduce
formulas for the shearing forces V and T in lateral truss and cables respec-
tively. For the shear V we have:

 dM(x) . M, — M, / A, X
V(X) p— ——d}“ - VO (X) — \V“Vl"“—" == "J‘_; Z 7 COSar *lf —— BO
3x — 2

6/ ’

where V,(x) is the shear in the simply supported lateral truss under the
loading W,(x). ’
The cables will transmit a shearing force to the towers equal to:

2x —1
2

— By (16)

g, dd(x) / A, x 2x — 1
T(x) =H g _Vc(x)—i-;z p cos:zr.l—-{-BO— 5
3xT— 1y —
+B et H

where V, (x) is the shear due to the loading W (x) acting on the cable as
a simply supported beam.

At the towers with x=0 and x =1 respectively, we get the reactions
on the towers:

M, — M, / A, ) [

V) = Vo (@ — T — S By o+ B

and: (17)
M, — M, [ A, [ [

vy =vo(y MM LAy g LB L

A A, l l —
T(O):Vc(0)+;27__307_&€+771 o

and: (18)

B l A, ; [ [ N — No
T = Vi) + N (1 + By + B + L H

Thus we have determined all the equations required for the computa-
tion of the lateral truss and the towers of a continuous or discontinuous
suspension bridge under any lateral loading W,(x) and W .(x). For a discon-
tinuous bridge we have only to introduce M,, and M, as zero.

When we compute bridges where the deflections of the towers may
be expected to be of some importance, a preliminary design must be made
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where the towers are assumed to be undeformable. In this computation
tha constants B, and B, will equal zero, and it will be sufficient to deter-
mine the series A, with two or three terms. With the results of this prelimi-
nary computation the lateral forces acting on the towers are determined
from the equations given above. Besides this we have an axial force in the
towers. With all forces acting on the towers given we may calculate the
tower deflections.

Usually the tower deflections obtained from the preliminary and the
exact calculations will differ but little.

If the moment of inertia / of the lateral truss is varying, for instance
as shown in Fig.4, we may approximately take into account the effect of
this variation by introducing the actual deflections 4,,(x) and 8,(x) which
the moments M, — 1 and M, — 1 will produce in the truss acting as a simply
supported beam. This will not be quite correct but it will be a very good
and easy approximation, which will give a sufficient degree of accuracy.

m v

3

2

Fig. 4

The method for the calculation given above may be used on suspension
bridges of quite an arbitrary form and for any combination of loads. We
may for instance work out the calculation for a moving concentrated load
and use the results to design the influence lines.

Example.

~ In the following we shall employ the method presented on the bridge
shown in Fig. 58.

As shown in Figs. 5 and 6 the bridge will, due to unsymmetrical live
load, p(x) = 9t/m., have to be considered as an unsymmetrlcal br1dge loaded
with an unsymmetrlcal live load.

We have the following data:

I, =300 m., [,=1200 m., [g=300 m., [\E = I,F — [,F —2 % 109 tm?.

H = 44700 tons. The remaining dimensions may be seen in Fig. 5. Weight
of cable ¢,=9 t/m. Weight of lateral truss and roadway g¢,= 23,75 t/m.

5 =150m ,
115‘)‘ § /72{)() /;2(%) g hs (x)
/ Xz ™ i v
. 4,=300m L, = 7200m ;= 00m
e~ 9m
T I T T II T T I TR T I I I0] -2375[/”7
[T Lﬂﬂ”lllHﬂl[llll[lﬂl[LLUﬂHHHH‘HmHlllHlIlHHlHUIH”HHHHm OO
p=94m 0=0t
NESRENRNUNARANNNR AN ANANERNNISRANNANNNNRRNRARENRNRERRARNERE] /

Fig. 5
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Live load p =9 t/m. load carried by the hangers, owing to dead load ¢(x) =
g:== 23,75 t/m., owing to combined dead and live load ¢(x) =¢,+ p=
32,75 t/m. We assume the stiffening girder to be too flexible for distribu-
tion of the load on the hangers. At the centre of the bridge ‘we assume
qg(x) =¢q;+ % p==28,25 t/m. Wind forces on the cables: W (x) =0,2 t/m.
Wind forces on the unloaded part of bridge: W,(x) = 1,8 t/m., and on the
loaded part: W,(x) = 2,3 t/m.

X e X2 X,
SN E— /%(’0’02&/’" w
W) =23m We)=16thm
LT HHHHH HHHHWJH”HLLU[HH AT T T
Q0w . ) .
: i/\%m N il i Zw 0448 ;(44:”7
4,00
v aposm &= —000129 A20(%) i W
£ )J’-aam J'—--awz/ o —
) " « &5 § § g W Gy
8 N 2 S g
S o N N R .
801
S\
Jmﬁ\’) & \ \
M, =10%m \/ N i i
rm’” G\ o aosm awd ' y | Y
,/(:éf‘ 2z 3pssm & ;/500 ‘3/555 {/191/47 4% |
”Jrz/l) -4/0;5 ~ -g01
0%851(9) 275m
Fig. 6 Fig. 7

The wind loadings W ,.(x) and W,(x) together with the functions d,(x);
Ay(x) and 6,(x) are shown in Fig. 6, the slope d,’(x) and J,/(x) at the sup--
ports are also shown. Fig.7 shows dimensions of the towers. The lateral
stiffness of the towers is: /E= 3,5 X 109 t/m2. As towers with this stiffness
suffer considerable deformations these will have to be taken into conside-
ration.

To distinguish the three spans from each other all coefficients and data
carry a double subscript, for instance A,y is the coefficient 4, in span no. 2.

Preliminary calculations of tower reactions with the serles A, deter-
mined by three terms for main span and by two terms for side spans and
with the towers considered to be nondeformable and the lateral truss to be
hinged, yield loadings on the towers corresponding to the followmg defor-
mations:

For tower 1: 5y = 0,807m; » = 0,101 m and & = 0,708 m.
For tower II: 4y = 0,773 m; »; = 0,095m and §&; = 0,678 m.

These deformations will enter into the following calculations and will here
be used both for the case of hinged and continuous lateral trusses.
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Determination of the coefficients B, and B; (Eq. 12):

32,75 32,75
Bio=0; By=0708>2 =01518m; By = 070872 =0,1518m
23,75 23,75
By = 0,678 %> —-0,1518 = — 0,0465 m; > = 0,1054 tm
B3[ = — ng = — 0,1054‘ t(‘m

Thus all external forces required for computing the coefficient A4, are
given. We determine the series A, with 2 terms for the side spans and with
5 terms for the main span as this yields sufficiently accurate results.

For span No. 1 we have at point x =1 / equation (11):

42,16 300+
32,75 T t.2.10°. 2¢

42,16 300+ 300 ) o (
i (32,75 t 200 T aeda700 /5" 3 T A

4216 1 3(3)—10(3)+7 5 -~

T 32,75 3 360 . 2. 109

3002 ) . 27
2%. 44700 - 28 5" 3
1\3 1

(3) — 1

\3) 7 3 e B 1
6 - 44700 5 300° ) + 0,105 + M;2,22 - 10 0,044 — 0,708

:0,1518(

For span No. 2 we get at point x == él from equation (11):

p (69,7 1200+, 12002 ) W™ o A (_991_ 1200+
21 3—2,7§+n42-109 7244700 6 T 22\3275 T 712.107 21
12002\ . 60,7 1200° 1200% ) -
+ n244700f2) 3+ A (32 75 T 71210931 T 7244700.3%) S 2
60,7 1200+ 12000 \ . 2x (69,7_
+ Aa (32,75 T 094t T o 44700-42> sin 3=+ 425 3375
1200+ 12000\ . 5=
t o005+ aaTon.5e) S g
(1\2 1
_01518( 09,7 <3) 2() + ) . () *'( >12002)
3275 7 24.2. 2. 44700

_0’0465( 69,7 1 3(%)5_10( ) +Tg ——— (cls)LmeQ)

32,75 6 360 - 2 - 10° 6 - 44700
5 1
+ 14,152 + M;3,055 - 102 + My 1,944 - 107> — 0,448 — 0,708  — 0,678 .

And for span No. 3 equation (11) will become for x=1}/:
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9316  300* 300° 93,16 300+
As: (23,75 T a0 T z44700) sin g + A32(23 75 +a42-109-24

03,16 <_;_)4— <3) + 3 3004

TRT00 7 S 5 = 01054 (23,75 T 242100
(%)2—3“ 93,16 1 3@5 (3) + 7‘3004

L 3002) 0,1054 (

2 -44700 2375 3 360-2-10°

S
\3)___3 3002 . 10-6 — _ L)
~ 6. 44700 3 300 ) + 0,082 + M, 2,78 - 10 0,044 — 0,678 3

The remaining equations for the three spans are found in just the same
way. The equations are given in the tables below.

Span No. 1.
X, = A11 Alg N1: MIIO_G

Ys ly 1,320 1,161 -0,091 2,22
LA 2,633 -2,510 -0,104 2,78

Span No. 2.
Xy = Agl A22 Agg A24 Ag5 Ng = ! M] 108 MII 10 5
!
A 8,014 | 3,126 | 2,622 | 2,056 | 1,136 ] 14,490 3,055 1,944
sl | 12,431 1,786 | 0, -0,727 | -0,643 | 24,631 4,444 3,556
1,01 14006 | O -0,600 | O 0,254 | 28,425 4,500 4,500
%l | 12,624 | -1,080 | O 0,921 | -0,837 | 24,008 3,556 4,444
LA 8,418 | -3,825 | 3,424 { -2,755 | 1,542 | 14,169 ] 1,044 3,055
Span No. 3.
s=| 4 | Aw | M= |My10-e
s &g 3,610 3,440 -0,089 2,78
2ls L 1,750 -1,583 -0,106 2,22
In the tables the sign N is used for the terms:
h(x) —2{x3+Bx x*-lx h(x) x 3x5-1082x3+T/tx
N = B, ' - B, —+
q(x ) -~ 24JE 2H q(x) [ 360//E
x3-1x .
—6H1 )" do (%) — Ao (x) - 50 - Ez , see equation (11)

The solving of the above equations for A, give the following results:

For span No. 1:
Ay = —0,0546 4 1,38 M; 105,
Ao = —10,0158 - 0,34 M; 106,

Abhandlungen VII 21
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For span No. 2:
Agy = 1,9812244 - 3,208163 M; 10-6  3,183674 My 10-S.
Agy = 0,1753247 2,245826 M, 10—¢ — 1,022078 My 106,
Ayy = — 0,8877938 — 0,19105 M; 10—6 — 0,60728 M 10-S.
Ay, = —0,1217391 — 0,70870 M; 10—6 - 0,64783 My 105,
Ay = 0,5642023 — 0,17445 M; 10—¢4-0,17575 My 106,

For span No. 3:
Ay = — 0,0431 1,02 My 106,
Ao = 0,0194 — 0,264 My 10—6.

Lateral truss hinged at the towers.

For this case we have only to introduce M;= M;;=0 in the calculations
above. All the coefficients A, are then directly given and thus all necessary
data for determining transfer of forces, shear, moment and deflections have
been found. The results of these calculations are shown in Fig. 8. As may
be seen, the transfer of force from lateral truss to cables will reduce the mo-
ment at the centre to about 2394 of what it would have been in a simply
supported truss.

Checking the deformatlons of the towers by the final values of the
coefficients we get:

For tower 1: 7 = 0835m; » =0,101m; § = 0,734m.
For tower II; 1, =0,784m; », = 0095m; §&, = 0,680m,

These values agree so well with those of the preliminary calculation
that any correction is unnecessary.

Continuous lateral truss.

All the coefficients A, are calculated above, it remains now to find the
constraint moments M; and Mj.

Introducing the calculated coefficients A, into equations (14) and (15)
and arranging we get the two following equations for the moments at the
supports M; and My;:

Continuity at tower No. I gives:
0,15275 M; 10—¢ 4-0,01829 M;; 10—6—= — 0,025730.

Continuity at tower No. II gives:
0,01835 M; 10—¢+40,15503 My 16—6= — 0,024252.

The solving of this equations yields:

M= — 1515860 tm.; M; = — 138460 tm.

We have now all data required to determine the final coefficients A4,,
force transferred from lateral truss to cables, shear, moments, and lateral
deflections of truss and cables. The results of these calculations are plotted
in Fig. 0.

* Checking the deformations of the towers we get:

For tower I: 75 =0558m; » = 0083m; § = 0475m.

For tower II: 7, =0506m; », =0074m; &, = 0432m.
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In this case the deformations of the towers are considerably less than
given by the preliminary calculation. However, another calculation with
improved tower deflections would only change the results to a slight degree,
and it will not be made here.
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Fig. 8

As will be seen A,; turns out comparatively large in the calculations.
This indicates that more terms should have been included, for instance A,,,
in order to get a more correct representation of the force transferred from
the lateral truss to the cables, see Fig. 8 and 9. In an unsymmetrical case
like the present one this would increase the work of calculation very much.

_ . 1
We have, however, for shearing force:—gA25, and for the moment: 519 Ays,

so that in plotting diagrams for shear and moment the term A,; will yield
a sufficient degree of accuracy, see Figs. 8 and 9.

By comparing the diagrams for moments and deflections in cases of
continuous and hinged lateral trusses it will be seen that the advantage of
making the truss continuous is the reduction of the lateral deflections. The
maximum positive moment will of course be reduced, but on the other hand
large moments will appear at the supports by far surpassing the positive
moments at the middle of the span.
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As the chords of the lateral truss consist of the stiffening girders it
will be easily seen that an increase in the cross sectional area of these,
needed to take account of the large lateral moments at the towers, also
gives an opportunity to increase the moment of inertia of the stiffening
girder, which in turn will take into account the large moments in the stiffening
girder at the towers, owing to vertical loadings. The recently brought-out
constructions with continuous stiffening girders without supports at the
towers (floating truss) should accordingly hardly be justified. In general
we should bear in mind that for larger suspension bridges it will be the
action as cross section in the lateral truss that gives the lower limit for the
dimensions of the stiffening girder.
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Summary.

Th= calculation of the lateral truss of suspension bridges is achieved
by expressing the cables relieving of the lateral truss as a FOURIER
series. By this substitution all the equations become directly integrable,
and we may find equations for the calculation of a suspension bridge of a
completely arbitrary form across an arbitrary number of spans, and with
continuous or hinged lateral truss.

Résumé.

Le calcul du treillis latéral des ponts suspendus est établi de la facon
suivante: on exprime la décharge du treillis latéral due aux cibles par une
série de Fourier. Ceci permet d’intégrer toutes les équations du probleéme.
Il est aussi possible d’établir les équations pour un pont suspendu de forme
arbitraire 4 un nombre quelconque d’ouvertures, dont le treillis peut étre
continu ou interrompu.

Zusammenfassung.

Die Berechnung von Windverbanden der Hiangebriicken wird so aus-
gefithrt, daB man die Entlastung des Windverbandes durch die Kabel als
eine Fouriersche Reihe ausdriickt. Durch diesen Ansatz werden alle Glei-
chungen direkt integrierbar. Es ist auch moglich, Gleichungen einer Hange-
briicke mit willkiirlicher Form und beliebiger Anzahl Felder, mit durch-
laufendem oder unterbrochenem Windverband aufzustellen.
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