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Initially Deflected Thin Plate with Initial Deflection Affine
to Additional Deflection

Die anfänglich gekrümmte Platte mit zur zusätzlichen Einsenkung
afßner anfänglicher Verformung

La plaque initialement incurvee avec deformation initiale affine du
flechissement ulterieur

Henrik Xylandee, Tekn. Dr. Professor of Building Statics and Structural Engineering
at the Royal Institute of Technology, Stockholm

Introduction

It is generally known that there is no linear relation between the load and
the deformations, or between the load and the stresses, in the case of thin
plates. The stress distribution is dependent on the type and the magnitude of
the deformations. Therefore, it is not possible to disregard the effect of an
initial deflection if it is of the same order of magnitude as the additional
deflection caused by the load. Since thin plates are often subjected to initial
deflections, it is desirable to acquire knowledge of the general effect of initial
deflections, as this knowledge is useful in drawing up design rules, and fre-
quently also in the Interpretation of test results and in the design of measuring
instruments.

The most probable form of the initial deflection is difficult to determine in
advance. As will be shown below, the problem can be considerably simplified
if the initial deflection is assumed to be affine with the additional deflection
If the treatment of the problem is confined to this special case, it will also
afford information on the general effect of other types of initial deflections.
The fact that the form of the initial deflection is supposed to vary with the
thickness of the plate at a given load and with the load at a given thickness
— which is a consequence of the assumption that the initial deflection and
the additional deflection are affine — is of minor importance in studying the
general effect of initial deflections.
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Fundamental Relations

We use as a point of departure the fundamental equations deduced by
Marguerre for an initially deformed thin plate. These equations represent a
further development of von Kärmän's equations for an initially plane thin
plate1).

If use is made of the notations:

0 Airy's stress function for a plane state of stress (in the #-?/-plane),
iv the deflection of the plate due to the load (additional deflection) (in

the z-direction),
W the initial deflection,
h the thickness of the plate,

X — TöTT^r^i ^no stiffness of the plate, then Marguerre's equations are

as follows2)

AA 0 E [(wxy)2 - wxx wyy + 2 Wxy wxy - Wxx wyy - Wyy wxx] (1)

AAw ±[0uy(Wxx + wxx)+0xx(Wyy + w 0 (2)

In these equations, the partial derivatives are denoted by subindices, viz.,

_
d2w

_
d20

Wxy " Jx~Ty ' xv ~~
Jx~^y

d2w 320
Wxx Jx^; *** Jx^ etC-

As the initial deflection is assumed to be affine with the additional
deflection we can write

W k-w (3)
where k is a constant.

Eqs. (1) and (2) can then be written

AA0 E(l + 2k)[(wxy)2-wxxwyy] (1')

AAw--^ (l+k)[0yywxx + 0xxwyy-20xywxy] - ^^ 0 (20

This manner of writing Eqs. (1) and (2) indicates that a comparison
between the equations of the initially deflected plate and those of the initially
plane plate can contribute to the Solution of the problem.

x) Marguerre, K.: Zur Theorie der gekrümmten Platte mit großer Formänderung.
Proc. of 5th Int. Congr. for Appl. Mech., Vol. V, p. 93, Cambr., Mass., 1939. — v. KArmAn,
Encyklopädie der Math. Wissenschaften. Vol. IV, p. 349, 1910.

2) Cf. also Bergman, Sten G. A., Behaviour of Buckled Reetangular Plates under
the Action of Shearing Forces. Doctor's Thesis, Stockholm 1948, p. 49.
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For comparison, we write the equations of an initially plane plate (they
are obtained from Eqs. (1) and (2) by putting W equal to 0).

AA<P0 E[(w0J*-w0xxw0J (1")

AAwo-^0Ot9WOxx + 0OxxwOpv-20OxvwoJ-^0- - 0 (2»)

This initially plane plate has the same extent in the plane, and the co-
ordinate system xyz coincides with the co-ordinate system used for the
initially deflected plate. In comparison with the initially deflected plate, the
initially plane plate has a thickness h0, a flexural rigidity N0, and a distributed
load q0(xy), which are so far unknown. The deflection is denoted by w0 and
Airy's stress function is designated by 0Q.

A comparison between Eqs. (1') and (2') on the one hand and Eqs. (1")
and (2") on the other hand shows that the funetions 0 and 0O, as well as w
and w0 are affine under certain conditions. Therefore, we shall determine the
conditions which must be fulfilled in order that the relations

<_>_ cx0 (4)

w0 c2w (5)

where c1 and c2 are constants, shall hold good.
If use is made of the notations given by Eqs. (4) and (5), then Eqs. (1")

and (2") become

AA0 ^)lE[(Wxyr_WxxWvv] (nci
AAw-Cl^[1>„wxx+0xxwyy-20xuwxy]-^- ^pl 0 (2'")

A comparison between Eqs. (1') and (2') on the one hand and Eqs. (1'")
and (2'") on the other hand yields the following necessary conditions which
must be satisfied in order that Eqs. (4) and (5) shall be fulfilled

(6)

(V

(8)

Since

12(1

(c2)a (l + 2k)

h0

*N (!+*>£
1 ?c,(xy) q{xy)
<_ N0 N

^0
_7A0»

12(l-v2)

AT —
Ehs
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it follows that the three equations (6) to (8) can be satisfied by an appropriate
choice of the relations between the quantities

h0 q0 (xy)
1 2 h q{xy)

If Eqs. (6), (7) and (8) are satisfied, then Eq. (V) is identically equal to
Eq. (1') and Eq. (2W) is identically equal to Eq. (2').

In that case, a Solution of the fundamental equations of the initially plane
plate also involves a Solution of the fundamental equations of the initially
deflected plate.*)

The fact that the fundamental equations are satisfied implies that the
conditions for equilibrium and continuity are fulfilled.

On the other hand, it is not certain beforehand that the boundary
conditions for the initially deflected plate are fulfilled if they are satisfied for the
initially plane plate. This question should therefore be examined separately
in each special case.

One or several of the boundary conditions are usually expressed as
conditions for the deformation components u and v in the plane of the plate.
Before passing to the examples, we shall therefore study the relations between
u and v and between the deflection w of the plate and the stress components.

If the plate is initially plane, these relations are 3)

^[^' + ¥] =C7vo-™xo (10)

0 [u0y +v0x + w0xw0y] r0 (11)

For an initially deformed plate, the corresponding relations are3)

E]{ux+Wf(l + 2k)\ =ax-vay (9')

E[vy+U^(l + 2k)^ =ay-vax (10')

0[uy+vx + wxwy(l + 2k)] =t (11')

*) The fundamental equations {!'), (2'), (1*), (2//), (lw) and (2'") can also be written
& IV Q (XI/) &n tun O (CCI/}

as relations between-=^, — and - rj and between ^~, -=-5, " !?'. Then the eqs. (4)

and (5) may be written -—| a — resp —~=ß-~. In this way the results in the
riß ll iIq 11

examples, which are given in dimensionless form, may be obtained more directly.
3) Cf. Margueere, footnote 1).
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By integrating the relations (9) to (10) and (9') to (10'), and in virtue of
Eqs. (4) to (6), (11) and (11') it can be shown that*)

1
A z>

1

u —u0 + A-y-\-ß —u0
ci ci
1 1

v — v0 — A - x + C — v0
cx c2

(12)

(13)

Consequently, the deformations in the plane of the initially deformed

plate are affine to the deformations in the plane of the initially plane plate,
if the conditions in Eqs. (6)-(8) are fulfilled.

Example No. 1

Reetangular plate submitted to a uniformly distributed load. The plate is

clamped at the edges. The deformations in the plane of the plate are equal to
zero along the edges (Fig. 1).

/ffftftr//tt//fC

-1

__?__]II
Fig. 1. Xotations and co-ordinate system

used in Example Xo. 1

The boundary conditions are

x — a

x -\-a
u 0

v =0 w= 0

w= 0

?x

cw

0

0y —b u 0

y +6 J v 0 cy

In view of the relations (5), (12) and (13), it is seen that if these boundary
conditions are fulfilled for the initially plane plate, they are also fulfilled for
the initially deflected plate.

We shall determine the deflection as a function of the load.

It is convenient to represent the Solutions in a dimensionless form. For an
initially plane plate, Timoshenko (Theory of Plates and Shells, p. 348) gives

^-asa function of
h0

*) The terms with the constants of integration _4, B and C represent a small relative
rotation and translation of the plates regarded as rigid bodies. The relative position in
the a>2/-plane is fixed by putting A — B C 0.
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N0h0

For the initially deflected plate, we obtain from the condition expressed
by Eq. (8)

qb* _
1 q0b* Ä0

Nh c2 N0h0 h

From Eq. (7) we determine

h \ 1+ik

Inserting (b) in (a) gives in view of Eq. (6)

qb* _ q0b* 1

Nh N0h0 ^(i + 2j.)(l + fc)

Furthermore, Eqs. (5) and (7) yield the relation

(b)

(c)

or
w

w w0 1 h0

h K c2 h

w0 1

h K ]/(l + 2k)(l+k)
(d)

The constant k is determined as follows.
The maximum initial deflection Wmax is expressed in terms of the thickness

of the plate by the relation

Wmax och (e)

Then we obtain from Eq. (3)

and from (d)

k -?— —^— y(l + 2Jfc)(l+A) (f)
^max ^Omax

K

When the values of a and °Tax are known, we can determine k from this
h0

q b^ w o b^
equation. After that, ~- and -=- can be determined in relation to ,T°, and
J1 Nh h N0h0
—¦ respectively from Eqs. (c) and (d).

Fig. 2 shows curves representing w°max
as a function of ^°, (these curves

are reprinted from the above-mentioned book by Timoshenko).
Fig. 2 shows the construction of —-^ for Wmax ± \ h i. e. for a ± J

and for ^^ 1.
hn
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With the values of k calculated from Eq. (f), we obtain from Eqs. (c)
and (d) two points B and C for the initially deformed plate. According to
Eqs. (c) and (d), these points are situated on the secant O — Ato the point
^—^ 1 on the curve for the initially plane plate, and correspond to the

positive and negative values of a.

Fig. 2. Variation in with
<7o&4

for an

initially plane plate in Example No. 1 determined
according to Timoshenko. The points B and C

for the initially deformed plate I _- 11 lie on the

secant 0—A. The point B corresponds to a positive
initial deflection, whereas the point C corresponds

to a negative initial deflection

"0 %-i^.±->
15

rc^
10 f a/s

05f// B

fo 50 100 150 200 fe

For any other value of —|~
ri0

out in an analogous manner.

the calculation (or construction) is carried

The tangent at the origin can be determined for the different curves.
From Eqs. (c) and (d) we obtain

w„ /wn
h hn

Vb* qb*
EW EW

0
qpb*

(g)

7(l + 2A)(l+&) oo

For i (1 + 2 k) (1 + k) oo we have k ± oo Eq. (f) gives,

for k + oo
wn a/2,

for k — oo
wn

hn
-oc}/2.

Then Eq. (g) gives, for the tangent at the origin

w„ wn

qb* qb*
EW I ew 0

qpb* wn
(g')

K +a/2

that is to say, for an initially deflected plate, the tangent at the origin consists

a/2
.— ,C/o

-a]/2 (negative initial deflection).

of the secant to the curve for the initially plane plate at the point —'*—*-
n0

(positive initial deflection) and ~~~
The curves corresponding to the negative initial deflection (a negative) for

small %-^i have been omitted in this example because they would impair the
-_. h

legibility of the diagram. (Cf. Example No. 4.)
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Jinear Jheory linesr Jheory

,a=-

..«—„-

a=±0

250 250

Fig. 3. Deflection at the centre of an initially deflected plate for various values of the
initial deflection at the centre of the plate in Example No. 1. The initial deflection at the
centre of the plate W is expressed in terms of the thickness h of the plate by the
relation Wmax— oc-h. When the value of a is negative, this implies that the direction of
the initial deflection is opposed to that of the additional deflection. The curves for

negative values of a and for small values of gö4

Nh are omitted in these diagrams.

a) - 1
a

b) v
The results are reproduced in Fig. 3 for the plates having the side ratios

b
1 A A b 2- 1.0 and — -7T.

The stresses can be determined by a correspondingly simple method. A
distinction must however be made between membrane and bending stresses.
The procedure to be followed in the determination of the stresses is illustrated
by Examples Nos. 3 and 5.

Example No. 2

Reetangular plate subjected to shearing forces applied along the periphery.
The plate is simply supported at the edges, which remain straight and do not
change in length during the deformation (cf. Fig. 4).

y

1

J

\

\

l

Fig. 4. Notations and co-
ordinate system used in
Example No. 2
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The boundary conditions are

x 0 {

x a \ w 0
d2w

dx2

y 0\
y a\ w 0

x 0
0

u yY v 0

x a
0

u y-j
6

y 0 u 0
6

y a
0

u a —
_w

6

In this example, too, it follows from the relations (5), (12) and (13) that if
the above boundary conditions are fulfilled for the initially plane plate, they
are also fulfilled for the initially deflected plate.

We shall determine the deflection as a function of the change in angle 0.

We take as a starting-point the Solutions given for the initially plane plate by
Sten G. A. Bergman4). He has represented

Womax
as a function of 0O^£as a function of 0ot-^ where 0O is determined by the relation

0 dy dx dx dy

For the initially deformed plate, we have

du dv dw dw rt..,
dy dx dx dy n

or, in view of Eqs. (5), (6), (12) and (13),

Then, in virtue of the relations in Eq. (7), we obtain

h2 °V Cl 1 + Jfc °V 1 + fc

and, as in Example No. 1,

90IT 1-7-7. (a)

w mo (b)* ^o 1(l + 2k)(l + k)

Eq. (f) and the definition in Eq. (e) in Example No. 1 hold in this case too.

4) See footnote 2).
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For known values of ——^ in Fig. 5 and of a, we calculate k by means of
0 a2 w

Eq. (f) in Example No. 1. After that, 0^ and —-^ are determined from the

above equations (a) and (b).

It is of interest to determine the tangent at the origin. We get

wn

Vi»!-«
w- wn '=0

wn

% h 2

1 + k
a?_ j/(l + 2£)(l + &)

(o)

k oo

3

h

2

1

oc=r^

ßy^
0&

50 WO o-h f50

Fig. 5. Deflection at the centre of the
plate in Example No. 2 as a function

a2
of 0 ,—0 for various values of the initial

h2

deflection (for the angle 6, see Fig. 4).
The curve for a 0, initially plane
plate, has been calculated by Berg-
man. The initial deflections are
included.

The circumstance that k shall be put equal to oo in the right-hand member

of Eq. (c) follows from Eqs. (a) and (b) which give 0^ and —~ 0 respectively

for k oo.

Eq. (f) in Example No. 1, which is also applicable in this case, yields the

corresponding value of ~^h0
wn oc]/2 (d)

Then we obtain from Eq. (c)

w„

a*
~h2

w„
h

0

n
0 h 2 a/2

(e)

For several initial deflections, the results are given in Fig. 5.

Bergman has determined corresponding curves by means of detailed
calculations made on the assumption that the surface of the initially deflected
plate is sine-shaped. The curves shown in Fig. 5, which are based on the
assumption that the initial deformation and the additional deformation are
affine, are in close agreement with Bergman's curves.



Initially Deflected Thin Plate with Initial Deflection Affine 357

The conclusions which can be drawn from the above results from the
standpoint of building statics agree, on the whole, with Bergman's inferences.

The procedure in the determination of the stresses is the same, in principle,
as in Examples Nos. 3 and 5.

Example No. 3

Reetangular plate compressed in one direction. The plate is simply
supported at all four edges. Along those edges at which the compressive forces are
applied, the deformation in the direction of compression is the same along the
whole edge (Fig. 6).

Using the notations given in Fig. 6, we have the
boundary conditions

y ±-^\ w 0;

a
* ±2-;

2/ ±-

w 0

e*w
~w
d2w
Jx2

0:

0;

Txy ° 5 cry °

-I r —
i 6

+
}dxf1

X=2 X==~2 J ^ V=2
a

n.

r =0 or v 0 (extreme cases

Fig. 6. Notations and
co-ordinate system used

in Example No. 3

X +

These boundary conditions shall be satisfied both for the initially deflected
plate and for the initially plane plate used for comparison.

It follows from Eqs. (4), (5), (12) and (13) that if the above boundary
conditions are fulfilled for the initially plane comparison plate, they are also
fulfilled for the initially deflected plate.

a) Maximum Deflection

A convenient method of dimensionless representation is to express the
deflection w in relation to the thickness of the plate h as a function of P/Pk,
where P denotes the compressive force applied to the plate, and Pk designates
that compressive force at which the plane condition of equilibrium for the
originally plane plate of the thickness h ceases to be stable.

If h is the thickness of the initially deformed plate and h0 is the thickness
of the initially plane plate, we have, for Pk5),

5) See Bryan, Proc. London Math. Soc, Vol. 22, p. 54, 1891, and Timoshenko,
Theory of Elastic Stability, p. 327.
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- _ - TT* Ell*
ik~PT 12(1-v») W

and for Pk(j.

P«» ßT 12(T-,*) (b)

where ß is a constant which varies with the side ratio -r-. The minimum value

of ß is 4.0, which holds good for | 1.0, 2.0, 3.0, etc.

We obtain from Eq. (7)
h I 1 i_ 7,

(c)

(d)

(e)

(f)

h

K -f?
The relations (a) and (b) yield

pk
n0

/(l+„)»

Furthermore, we have for the :initially defle

P
+ f
j <Jxhdy

b

and for the initially plane plate.
2

Po

+
2

J" °x0Kdy
b

In virtue of Eqs. (4) and (7), av

P
P~o"

P

e get

Eqs. (d) and (g) give

j{i+k)

1 Po

l+kPk0
(h)

For the same reasons as in Example No. 1 and Example No. 2, the relation
between ^ and -^ is

h h0

h K ]/(l + 2k)(l + k)

To the author's knowledge, no strictly accurate Solution of this problem
has been found for the initially plane plate. Approximate Solutions have been

given by Cox, Yamamoto-Kondo6), and others. These Solutions have been

6) Cox, H. L., Buckling of Thin Plates in Compression. Aer. Res. Com. Reports and
Mem. No. 1554, London 1933. — Yamamoto, M. and Kondo, K., Buckling and Failure
of Thin Reetangular Plates in Compression. Aer. Res. Inst., Tokyo 1934.
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deduced on simplified assumptions, viz. in treating the membrane state of
stress, the modulus of elasticity in shear G has been put equal to zero, and
the shape of the deflection surface has been supposed to be of a certain definite

character.
The curve for the initially plane plate shown in Fig. 7 has been calculated

by the author on simplified assumptions which are similar to those made
by Cox.

60

a-Oy^

50 ^ya- i
40

.a~W

3.0 /O.-2.0

20

w

1.0 2.0 3.0 kO 5.0 6.0 7.0 8.0 %

Fig. 7. Additional deflection at the centre of the plate in Example No. 3 as a function
pof — for various values of the initial deflection at the centre of the plate

Just as in Example No. 2, it can be demonstrated that k is determined by
the equation

hk oc—^- 1{l + 2k){l + k)
wt

where a is defined by the relation

W max ~ wh

(i)

(k)

As in Example No. 2, it can be shown that the tangent at the origin is
determined by the relation

24 Abhandlungen XI
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Wn

h \ p / K
k
max __ r\

— p*
Prk / Wtl ßW^-*

Fig. 7 shows curves for several initial deflections computed by means of
the method outlined in the above.

b) Design Stresses and Effective Width

The system under consideration is statically indeterminate in a high
degree. Therefore, if the yield point stress is reached in some portion of a plate
made of steel, this involves at the beginning only a redistribution of stresses

at an increasing load. The relation between the practical ultimate load and
that load which causes the yield point to be reached in the most heavily
stressed portion of the plate is dependent on the stress distribution.

Yamamoto and Kondo have found that the heaviest stress in an initially
plane plate is obtained in their Solution as a combination of the normal stress
and the bending stress parallel to the direction of compression.

However, the load-carrying capacity is primarily determined by the ability
of the plate to withstand the edge stresses which are parallel to the direction
of compression, because the ability of the plate to bear a load above Pk is
largely dependent on the redistribution of stresses resulting in a stress
concentration at the edges.

In addition, as will be shown below, it is necessary to consider the effect
of the initial deflection, which increases the highest compressive stress, but
decreases, in relation to the mean compressive stress, the bending and torsional
stresses due to the deflection of the plate in a large portion of the region used
in design.

It is convenient to represent the results by expressing e ae
as a function

p ^mean
of -„-, where oedge denotes the maximum compressive stress occurring at the

*k p
edge, and omean r-r designates the mean compressive stress. Since the
membrane state of stress in the initially deflected plate is a uniform enlarge-
ment of the membrane state of stress in the initially plane plate (the coefficient

of enlargement being given by — in accordance with Eq. (4)), we can write
c i

Gedge
__

Gedgeo / \

®mean ^mean o

Eqs. (h), (j), and (m) determine e ge as a function of ^-at varying initial
^mean J^k

deflections. The results are given in Fig. 8.
pAt comparatively high values of -, the importance of the bending and
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torsional stresses in the initially deflected plate becomes smaller. In what
follows, we shall therefore deal only with the torsional stress for x \a and

y \b.
For the initially deflected plate, the torsional stress is given by the formula

E d2w
/ x mxy

__{T) \h2 4(l + v)" dxdy
(n)

We form the dimensionless expression

c*w
E dx dy

For the initially plane plate, the corresponding relation is

(o)

/ TT \
__

E dxci
\ Gmean / 0 4 (1 + y) °mean

(p)

_____ Vmfijff
025

033

05

10

i/o a-20 cc=10 a=J/2 a=fo

30

a-20^'

/^^"'
^$5<_f

^__„— — "

i

t

2*J^'a ^^^ ¦r^-xör

10 oc=0

0 10 20 30 40 50 60 70

Fig. 8. ae and -rn^n as funetions of for various values of the initial deflection
Qmean 0 *k

in Example No. 3. Among the curves for the initially plane plate, it is Curve A that was
used for the calculation of the curves for the initially deformed plate. This curve represents

an approximate Solution for the method of support in question. — Curve C

expresses Margueere's approximate Solution ^^^ 0,81 l/~- °r,y^L- + 0,19 in the cas©
aedge \ *k ^edge

where those edges which are parallel to the direction of compression cannot be deformed
in the plane of the plate. — Curve D represents Mabguebbe's strictly accurate Solution,
and refers to the same method of support as Curve C. Curve B expresses an estimated

actual relation between mean and — for the method of support in question. This curve
aedge ±k i p a \

was calculated on the assumption that the tangent at the point I ^ — 1 mean — 1)
\±k Qedge '

is known (given byMARGUERRE), and was obtained by Interpolation between Curves _4 andD
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In virtue of the relation (c), Eq. (5), and Eq. (6), and in view of the fact
that

we obtain

(__.)
\ ^mean! 0

1 + k
c,

ci yCl(i+2fc)

The results are graphically represented in Fig. 9

1 + fc

l + 2k (q)

a=_>

«-/«oc-J/2
cc=fOmean

cl=20

Fig. 9. Torsional stress due to the deflection of the plate at the point x + -- y ±
as a function of the load for various values of the initial deflection

Eq. (q) and Fig. 9 indicate that torsional stresses due to the deflection of
the plate are less sensitive to initial deformations than the greatest edge stress.

An analogous conclusion can be drawn regarding the bending stresses because

the expressions for these stresses are analogous to the expressions for the
torsional stress.

Considering the above remark that the system is statically indeterminate
in a high degree, and seeing that the edge stress in the direction of compression
is predominant, particularly in the case of the initially deformed plate, this
edge stress should be used as a basis for design.

In view of the great importance that is obviously to be attached to the
initial deflection, a certain definite imaginable magnitude of this deflection
should be fixed in drawing up design rules.

It is also to be observed that the diagram representing —e^~ as a function

of -=r- at the same time shows the inverse value of mfan. This is a direct
Pk b

b

consequence of the definition of J™^™. The extremely great effect of the
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initial deflection is clearly seen from Fig. 8. For instance, when the initial
deflection is twice the thickness of the plate, then ^?|^<0,5 even for P 0.

In Fig. 10 the diagram representing —^^ as a function of p- for several
^mean *k

values of the initial deflection contains test values obtained by Sechler and
Winter. The extraordinary large dispersion of these test values is attributed
by Winter to the insufficient accuracy of the measurements and to the probable
influence of initial deflections. The possible effect of initial deflections is

strikingly illustrated by Fig. 10.

025

Oi 20 a -rr

033

Fig. 10. Test values of —edg^ |___^mj plotted in relation to the curves for various values
amean \ 0 /

of the initial deflection.

• Test values given by G. Winter in I.A.B.S.E. Preliminary Publication, 1948, p. 137.
o Test values given by G. Winter in A.S.C.E. Proc, 1946, p. 199.

x Test values given by E. E. Sechler in Publ. No. 27, Guggenheim Aeron.Lab., Cal.Inst.
of Technology, Pasadena 1933.

Finally, it is to be borne in mind that the basic Solution for the initially
plane plate was approximate. Consequently, the curves for the initially
deformed plate are also approximate. Therefore, Fig. 9 also shows curves which
refer to boundary conditions other than those given in the legend. In addition,
this diagram contains an estimated curve representing the relation between
°™™n an(j £or ftie boundary conditions in question. The tangent to this

curve for -p-
1 has been determined by Marguerre by means of an accurate

Solution. For the rest, the shape of this curve has been estimated on the basis
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of the second case of loading completely treated by Marguerre and with the
aid of the author's curve. The estimated curve indicates the direction in which
the curves for the initially deformed plate should be corrected.

Circular Plate

The fundamental equations given in the above refer to a reetangular co-
ordinate system. These equations are also applicable to circular plates, but
the Solution of the problem can be considerably simplified in this case by using
a polar co-ordinate system. However, the above reasoning, which states that
the Solution for the initially deflected plate whose initial deflection is affine
to the additional deflection can be obtained from the Solution for the initially
plane plate, holds good irrespective of the co-ordinate system.7)

Example No. 4

We shall deal with two cases of loading which have been calculated by
Karl Federhofer and Hans Egger8) for the initially plane plate, viz.

a) Uniformly distributed load q. The plate is simply supported at the edge
in a radial direction. The supports are freely movable in the plane of the
plate.

b) Uniformly distributed load q. The plate is simply supported at the
edge in a radial direction. The supports are fixed in the plane of the plate.
Cf. Fig. 11.

In both these cases, the boundary conditions are so formulated, that if
they are fulfilled for the initially plane comparison plate,
then they are also fulfilled for the initially deformed
plate by virtue of the relations (4), (5), (12) and (13).

Just as in Example No. 1, we have

qa* _o«4 1

11 11 1 I 1 i \s?

23

and
Eh* Eh0* y(i + 2Jfc)(l+i)

w w0 1

J ~
h0 /(i + 2£)(l+Jfc)

Furthermore,

Fig. 11. Notationsand
co-ordinate system

used in Example No. 4

k
Wn

i(\ + 2k){l + k)

(a)

(b)

(c)

K

7) The fundamental equations can also be written in terms of polar co-ordinates,
but this is unnecessary, at least for the examples treated below.

8) Karl Federhofer and Hans Egger, Berechnung der dünnen Kreisplatte mit
großer Ausbiegung. Sitz.-Ber. d. Ak. Wiss. Wien, Math. Kl. Abt. IIa. 155, Bd. 1, und
2. Heft., 1946.



Initially Deflected Thin Plate with Initial Deflection Affine 365

The deflections of the initially deformed plate have been calculated on the
basis of the deflections of the initially plane plate computed by Federhofer
and Eggert. The results are reproduced in Fig. 12. The tangent at the origin
has been determined in the same manner as in Example No. 1.

In dimensionless representation, it is convenient to express the membrane

stresses so that omy -p- is obtained as a function of Jrp. The relation between

the membrane stresses in the initially deformed plate and the initially plane
plate is deduced as follows.

ot -2

a 2

IS-

Fig. 12 a. Deflection at the centre of the plate as a function of the load in Example No. 4a
for various values of the initial deflection at the centre of the plate. L.t. the deflection
calculated in accordance with the linear theory of plates. The curves for negative values

qa4-of and for small values of ^j-^ are omitted in this diagram. The curve for the initially
plane plate (a 0) has been calculated by Federhofer and Egger

L t
r

cc -2

—/
__

gg§l r-=-—-Sj

a=2

10 15 20 _____

Fig. 12 b. Deflection at the centre of the plate as a function of the load in Example
No. 4b for various values of the initial deflection at the centre of the plate. L.t. — the
deflection calculated in accordance with the linear theory of plates. For negative values

o OJ^

of a and small values of -IrjT a curve is given only for a — 1
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Eqs. (4) and (7) yield

E h2 m« E V 1 + k (d)

The curves for the initially deflected plate can be constructed from the
curves for the initially plane plate by means of Eqs. (a), (c) and (d). The
results for the case (b) are reproduced in Fig. 13. The procedure in the
determination of stresses in the plate supported according to the case (a) is the
same in principle. For lack of space, we shall not deal with this case.

Hf«_¦ h

^

Fig. 13. Membrane stress at the centre of the plate
as a function of the load for various values of the
initial deflection in Example No. 4b. For small

values of z,^ and negative values of a, a curve is
Eh* ö

given only for a — 1

The tangent at the origin is obtained from

_1_ a2
°m~E ¥

gg* I qa*
Eh* Eh*

0

m° E h2
q0a*

Eh*

+ fLp-tf
_7V

1 + lc

l/(l + 2k)(l + k)
k + oo

9o«4

Eh0*
for Wn

hn
¦ ± OL ]/2

(e)
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The plus sign refers to the positive initial deflection and the minus sign refers
to the negative initial deflection.

It follows from Eq. (d) that the membrane stresses are negative for k < — 1.

When k -> — 1, the membrane stresses asymptotically tend towards — co.

In dimensionless representation it is convenient to form the expression
_L _?!

°bE "h2'

By virtue of Eqs. (5) and (7), we have

J^o

(d2w d2w\

\dx2 dy2}
I d2 w0 d2 w0\
\d^2~ + V1y2)

1 + Jc

(f)

The same relation between the bending stresses in the initially deflected
plate and the initially plane plate is obtained for any arbitrary direction.

In view of Eqs. (f), (7) and (6) we obtain

J^ a2
*~E h2

Jl^ a2^ 1 /l + fc c±
Gb«~E v c_ \~~c^~T+k

1

+ k b»E V 1/(i + 2^)(l+fe)
(g)

* i _¦>

6

OL--2
/ L t
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4 /
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-1

3 J
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2 1 ^^ jEZSS^
-- —---^
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Eh-

Fig. 14. Bending stress at the centre of the plate as a function of the load for various
Q OJ*

values of the initial deflection in Example No. 4b. For small values of ^rrz and negative
values of a, a curve is given only for a — 1. L.t. the bending stress calculated in

accordance with the linear theory of plates

The curves for the initially deflected plate can now be constructed in a
simple manner from the curve for the initially plane plate. Fig. 14 represents
the bending stress at the centre of the plate for the method of support (b).
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The expression for the tangent at the origin can be deduced by means of
a method w^hich is similar to that used in the case of the membrane stresses.
We obtain

1 a2\J_ a2
7h~E P

qa*
Eh*

qa*
Wh* 0

b»E V
q0a*

Eh0* Eh* for ^
(h)

±oc]/2

Example No. 5

Circular plate subjected to compression in a radial
direction and simply supported at the circumference
(Fig. 15).

If the boundary conditions are fulfilled for the
initially plane plate, they are also fulfilled for the
initially deflected plate.

We introduce the following notations:

ar the radial membrane stress,

oq the circumferential membrane stress,

ab the radial bending stress at the upper surface,

are, OQe, obe the values of stresses at the edge of the
plate,

ok the critical value of are.

The quantities which are primarily of interest in the design are the maximum

deflection wmax, which occurs at the centre of the plate, gq6, and ohmax.

____

Fig. 15. Notationsand
co-ordinate system

used in Example No. 5
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Fig. 16. Deflection at the centre of the plate as a function of the radial compressive
stress applied along the external circumference in Example No. 5 for various values of
the initial deflection. The curve for the initially plane plate has been calculated by

Friedrichs and Stoker
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The maximum value of aee occurs at the edge of the plate. The fundamental
Solutions for the initially plate are those due to Friedrichs and Stoker9).
The value of Poisson's ratio is taken to be 0.318.

The methods of deducing the relations between the initially plane plate
and the initially deformed plate are similar to those used in the foregoing
example, and are omitted in what follows. The results are given in Figs. 16,
17 and 18.

\t a=4
15

10 x

/"""
2
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5/ //?'
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//////iZJ
0 5 10 /5 ffK.

Fig. 17. Membrane stress in a tangential
direction as a function of the external load
at various values of the initial deflection in

Example No. 5
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Fig. 18. Maximum bending
stress occurring in the plate
as a function of the external
load at vaiious values of the
initial deflection in Example

No. 5

Discussion of Results

In the discussion of the basic results obtained in this paper, the examples
can be conveniently classified in two groups as follows.

9) K. O. Friedrichs and J. J. Stoker, Buckling of the Circular Plate Beyond the
Critical Thrust. Journal of Appl. Mech., March 1942. — Ch. Massonet has studied a
radially compressed clamped plate with an initial deflection of a certain definite form,
see Ch. Massonet: Buckling of Plates. Final report of Third Congress, Int. Ass. for
Bridge and Struct. Eng. 1948.
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Group No. 1 comprising Examples Nos. 1 and 4, in which the external
load consists of a transverse load acting at right angles to the plane of the plate.

Group No. 2 comprising Examples Nos. 2, 3, and 5, in which the external
load consists of forces acting in the plane of the plate.

In Group No. 1 we can distinguish between two principal cases, viz.,
positive and negative initial deflection, i.e. the initial deflection and the
additional deflection having the same or the opposite directions respectively.

When the initial deflection is positive, the stiffness of the plate increases

as the initial deflection becomes greater (see Figs. 3a, 3b, 12a and 12b). It is
of interest to note that the stiffness of the initially deflected plate is greater
than that of the initially plane plate also at small values of the transverse
load (the slope of the tangents at the origin in the above-mentioned diagrams
decreases as the value of a becomes greater). It is quite natural that the
smallest increase in the stiffness of the plate is to be observed in that example
(Fig. 12 a) where the deformation in the plane of the plate was not prevented
at the supports.

In Example No. 4, Case (b), we have determined the stresses at the centre
of the plate. The results given in Figs. 13 and 14 show that there is a very
large decrease in the bending stresses at the centre of the plate when the initial
deflection is positive. This statement holds at small loads too. On the other
hand, the membrane stresses are relatively insensitive to the initial deflection.
Even though the maximum stresses at higher loads do not occur at the centre
of the plate, a comparison with the stresses calculated from the linear theory
shows that there are extensive possibilities of utilising the effect of the initial
deflection in various structures, e. g. in roof slabs on circular cylindrical
Containers, by designing the plate so as to obtain an initial deflection.

When the initial deflection is negative, the stiffness of the plate is reduced

by the initial deflection at high values of q (cf. Figs. 3a, 3b, 12a and 12b).
This reduetion is connected with an increase in the bending stresses (cf. Fig. 14),
whereas the membrane stresses are relatively insensitive to the initial deflection,

just as in the case of the positive initial deflection (cf. Fig. 13).

When the value of q is small and the initial deflection is negative, the
problem is relatively intricate. The results are given only for a — 1 in
Example No. 4. It follows from the dash-line curve in Fig. 12b that the
problem is not unambiguous within a given region, if we consistently adhere
to the assumption that the initial deformation and the additional deformation
are affine. For a — 1, the linear theory provides a Solution at the points

n™x 1,0 and ™aa? 2,0. A corresponding statement can be made about
the bending stresses (Fig. 14), whereas the membrane stresses are negative
at small values of Jrrr, and tend towards — oo at that point which
corresponds to w™ax i?0. This phenomenon can probably be attributed to the
effect of the assumed affinity.
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It is obvious that due regard must be paid to the initial deflection in the
Interpretation of test results. At small initial deflections and high values of
Jr-?4, the stiffness of the initially plane plate can be determined by making
loading tests in both directions on the initially deformed plate, as may be

seen from Figs. 3a, 3b, 12a, and 12b.

In Examples Nos. 2, 3 and 5, Group No. 2, the initially plane plate remains
plane when the values of the external load are smaller than the critical buckling
force. On the other hand, the deflection of the initially deformed plate increases
from the very moment of application of external load. Figs. 5, 7 and 16 shows
the deflections of the initially deformed plates. When the values of the external
load are small, the plates subjected to the greatest initial deformation exhibit
the greatest deflections, whereas the reverse is the case at heavy loads.

The curves indicate how the results obtained from tests made at known
initial deformations can be interpreted in respect of the magnitude of the
critical load.

As regards the stresses, it is the membrane stresses that are of interest in
the first place. Fig. 8 shows the effect of the initial deflection on the greatest
edge stress in Example No. 3, and Fig. 17 gives the membrane stress in a
tangential direction at the support in Example No. 5. The membrane stresses
shown in these diagrams represent the maximum values of these stresses

occuriing in both examples. It is seen that the initial deflection has an extremely
great influence on the magnitude of these stresses. The increase in stresses due
to the initial deflection is particularly marked in the region P <Pk. In both
examples, the membrane stresses are concentrated in the neighbourhood of
the edges.

In Example No. 3, —€^~ expresses the inverse value of the ratio of the
^mean

effective width to the total width of the plate. The strong influence of the
initial deflection on the effective width is therefore clearly seen from Fig. 8.

The stresses due to the bending of the plate (Figs. 9 and 18) do not increase
to the same degree as the membrane stresses on account of the initial deflection.

The fact that the membrane stresses are so strongly influenced by the
initial deflection, particularly in the subcritical region (P<Pk), but also in
the supercritical region (P> Pk), shows that due regard should be paid to the
effect of possible initial deflections in drawing up design rules for similar
cases of loading.

Summary

This paper deals with thin plates subjected to an initial deflection which
is of the same order of magnitude as the thickness of the plate, and is affine
to the additional deflection.

By comparing the fundamental equations of an initially plane plate and
an initially deformed plate, which have been deduced by von Karmän and
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further developed by Marguerre in accordance with the non-linear theory of
plates, it is demonstrated that the Solution for the initially deformed plate
can be obtained from the Solution for the initially plane plate if the initial
deflection is assumed to be affine to the additional deflection. The reasoning
is as follows. The condition that the initial deflection shall be affine to the
additional deflection (W k-w) is satisfied by the Solution of Eqs. (1') and (2').
For a certain definite k, the Solution is single-valued. The fundamental equations

(T) and (2') for the initially deflected plate and the fundamental equations
(1'") and (2"') for the initially plane plate are identical if the conditions in
Eqs. (6), (7) and (8) are fulfilled. In this manner the Solution of the equations
of the initially deflected plate can be obtained from the Solution of the equations
of the initially plane plate.

Since the fulfilment of the fundamental equations is an expression of the
fact that the conditions of equilibrium and continuity are satisfied, but does

not affect the boundary conditions, it is necessary to make sure that the
boundary conditions are fulfilled in each individual example.

The examples adduced in this paper show, among other things, how that
form of the initial deflection which complies with the condition that the
additional deflection shall be affine to the initial deflection can be determined
from the Solutions for the initially plane plate. (For instance, in Example
No. 1, it is found to be given by that deflection form of the initially plane plate

which corresponds to the value of —^ determined by Eqs. (3), (d) and (f)).
n0

Furthermore, a comparison of the fundamental equations shows that the
membrane stresses in the initially deformed plate and its deflection at a known
load are uniform enlargements of the membrane stresses in the initially plane
reference plate and its deflection at another known load.

In applying the rules deduced in this paper, it is to be observed that the
boundary conditions shall be fulfilled.

Five selected examples demonstrate the procedure of deducing the Solutions
for the initially deflected plate from previously known Solutions for the

initially plane plate. The results are discussed.

Zusammenfassung

Die vorliegende Arbeit behandelt die dünne Platte mit anfänglicher
Verformung, die von gleicher Größenordnung wie die Dicke der Platte und zu
der zusätzlichen Verbiegung affin ist.

Durch Vergleich der Grundgleichungen einer anfänglich ebenen Platte mit
denen einer anfänglich gekrümmten Platte, welche von Karman abgeleitet
und von Marguerre in Übereinstimmung mit der nichtlinearen Plattentheorie
weiter entwickelt worden sind, wird gezeigt, daß die Lösung für eine anfänglich
gekrümmte Platte aus der Lösung der ebenen Platte gefunden werden kann,
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wenn die anfängliche Verformung zu der zusätzlichen affin angenommen wird.
Die Überlegung geht wie folgt: Der Bedingung, daß die anfängliche
Durchbiegung affin zur zusätzlichen sein soll (W k-w) genügen die Gleichungen (1')
und (2'). Für ein bestimmtes k ist die Lösung eindeutig. Die Grundgleichungen
(!') und (2') für die anfänglich gekrümmte Platte und die Grundgleichungen
(1'") und (2'") für die ebene Platte sind identisch, wenn die Bedingungen in den
Gleichungen (6), (7) und (8) erfüllt sind. Auf diese Weise kann die Lösung der
anfänglich gekrümmten Platte aus der Lösung der ebenen Platte erhalten
werden.

Da die Erfüllung der Grundgleichungen die Tatsache ausdrückt, daß das

Gleichgewicht und der Zusammenhang gewährleistet sind, über die
Randbedingungen aber nichts aussagt, ist es notwendig, daß die Randbedingungen
in jedem einzelnen Falle erfüllt werden.

Die in dieser Arbeit angeführten Beispiele zeigen u. a., wie die Form der
anfänglichen Durchbiegung, welche affin zu der zusätzlichen Durchbiegung
sein soll, aus der Lösung der ebenen Platte bestimmt werden kann. (Z.B. in
Beispiel No. 1 ist sie gegeben durch die Biegefläche der ebenen Platte, welche
dem Wert wo/ho, bestimmt durch Gleichung (3), (d) und (f), entspricht.)

Weiter zeigt ein Vergleich der Grundgleichungen, daß die Membrankräfte
in der anfänglich gekrümmten Platte und ihre Durchbiegung unter einer
gegebenen Last ähnliche Vergrößerungen der Membrankräfte und Durchbiegungen

einer ebenen Platte unter einer anderen bekannten Last sind.
Bei der Anwendung der abgeleiteten Regeln ist zu beachten, daß die

Randbedingungen erfüllt sein müssen.
Fünf ausgesuchte Beispiele zeigen das Vorgehen zur Ableitung von Lösungen

für die anfänglich gekrümmte Platte aus vorher bekannten Lösungen der
ebenen Platte. Die Ergebnisse wTerden besprochen.

Resume

Le present memoire porte sur le cas d'une plaque mince comportant une
deformation initiale du meme ordre de grandeur que sa propre epaisseur et
affine du flechissement ulterieur.

Par comparaison entre les equations de base d'une plaque initialement
plane et d'une plaque initialement incurvee, telles qu'elles ont ete etablies par
Kärmän et developpees ulterieurement par Marguerre en concordance avec
la theorie non lineaire des dalles, l'auteur montre que la Solution relative a
une plaque initialement incurvee peut etre obtenue ä partir de la Solution
relative ä une plaque plane, lorsque l'on peut admettre que la deformation
initiale est affine de la deformation ulterieure. Le raisonnement est le suivant.
La condition pour que le flechissement initial soit affin du flechissement
ulterieur (W k-iv) est satisfaite par les equations (!') et {2'). Pour une valeur
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determinee de k, la Solution est parfaitement determinee. Les equations de
base (1') et (2') pour la plaque initialement incurvee et les equations de base

(1'") et (2"f) pour la plaque plane sont identiques lorsque les conditions des

equations (6), (7) et (8) sont remplies. Dans ces conditions, la Solution relative
a la plaque initialement incurvee peut etre obtenue a partir de celle de la
plaque plane.

Les equations de base exprimant le fait que l'equilibre et la cohesion sont
assures, mais ne donnant aucune indication au sujet des conditions marginales,
il est necessaire que ces dernieres soient remplies dans chaque cas
particulier.

Les exemples cites dans le present memoire montrent, en particulier,
comment la forme du flechissement initial, qui doit etre affine de celle du
flechissement additionnel, peut etre deduite de la Solution relative ä la plaque
plane. (C'est ainsi que dans 1'exemple 1, eile est donnee par la surface de

flexion de la plaque plane, qui correspond ä la valeur ° determinee par
l'equation (3), (d) et (f).

Une comparaison des equations de base montre en outre que les efforts de
membrane dans la plaque initialement incurvee et son flechissement sous une
charge donnee representent des accroissements analogues des efforts de

membrane et des flechissements respectifs d'une plaque plane, sous l'action
d'une autre charge connue.

Dans 1'application des regles etablies, il faut noter que les conditions
marginales doivent etre remplies.

Cinq exemples mettent en evidence la marche a suivre pour arriver aux
Solutions relatives ä la plaque initialement incurvee, a partir des Solutions
dejä connues de la plaque plane. L'auteur discute les resultats ainsi obtenus.
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