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The Method of Inversion in the Theory of Plates

La methode d'Inversion dans la theorie des plaques

Anwendung der Inversionsmethode in der Plattentheorie

Professor Dr. W. Olszak and Mgr. Ing. Z. Mitöz, Institute of Mechanics of Continuous
Media, Polish Academy of Sciences, Warsaw

1. Introductory Remarks

It is often advantageous to use conformal mapping to solve two-dimensional

problems in the theory of elasticity, the inversion type of transformation
being comparatively simple, especially for certain types of boundary conditions.
In addition to the fundamental work by J. H. Michell [2], papers by A. Timpe
[13], P. Filltjngeb [7] and R. Sonntag [8] should be mentioned; together
with those by one of the present authors [3, 4,5], who generalized this method,
giving Solutions for some new problems. In the theory of plates, however, this
method is not generally used. It is only in A. E. H. Love's monograph [6]
that an example of the use of this type of conformal mapping is discussed as

applied to the problem of a circular plate clamped at the periphery and loaded
by a concentrated eccentric force.

In the present paper the basic relations of the application of the
transformation of inversion to the theory of plates will first be discussed, and this
will be followed by some Solutions for circular plates with eccentric holes.

2. Basic Relations for the Transformation of Inversion

The middle surface of the plate will be assumed to be a plane of the complex

variable. Let us map every point z of this plane into a point Z of a
corresponding complex variable plane by means of the relation

Z ^, (Jc>0) (2.1)
z

where z and z are conjugate complex variables.
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Putting: z r-ei(P, z r- e~i(P, Z Rei<p,

we have „ .^ k2

r
tnat is D

&2 - /ft rtVÄ=7> <P 9>- (2-2)

It is evident that between the points of the z- and the Z-plane there is a
one-valued correspondence, according to (2.2). Such a method of mapping is
termed "inversion mapping" or mapping by means of reciprocal (inverted)
radii. Assuming two Systems of polar coordinates (r,<p) and (R,0) having a
common origin, which is also the centre of inversion, the geometrical properties

of this transformation can easily be established. Thus, a region bounded
by a circle of radius rk, the distance of its centre from the origin being h

(h>rk), maps into a region bounded by a circle of radius Rk, the distance of
the centre from the origin being H, where:

k2 k2
R« w^-r«> H w^-h- (2-3)

In the particular case of circles passing through the origin (h rk) these

map into straight lines and vice versa; thus, the regions within these circles
are represented on half-planes. If the centre of inversion lies within a circle
(h < rk) its inner region maps into its outer region, in other words, into a plane
having a circular hole. The circle of radius rk k the centre of which coincides
with the centre of inversion is termed the "inversion circle". The points of
the periphery of this circle map into themselves. It should be added that
after double inversion (2.2) we return to the initial System.

In the subsequent considerations the System (R,0) will be referred to as
the original System (0), while the System (r, cp) will be referred to as the
inverted System (J).

Let the deflection of an arbitrary point of the plate in the (original) System
O be denoted by W(R,0). The deflection of the corresponding point in the
(inverted) System J will be assumed to be:

w ~W. (2.4)

The correspondence between the stress functions in plane problems is of
the same type. This type of correspondence is adopted in view of its
fundamental property, which is as follows. If in the System 0 the function W (R,0)
satisfies the biharmonic equation t74 W (R, 0) 0, the function

w (r, cp) -£"(N
in the System J also satisfies that equation (V*w 0). This property, which
can easily be verified, will be extensively used in the paper.
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3, Relations Between the Fields of Moments and Shearing Forces
in the Two Systems

The equations of equilibrium for an element of the plate subjected to a
continuously distributed transverse load q (r, cp) are, in terms of polar coordinates,

as follows:
d Q<p d

ccp or
Mr-Mq, dMr dM,

r
2Mtrq>

+

+ -

dr
dMr,

dr

+ r<p

rdcp

8Mm
rd 9

Qr

Q9-

(3.1)

The bending moments Mr and M^, the twisting moment Mrq), and the
shearing forces Qr and Qv are expressed by the equations:

Mr -D ~d2w l\d2w 1 dw\~\

ßri \r2 dcp2 r dr)J '

Mv -D d2w 1 d2w 1 dw\
v 1 1

dr2 r2 dcp2 r dry
¥rq) -D( i \8 P dw\

V,8r\r d<p}' (3.2)

d2w 1 dw 2 d2w 1
¦ + T5--

d*w
r gr [drs r2 dr2 r2 dr r3 dcp2 r2 drdcp2

1 d(V2w) n[l a3w; 1 d*w 1 d2w
— D \ 1 1—

[r3 dcps r dr2dcp r2

¦]¦

Q* -D-
icp drdcp

Eh*
12 (1-v2)

the notation h represents the (uniform) thickness of the plate, and D
its flexural rigidity.

Analogous Operations are performed on the function W in the System
(R,0). Using the relations (2.4) and (2.2), we establish the relations between
the moment fields in the two Systems in the form:

r 2 / d lux
MR 172Mr-¥D(l+v)(w-r—j,

»•2r2 - 2^., / 8w\
(3.3)

MR0 £2 »V

The shearing forces QR and Q$, are found from the equilibrium equations
(3.1):

_ MR-M*
Vi? — R + 8MR+8MR

dR R8&

Q^ 2MR*
i
8Mn*

|
8M*

R 8R R80

* -L(m -
w{2M**-

8MR 8M
8r

8MR(b 8M,
8r 80?)•

(3.4)
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The corresponding quantities are shown in Fig. 1.

Before we proceed to the discussion of the properties of the moment fields
which are related by the eqs. (3.3) let us recall that if the inversion is applied
to plane problems, the stress components in the two corresponding Systems
are related by the equations:

2

'*-&*'+&[*-'!!)>

a* WG< ,+ k2 ('-# (3.5)

TM<P '
£2 TrV'

where f(r,q>) is the stress function in the inverted system J, related to the
stress function F (R,0) in the original system O by the equation:

f --F.' Je*
(3.6)

We see that a close analogy exists between the corresponding stress fields
in the plane problems (3.5), and the corresponding moment fields in the theory
of plates (3.3). This results from the fact that bending and twisting moments
are determined by the function W (or w) in a manner analogous to that in
which linear combinations of stresses in the plane problem are expressed by
the stress function F (or /). Thus, for instance, the linear combination:

d2F l\dF 1 d2F\
a* + VGR=dlP+V{liJR+Wj0l)

corresponds to the bending moment MR. The combination or+vvq corresponds

to the moment M$, and tr$ corresponds to the twisting moment MR$.

\
Mf

J-System 0-System

Fig. 1
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The form of the eqs. (3.3) indicates that, for the relations between the
moment fields in the Systems 0 and J, the orientation of corresponding linear
elements is now of no importance; indeed, these equations can be written in
the general form:

(3.7)
~Ma, where E ~D(l+v){w-r^;

thus, we are free from reference to any particular system of coordinates (in
particular its origin and orientation); it must always be borne in mind, however,
that the symbols MQ, Ms and Mg, Ms denote the bending and twisting
moments acting on the corresponding elements in the two Systems O and J,
respectively.

The eqs. (3.7) have a simple physical meaning. If we assume that in one
of the Systems the bending moments Mg • d s and the twisting moments Ms • d s

act on an element ds, the corresponding element in the other system dS
k2

(where the linear element ds is transformed into dS — ds) will be subjected
to the same bending and twisting moments; in other words:

Mg-d8 M'G-dS,

Ms-ds -Ms-dS;
the bending moment having to be complemented by the superposition of an
additional moment E, which is the same in all directions. Thus, the trajec-
tories of the prineipal moments in the System O will map into analogous
trajeetories in the system J, and vice versa. It is evident that the character
of the mapping depends solely on the choice of the centre of inversion, whereas
the choice of the auxiliary system of coordinates should be determined by the
possibility of a convenient establishment of the boundary conditions.

A similar physical meaning can be attributed to the eqs. (3.5) relating the
corresponding stress fields in the plane problem. The state of stress in the
corresponding system can be considered to result from the superposition of

r2the state of stress r— crr, whereby the forces acting on the corresponding
elements are equal, and a hydrostatic tension -^ (f — r-^A, variable with the
coordinates of the point considered. Obviously, this analogy is well founded,
the bending and twisting moments being the results of integrations, over the
thickness of the plate, of normal and shear stresses acting parallel to the
middle surface.

However, the analogy with the plane problem is somewhat less close if the
boundary conditions are considered. In plane problems the contour free from
shear stresses and subjected to a uniform normal tension in one system is
transformed into a contour of the same properties in the other system. In
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plate problems a contour free from twisting moments preserves this property
after transformation, whereas a contour subjected to constant bending moments
is mapped into a contour subjected to bending moments which are, as a rule,
variable. This entails a considerable diffieulty in the Solution of mixed boundary

problems and also of those involving free edges, the shear forces in both
Systems being related in a relatively complicated manner.

A complete analogy, as regards boundary conditions, with the plane state
of stress, exists only in the particular case of v 0; it concerns, however, the
"circumferential" bending moments. This is because the contour for which
My const. (with Mrq> 0) is transformed, in the other system, into a contour
for which we have also M0 const. (and MR<p 0). This condition is, however,
of little practical importance.

4. The Generalized Inversion

In the above considerations both coordinate Systems had a common origin
at the point J12 (fig. 1), which, according to our assumption, was, at the same
time, the centre of inversion. In the general case the centre of inversion does

not eoineide, however, with one particular point of the plate (its centre for
instance); this may render cumbersome the establishment of the boundary
conditions. These difficulties will be overcome by an appropriate choice of
the origin of the auxiliary system of coordinates (r, cp). For instance, if the
original sytem 0 maps in the inverted system into a circle, we choose the
origin at the centre of this circle (J2)- The centre of inversion J1 itself is

independent of this choice and its position is determined by the required

^\ J-System

0 -system

Fig. 2
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mapping function. The distance between these two characteristic points is

T^J2 h (üg. 2).
Stating the problem in the above manner we think, for instance, of the

problems, for which the Solution can be sought by mapping the system exa-
mined into a concentric annular plate. This will be, in such a case, a two-parameter

family of circular plates with eccentric holes (fig. 3 a); a one-parameter
family of semi-infinite plates bounded by straight lines with circular holes

(fig. 3b); and a two-parameter family of infinite plates with two circular holes

(fig. 3 c). Each of these Systems can be mapped by inversion into a doubly
connected concentric region — an annulus (r a,b). The location of the inversion pole
is in each case different. In the first case h < ^' in the second case h= <^'
and in the third case a<h<b.

-\-

Fig. 3 a Fig. 3 b Fig. 3 c

The mapping described above constitutes a generalization of the mapping
discussed previously and can be represented in the complex plane by the
relation:

k2
Z

z + h (k>0). (4.1)

The elements lying on the periphery of the circle of radius r in the system J
correspond to elements lying on the periphery of the circle of radius R in the
system 0. Covering the circular plate in the system J with a net of concentric
circles and radii passing through the origin J2 we obtain, in the original
system O, a curvilinear net composed of eccentric circles of variable radii R
and variable centres M, and a family of circles passing through the point J1
and the point corresponding to J2. It is natural, therefore, to associate the
reference system with the variable point M and to determine the state of
stress in the coordinates (R,0) for each group of elements lying on the
periphery of the circle of radius R. Thus, the stress field in the system J, described
in the coordinates (r, cp), corresponds to a stress field in the system O described
in the coordinates (R,0).

In order to find the relation between the corresponding moment fields we
should proceed in a manner similar to that used previously. We express the
bending moments in the system 0:
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r, R2 W / 1 a2 W 18 W\~]
MK -D[jW + V[wJ0f + liTR)\>

^f 8*W 1 8*W l 8W~\ nx

Ff T^R12W -= ^ 7^W.£2 i r2 + 2Arcos<p + A2

The differential Operations can be performed in the system J writing:

dW__d_W_dr_ d_W_dy_^ ^W_ _ ld^d_ ^Ji\(j^djy dcpdW\
dR ~ dr dR+ dcp dR; dR2 ~ [dR dr^ dR dcp) \dR ~dr~ + Jr T^j '

dW
_ dJV_ dr_

x

dW dcp
>

d2W
_ [dr 8

t
dcp d\( dr dW 8<pdW\

d0 ~ dr d0
dw dcp> d2ir

_ idr__d_ dy_ jr\ (dr_dw d^dw\+ ~d^W; d02 ~ \d0 Jr + ~d0 ~d^>) \d0 ~dr~ + ~d0 lüp) '

The derivatives of the coordinates in the system J, with respect to the
coordinates of the system O, can easily be determined by considering the
geometrical relations. Introducing the relations:

k2 „ k2
K

R

and taking into account small increments A R and A 0 of the coordinates R
and 0, respectively, we obtain, after determining the increments of the
coordinates r and cp and passing to the limit, the relations:

(4.3)

A2_r.2r> H~h2_r2h> ß>r),

r2-h*r' H=r2_h2h> (h<r),

8r rx2
8~R ±F' 80 '

8R '
8<p rx2

80 h*-r2

Performing the Operations indicated, we have:

MR T±Mr-^D(l+v)-G,

M# T^Mv-^D(l+v).G, (4.4)

MR<p -r-^Mrq),

where ~ dw 7 dw h
(j w — -7— (r + h cos cp) + sm cp.dr dcp r

The shearing forces will be obtained, as before, from the conditions of
equilibrium (when h>r: positive sign; h<r: negative sign):
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_ MR-M* 8MR 8MR0
V/J~ R + 8R + R80

h2-r2tM TUT \ T\dMR TX 8M.[h
ii iyii iy &

-W-(MR-M9) + -^ b$
dr k%r 8<p

2MR<P 8MR<P 8M#
(4.5)

V<£ — -d 1- o r> "1" '

R dR Rd0
h2 — r
ß2r ^^ ' P dr Fr £<p

The equations obtained are similar to those in (3.3). Substituting h 0 we
obtain the case considered before1). All the properties of the transformation
described in the case of concentric inversion retain their validity and will
not be discussed again.

In particular, the general equations (3.7) retain their validity indepen-
dently of the orientation of the system of coordinates, provided that the
function E (r, cp) is replaced by the more general function G (r, cp) which, for
the Substitution h 0, becomes E(r,cp).

The advantage of the generalized inversion of essential meaning, for the
cases considered here, consists in the possibility of direct establishment of
actual boundary conditions. These conditions can be expressed for the system
0 in a simple manner. The circles mapping in the system J into concentric
circles constitute, in the system O, a family of eccentric circles. This family
includes the contours of the plate considered (e. g. in the form of an eccentric
ring). It is sufficient, therefore, to Substitute r const. to determine the
required quantities on the edges of the plate in the system O.

Thus, the inverted system J, operating as an auxiliary figure, makes it
possible to -analyse the states of stress and strain in the original system O.

If this system consists, for instance, of a circular plate with an eccentric hole,
it can be reduced by the transformation of inversion to a simple system in
the form of a plate bounded by concentric circles; all the required quantities
concerning the states of stress and strain in the system 0 are then related
(by means of the quoted relations) to the coordinates (r, cp) of the system J;
thus, the boundary conditions are expressed in a simple manner.

Let us now examine the transformation of the external loads. Consider
a transversal load qo(R,0) in the system O; the basic differential equation of
the plate problem has the form:

V*W ^. (4.6)

Applying the transformation (2.4) to the function W we find at the same
time qt (r, cp) for the auxiliary system J, in which the basic equation can be
written as:

x) The discontinuity of QR and Q$, when passing from values h>r to values h<r,
is caused by the discontinuous change of orientation of the coordinate System (R, 0).
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V^W
D (4.6a)

The deflections W and w can be represented as a sum of integrals of the
biharmonic equation and of particular integrals, that is:

w - Wj + wu (4.7)

where
FiwI 0, rlu>a jj> (4.7a)

and W=^twI + ^w1I=WI+WII (4.8)

where
p*Wt 0, viwII ^. (4.8a)

Since

F« W„
' 8*

8R* +
1

i2
8 i a2"

8R + R*802
\PWn 1 8WU

8R2 R 8R
1

Ä2 802

ks ks qt
RJV*W"~ RfD'

we, therefore, obtain

*i* °o
Qi k8 ?o k8 (r2 + 2hr cos cp + h2)*'

(4.9)

5. The Case p4 W=0

The deflection of the plate is expressed by a biharmonic function in the
system O and in the system J as well.

The general integral of the biharmonic equation can be expressed in the
form:

W h (*) + k (*) + (X2 + V2) [/8 (Z) + f, (*)],

where fk(k= 1, 2, 3,4) are Symbols of harmonic functions, ZZZ.^_%Ä\ being
conjugate complex variables.

The character of the geometrical form of the Systems considered implies
the necessity of using polar coordinates (r, cp). Any function satisfying the
biharmonic eq. (4.7a) can be represented in the form

w /5 + r2/6>

where /5 and /6 are (plane) harmonic functions. Thus, w will be obtained as

the sum of particular integrals:
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ws a0 + b0 In r + c0 r2 + d0 r2 In r +
+ (ax r + 6X r3 + cx r_1 + rfx r In r) cos cp +

00

+ 2 (anrn + bnrn+2 + cnr-n + dnr-n+2)cosncp,
" * (5.1)

ifas (ä1r + bx r3 -h cx r-1 + dx r In r) sin cp +
00 _ _

+ 2 (änrn + bnrn+2 + cnr-n + dnr-n+2)sinncp.
n 2

The asymmetric function, w^, will appear in that case only when the
external load is not Symmetrie with respect to the axis 0 0 (or <p 0).

The moments Mr, M^, and Mr(p in the system J will be determined by
using the eqs. (3.2) and the moments MR, M$, and MR& in the system O by
using the eqs. (4.4). We assume that h k=l, which by no means restricts
the generality of the treatment and is equivalent to an appropriate choice
of the unit of length.

For the Symmetrie terms of the function w we have:

a) in the inverted system:

Mr -D{[-b0r-2(l-v) + 2c0(l+v)-r2d0lnr(l+v)+d0(3 + v)] +

+ [2 b1 r (3 + v) + 2 cx r~3 (1 - v) + dx r"1 (1 + v)] cos cp +
00

+ 2 {n(n-l)(l-v)anrn-2 + [n2(l-v) + n(3+v) + 2(l+v)]bnrn +
n 2

+ n (n + l) (l -v) cnr~n~2 + [n2 (l -v) -n(3 + v) + 2(1 +v)]dnr-n}cosncp};

M(p -D{[b0r-2(l-v) + 2c0(l+v) + 2d0lnr(l+v) + d0(l + 3v)] +

+ [2 61r(l + 3v)-2c1r-3(l-v) + d1r-1(l+v)]cos9)-l- (5.2)
CO

+ 2 {-n(n-l)(l-v)anrn-2 + [-n2(l-v)+n(l + 3v) + (2 + v)]bnrn +

-n(n+l)(l -v)cnr~n~2+[-n2(l -v)-n(l+3v) + 2(l+v)]dnr~n}cosnep];

Mr(p -D(l-v){(-2b1r + 2c1r-3-d1r~1)sincp +
CO

+ 2 [-n(n-l)anrn-2-n(n+l)bnrn +
n 2

+ n (n + 1) cn r~n~2 + n(n — \)dn r~n] sin n cp};

b) in the original system:

MR -i)[(a0a0 + 60^0 + coro + rf0§0 + a1a1,, + 61^1,, + c1y1,, + ^1§/) +

+ L (an-lccn-l+an°cn + an+locn+l +
n \

+ bn_1ß'n-1+bnßn + bn+1ßl+1+ (5.3)

+ Cn-1 r'n-1 +Cn7n + <Wl7n+l +

+ dn-i 8»-i + dn Sn + dw+1 S^+i) cos w cp].
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The values of the coefficients appearing in the series (5.3) are:

for n 0:

oc0 2(l+v), ß0 =2lnr(l+v)-(3 + v)-r-2(l-v),
y0 2(1+v), S0 =21nr(l+v)+r2(l-v) + 3+v (5.3a)

ai"=-2(l+v), /S1"=2r2(l-v), yi" 2r-2(l-v), Sx" -2lnr (1 +v);

for n=l:
«o'=0, j80'=-4r-i, yo'=0,
ax =0, j8x 2r3(l-v) + 2r(3+v), yx 2r~x (3 + v) + 2r~3 (1 - v),

ac2" -2(1 + 3 v)r, /32" 6 (1 -v)r3, y8» 6(1-v)f-\
V=4,,

<6-8b>

Sx =_r(i+v) + r-i(i+v),
32"=-2(l + 3v)r;

for n ^ 2:

a;_1 (w-l)(w-2)(l-v)r»-2, j8;_1 (»-l)[»(l-v) + 2(l+v)]r»,

y»-i (»-1) [»(1 -v) + 2 (1 +r)]r-"-2, S;_x (»- 1) (n-2) (1 -v)>-»,

«n (n-l)[n(l-v)-2(l+v)]rn + n(n-l)(l-v)rn-2,
ßn »(ra+l)(l-i/)rw+2 + (»+l)[»(l-v) + 2(l+i>)]rn,

yn (n + l)[n(l-v) + 2(l+v)]r-n + n(n + l)(l-i>)r~n-2,
Sn n(n-l)(l-v)r-"+2 + (n-l)[n(l-v)-2(l+v)]r-", (5.3c)

«*+1= (»+l)[n(l-v)-2(l+v)]r»,
iC+i (n + l)(n + 2)(l-v)r»+2,

y^+1= (n + l)(» + 2)(l-v)r-»s

Ci= (» + l)[w(l-v)-2(l+^)]r-»+2.

M0 -D [(a0 C0 + b0r)0 + c0 £0 + d0 /c0 + % £/ + b1 V' + cx £/' + dx *x") +

+ 2 («re-l£»-l+a»L + a«+l£»+l+6«-lT?«-l+6™''?» + ö»+l7?n+l+ (5.4)
» 1

+ C„_i £»_i + cre fn + Cn+1 £TO+i + ^re_x /<:„_! + dm Kn + dn+1 Km+1) cos n q>].

The values of the coefficients appearing in the series (5.4) are now equal to:
for n 0:

C0 2(l+v), ij0 21nr(l+v)-(l + 3v) + r-2(l-v),
£0 2(l+v), k0 2lnr(l+v) + (l + 3v)-r-2(l-v), (5.4a)

Sr 2(l+i/), V--2r2(l-v), |x"=-2r-2(l-v), *x*= -21nr(l+v)
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for n=l:
£o' 0, Vo'=-4vr-\ £0' 0, K0' ±vr,
£ =0, Vl= -2f*(l-v) + 2r(l + 3v), f1 2r-1 (1 + 3v)- 2r~3(l -v),

(5.4b)
Kl= -r(l+v) + r~1(l+v),

l2" -2(3 + v)r, rj2"=-6(l-v)r*, |2"= - 6(1 -v)r~\ k2» =-2(3 + v)r,

for n 2:

Ci= -(w-l)(w-2)(l-v)r»-», i?;_1=-(n-l)[n(l-v)-2(l+v)]fw,
d=-(^-1)[^(1-^)-2(1+^)]^n-2J ^_1=-^-l)(^-2)(l-v)r-,
£n -^-l)[72,(l-y)-2(l+v)]r-^-^(n+l)(l-v)r-^-2,
Kn -n(n- l) (1 -v)r~n+2 - (n- l)[n (l -v) + 2 (l +v)]r~n, (5.4c)

7yn -n(n+l) (l-v)rn+2-(n+l) [n(l -v) - 2 (l+v)]rn,
£n - (n+ 1) [n(l -v)-2 (1 +v)]r~n-n(n+ l) (l -v)r~n-2,

C+i=-(^+1)^(1-^) + 2(1+^]^ ^+1=-(^+l)^ + 2)(l-v)r-+2,
Chi=-("+1)(* + 2)(1-i')''-w, ^+1=-(^+l)(^(l-v) + 2(l+^]r-+2.

The moment MR& can be represented in a simpler form without having
recourse to Fourier series:

MR0 —D (1 —v){ — 2b1sincp(r3+2r2coscp+r)-2c1sincp(-r-1-2r-2coscp-r~3)-
— dx sin cp (r + 2 cos cp + r_1) +

00

+ 2 sinw^f — ann(n — l) (rn + 2 r71-1 cos cp + rn~2) —
n=2 (ö-5)

- bn n (n + 1) (rn+2 + 2 r™+1 cos 9? + rn) +
+ cn n (n + 1) (r~n + 2 r"™"1 cos cp + r~n-2) +
+ ^n^(n-l)(r-n+2 + 2r-w+1cos9 + r-n)]}.

For the asymmetric function was the moments Mr, M^, Mr(p can be
obtained by replacing cos cp and cos ncp in eq. (5.2) by sin cp and sinn cp,

respectively, and vice versa, taking Mr(p with the opposite sign.
On the other hand, we have for the asymmetric statical quantities MR,

M0, MR0:
— °°

_ _> _ _ _ _"MR -D 2 [(an-l*n-l+an<*n + an+l<*n+l +
n-l

+ bn_1ß'n-i + bnßn + bn+1ß'U1+ (5.6)

+ ^n-1 7n-l +Cnyn + ^n+1 fn+l +

+ dn_1S'n^l+dnBn + dn+1El+1)sinncp].

For this case the values of the coefficients are:
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for n 1:

cc0' 0, ß0' 0, y0' 0,

äj. =0, & =2r3(l-v) + 2r(3 + v), yx 2rx (3+v) + 2r~3(l -v),
ä2"=-2(l + 3v)r, jS2"=6(l-v)r3, y2" 6(1 -v)»-1,

V o,
(5'6a)

Sx =_r(i + v) + r-i(i+v)>
S2" -2(l+3v)r;

for »^ 2 all coefficients are expressed by the relations already derived in (5.6).

CO
_ _ff

M0 -D 2 [(äw_i£w-i + än£n + än+1£n+1 +
71=1

+ &w-i ^n-i + bn ijn + 6^+1 ^+1 + (5.7)

"+" ^n-l bn-1 +Cwfw + c/i+l bn+1 +

+ dn_1Kn-1+dnKn + dn+1Kn+x)sinncp].

For n 1:

fx =0, ^ -2r3(l-v) + 2r(l + 3^),
l2» -2(3 + v)r, ^/ -6(l-v)r3,

?o' 0, V 0,
(5-7a)

^ 2r-1(l + 3^)-2r-3(l-y), fcx -r (1 + v) -f-r-1 (1 + v),

?/ -6(l-v)r-1, ^ _2(3 + ^)r.

Whereas for n ^ 2 all coefficients are given by relations as represented in (5.4c).
The moment MR$ is given by (5.5) when sin cp and sinn cp are replaced

by cos cp and cosficp, respectively, and changing the sign.
The expressions for the shearing forces in the system O are not derived

here, their form being somewhat cumbersome.

6. Circular Plate with an Eccentric Hole

The problem of a circular plate with an eccentric hole has, so far, only
been solved for the case where both edges are clamped. The Solution of this
case, using a curvilinear system of coordinates, is to be found in the book by
Ya.S.Ufland [11], some particular cases being treated by N. W. Kttdbiavtzev
[9], S.Woinowsky-Kbieger [12] and Chin-Bing Ling [10]. In the present
paper different cases of loads on such a plate will be considered for a wider
class of problems, assuming one edge to be clamped and the other simply
supported. Reference to the Solutions of those cases which were treated by
the above mentioned authors will allow a comparison to be made between
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the method of inversion and the approach to the problem by the use of curvi-
linear coordinates.

A plate with an eccentric hole can be characterized by two dimensionless

parameters:
c

P d

£
d — c

(O^P^l)

(Ö^Ul)

(the ratio of radii),

(the eccentricity).

In addition, one of the absolute dimensions of the plate should be given.
Since (according to the assumption) h k, the value of k can be determined,
starting from the absolute dimensions e, c, d of the plate, provided that the
eccentric plate will map, after transformation, on a concentric annulus in the
system J:

k2?w k2(jw + e)

1vf-c* (L + t)2-d2
k.

Dividing the linear dimensions by k we obtain the dimensionless qualities
e, c, d equivalent to the assumption of k 1.

The concentric annulus into which the primary eccentric system is mapped,
is determined by the two radii: interior a and exterior b, which can be obtained
from the data characterizing the eccentric system, using the relations:

JSystem

T

0-system

Fig. 4



(6.1)
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a l-L[(l+p)-P{l-p)-VSi],l p-L,

b=l±[(i+P)-?(i-p)-i/m,

where #4 (1 + l + v) (1 + C~v)(l ~t + v) (l -£~v)>

v )/p(¥-l).

It can easily be seen that, after the transformation of inversion, a clamped
edge in one system corresponds to a clamped edge in the other system. This
follows from the following simple relations. For example, in the system J,
let w 0 and — 0, for r b.

dr
In the system 0 we have, for r=b

W Rx2w 0,

dW d(r~*w) y2^dw 2(r + coscp)

dR dr x dr r2

In the case of a simply supported plate, however, we have, for instance,
for r b, when reasoning in an analogous manner,

a wa dW dw

This means that a simply supported edge in one system transforms into a

simply supported edge in the other system, the deflection angles being, at
corresponding points, the same.

Let us now pass to the general Solution for a given load and given boundary
conditions. The particular integral wn (in the system J) of the biharmonic
equation can be expressed in the coordinates (r,cp) and represented in the
form of a Fourier series:

00 00

% i0W+ 2 Kn(r)sinn<P+ 2 Ln(r)cosncp. (6.2)
n= 1 n=1

The integral of the biharmonic equation wz can be assumed according to the
expression (5.1).

Thus, the deflection of the plate will be represented in the form of a sum
of two Fourier series

w wz (r, cp) + wn (r, cp). (6.3)

Let us consider two cases of edge support.
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A. Both edges clamped

In this case the boundary conditions (for r a and r b) will be written:

w wz + wn 0,

dw _dwj dwu
__

(6.4)
dr dr dr

Substituting here the expressions (5.1) and (6.2) we obtain, for every n, four
equations for the coefficients of cosncp and sinncp. The equations are:

For n 0:

a0 + &0m& + c062 + d0ft2ln& - A)(^)>
6n

£ + 2c0b + d0(2lnb + l)b -L0'(b),

a0 + b0lna-\-c0a2 + d0a2lna —L0(a),

-^ + 2c0a + d0(2lna+l)a - L0' (a).

(6.5a)

For n 1:

(6.5b)

axb+ b1b3 + c1b-1 + d1blnb =-L1(b),
ax + 3b1b2 + c1b~2 + d1(lnb + l) -L^(b),
axa+ b1a3-\-c1a~1 + d1alna =—L1(a),
a1 + 3b1a2-c1a~2 + d1(lna+l) -L± (a).

For n ^ 2:

an 6- + bn b^2 + cn b~» + dn b~^2 =-Ln (b),

nanb^ + (n + 2)bnb^-ncnb-^-(n-2)dnb-^ -Ln,(b),
anan + bna"+2 + cna-n + dna-n+2 =-Ln(a),

* C)

nanan~x + (n + 2) 6n an+1 - n cn a-71-1 -(n-2) dna~n+1 - Ln' (a).

The values of the coefficients än, bn, cw, dSn for w 1 and n ^ 2 will be

obtained from the relations analogous to the above equations, replacing the
coefficients Lx and Ln by Kx and ÜLn, respectively.

If, therefore, for a given load, the deflection wn can be expressed in the
form (ß.2), the problem of the plate clamped along both edges is solved.

B. The case of one (e.g. exterior) edge clamped, the other (interior) being simply
supported

The boundary conditions can be written as:

for r b w 0, — 0;dr (b.6)

for r a w 0, MR 0.
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We see that the first three conditions are identical with those in the preceding
case, the 3 constants an,bn, cn can be therefore determined for each n expressed
as a function of the fourth dn. We can write:

an An +^n ^n'
K <*>n +<*>ndm (6-7)

Cn Xn +Xndw

We can determine the coefficients A^, oun, xn fr°m ^ne three first equations

of (6.5a), (6.5b), (6.5c).
The condition MR 0 can be written as follows (we confine our considerations

to deflections determined by a Symmetrie function ws; for an
asymmetric function analogous results can be obtained):

For n 0:

«oa0 + fco^o + Coro + ^oSo + «ia/ + fe1^ + c1y/-i-d18/ +M0. (6.8)

For n=l:
an-l °4-l + K-lß'n-l + Cn-1 7n-l + dn-l K-l +

+ anan + bnßn + cnyn + dnSn + (6.9)

+ an+lan+l ^^n+lßn+l^^+lYn+l + dn+l°n+l + ^n-
Here M0, Mn denote the Fourier coefficients for a moment calculated from
wii-

Substituting the relations (6.7) in (6.8) and (6.9) we obtain the following
system of equations with the unknown coefficients d0, dx, d2,. dn,

s0 a0 -f- s0 d1 F0,
Sx0 d0 + Si1 dx + sx2 d2 P1,

s21d1 + s22d2 + s23ds P2, (6.10)

where

(6.10a)

bn an-l^bnan^bn an+l — rn>

Sn "n-lK-l+ßn-l^n-l+Yn-lXn-l+K-l'
< *nV + ßn <*>n" + Yn Xn + K
o^+l _ " \" - j_ Q" " 1 " " i 2"
sn — °Wl An+1 "+"Pn+1 ^n+l ~^~Yn + l Xn+1 +0w+l»
Pn -(Xn-lK-l+ßn-l^n-l+yn-lXn-l+XnK'+ßnMn

+ YnXn + °C+1 'C+ l + ßn+1 "Wl + )Vt-l Xn+1 ~ Mn)>

P0 - (cc0\0' + ßo^o +Y0X0 + "i"K' + ßi" W +Yi"Xi ~Mo)-

If the characteristic determinant of the system satisfies the Koch con-
00 00

ditions (the necessary condition in our case being that V | s\ — 11 and V P\
i-0 t=0
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be bounded) we can determine the values of the roots in an approximate
manner by "cutting" from the infinite system of equations a determinant of
the order n and calculating the unknowns to the n-th order inclusively.

Let us now consider some different cases of loading.
1. For a circular plate, with an eccentric hole, clamped along both edges

direct Solutions can be found for those types of loads which, after transformation,

lead, in the system J, to cases already known, for which the function
w can, therefore, be written directly.

Let us assume, as an example, the following type of loading of the plate
in the system O

q0 ~-^ q(r2-\-2rcoscp + l)3 (q const.). (6.11)

Then, in the system J we obtain:

ai a const., (6.12)

and the function w takes the well-known form:

qr*
w a0 + b0lnr + c0r2 + d0r2lnr+ * (6.13)

The fulfilment of the boundary conditions leads to the coefficients given
by the eqs. (6.5a), where

_ qr*
A)~64D*

After transformation into the system 0 we have

W R,2w a

1

-w. (6.14)1 r2 + 2rcos<p+l v '

A. E. H. Love [6] proceeds in an analogous manner, mapping a plate
loaded by a concentrated force at its centre into a plate loaded by an eccentric

force.
2. As the next example let us consider a plate mapping into a concentric

plate in the system J, clamped at the exterior edge and simply supported on
the interior edge and loaded by constant moments Mr M along the latter.

Taking the function w in the form

w a0 + b0lnr + c0r2 + d0r2lnr, (6.15)

the constants a0, b0, c0, d0 can be found from the eqs. (6.5 a) and from the
condition:

Mr -D[-bQa2(l-v) + 2c0(l+v) + d0(2lna + 2lnav + 3 + v)] M.

In the system 0 the eccentric plate will have the edges supported in the
same manner, the moments along the interior edge being:
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MR -D{2a0(l+v) + b0[2lnr(l+v)-(3 + v)-r~2(l-v)] +

+ 2c0(l+v)-fd0[2lnr(H-v) + r2(l-v) + (3 + v)]+ (6.16)

+ (~-&o + 4^o) coscp}.

3. Consider a plate with an eccentric hole, subjected to a constant load q0.
The function Wn in the system 0 can be assumed in the form:

W" ~ 64TD '

it obviously satisfies (in the system (R,0)) the condition:

(6.17)

F*Wn %
D

Transforming this into the System (r, <p) we obtain:

wn r* Wu (6.18)64D 64Z) r2 + 2rcosy+l'
The expression (6.16) can be represented in the form of a Fourier series

wn L0+ 2 Lncosn<p,

where

2rn
^»-(-1)**T^

for r < 1

n=l

Lo k^ZY

(6.19a)

in=(-i)w*^I^r
for r>l (6.19b)

k
64 D

Substituting the coefficients L0, Ln obtained (for r < 1) in the expressions
(6.5a) and the following, we have definitely determined the function wx. Thus,
our problem is solved.

The special case of a 0 will furnish the Solution for a plate without a
hole clamped along the exterior edge and at one additional point.

4. A circular plate with an eccentric hole loaded by a concentrated force
at any point.

In the case of a concentrated force the deflection surface of the plate can
be represented in the form of a biharmonic function containing a singular
term WP:

W WZ+WP, V*W 0.

Let us assume that the plate is loaded by a concentrated force P at the point
S0. The term WP in the system 0 can be assumed in the form:
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P

(6.20)

16ttD [Rx2 -2R1S1 cos (0± -0O1) + S±2] ln [Rx2 -2R1S1 cos (0± -0O1) + St2],

where p0 denotes the distance of the point of application of the force from the
point considered T0 (fig. 5).

Transforming the function WP, we obtain in the system J

PS2
wv ——\=. [r2 + s2-2rscos (99 — cp0)]In [r2 -f s2 — 2rscos (cp — cp0)] +ifj(rcp)

lO 77 U
PS2 (6.21)

where \p (r, cp) is a biharmonic function (having no singularity) in the domain
of the plate.

We see that the concentrated force P at the point 80 in the system O

corresponds to the concentrated force P S±2 at the point Si in the auxiliary
system J.

The expression (6.21) can be represented, after rejecting the function
ifj(r,cp), in the form of a Fourier series

wp(r,cp) L0+ 2 Lncosncp+ 2 Knsinncp.
n=l n=l

(6.22)

TT

</,,

Fig. 5
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The values of the coefficients are:

for r
p — < 1

s

L0 k[2lns(r2 + s2) + 2r2],

/r3 \
Lx — k\ —Y4trslns + 2rs\ coscpQ,

K± -kl— + 4rslns + 2rs\sincp0, (6.22b)

Ln k [r s (Mn+1 + Mn_x) - (r2 + s2) MJ cos n cp0,

Kn k[rs (Mn+1 + M^) - (r2 + s2) MJ sin n cp0,

2 (r\n 1 PS2
n n \s) ' WttD'

For « - < 1, on the other hand, we obtain Mn — -1 All the re-r s n n yrj
maining quantities will be obtained replacing r by s and vice versa.

The Solution for this case represents Green's function for the plate
considered.

5. A semi-infinite plate with a circular hole. This problem is contained in
the foregoing and constitutes its limit case. Indeed, if we choose the centre
of inversion so that

h b 1,

the circle of radius r b in the system J will map into a straight line in the
system O. A semi-infinite plate with a circular hole maps, therefore, into a
concentric plate in the system J.

The case of such a plate subjected to a concentrated force at any point
can be solved by substituting 6 1 in the eqs. (6.5a) and the following.

Thus, Green's function is also found for this case.
However, we cannot pass to this limit in the case of a uniformly distributed

load q0 const., for the coefficients of the Fourier series given in (6.19b)
tend to infinity, although the function wu, determined by the eqs. (6.18), is
bounded for every cp, except cp iT.

Final Remarks

It is obvious that the above examples do not cover the whole class of
problems that can be solved by using the method of inversion. As an example,
plates mapping into rectangles, wedges or circular sectors in the system J
should be mentioned. It was found that many problems which can be de-
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scribed in bipolar coordinates can be generalized to new problems, not yet
known, by transforming known Solutions and adapting them to new Systems
obtained from the first by the inversion method.

The advantage of this method is the possibility of obtaining a simple
physical Interpretation concerning the relations between the two
corresponding Systems (which leads, for instance, to the possibility of direct
transformation of trajectories of prineipal moments from one system to the other).
In addition, there is a possibility of easy determination of particular integrals
Wn in problems connected with concrete Systems of loads, the auxiliary
system adopted of coordinates being a polar reference system. The facility of
establishing the commonly encountered boundary conditions should be
stressed.

Some other problems, for which Solutions have been found by applying the
method of inversion will be discussed separately. Such Solutions refer, for
instance, to the infinite plate with two circular holes and loaded by an isolated
force.

Finally, using the same method, we shall investigate problems of the
ultimate load-carrying capacity of plates of eccentric shapes considered in the
present paper. These limit analysis problems will be treated as problems of
limit equilibrium of the theory of plasticity, with the introduetion of a suitably
formulated yield criterion.

References

1. L. Föppl: "Drang und Zwang", III. Band (1947).
2. I. H. Michell: "The inversion of plane stress", London Math. Soc. Proc. Vol. 34,

1902, p. 134.
3. W. Olszak: "Beiträge zur Anwendung der Inversionsmethode bei Behandlung von

ebenen Problemen der Elastizitätstheorie", Ing. Arch. 1935, VI. Band.
4. — "Sprezyste nieograniezone uklady plaskie".
5. — "Exzentrische Kreisrohre; ihre Verwendung und Berechnung", 1934.
6. A. E. H. Love: "A Treatise on the Mathematical Theory of Elasticity", 1944.
7. P. Fllltjnger: "Über die Spannungen im Mittelquerschnitt eines Eisenbahnzug¬

hakens", Zeitschr. für angew. Math. u. Mech., 1930, p. 218.
8. II. Sonntag : "Über einige technisch wichtige Spannungszustände in ebenen Blechen",

Mitteilungen aus d. mech. techn. Labor, d. Techn. Hochschule München, Heft 35.
9. N. W. KudFvIAVtzev : "Izgib krugloj plastiny s ekscentrichnym otvierstijem pod

diejstvijem sosredotoczennoj sily", DAN t. 53, 1946.
10. Chin-Bing Ling: "The stresses in a plate containing an overlapped circular hole",

Journ. of Appl. Phys., vol. 26, Nr. 4, 1947.
11. Ya. S. Ufland: Bipolarnyje koordinaty v teorii uprugosti, 1950.
12. S. Woinowsky-Krieger : "Über die Verwendung von Bipolarkoordinaten zur

Lösung einiger Probleme der Plattenbiegung", Ing.-Arch. 1956.
13. A. Timpe: "Achsensymmetrische Deformationszustände von Umdrehungskörpern",

Zeitschr. f. angew. Math. u. Mech., 1924, p. 373.



422 W. Olszak and Z. Mröz

Summary

In this paper the application of the method of inversion to the theory of
plates is considered. This method is based on the following two Operations:

1. The transformation of inversion of the plate; the plane of the complex
variable is assumed to coincide with the middle plane of the plate; two
corresponding Systems, the original system O, and the inverted system J,
are thus obtained.

2. The determination of correspondence between the functions W and w
representing the deflections of the plates in the two Systems mentioned
above.

This correspondence between the functions W and w is assumed to be

analogous to that between the stress functions in the inversion method as

applied to plane problems of the theory of elasticity. The "generalized
inversion", introduced by one of the authors in 1934 and 1935, is used. The relations
between the fields of the bending and twisting moments in the two Systems
are derived. These exhibit close analogy with the relations of the plane
problems. (This concerns, in particular, e. g., the trajectories of the prineipal
moments etc.) This analogy ceases, however, to be valid if the boundary
conditions are considered.

Next, some examples are presented. Solutions for a plate with a circular
eccentric hole are derived for different loads and different boundary conditions
(clamped or simply supported at the edges). The possibility of transition to
limit cases is indicated (e. g. to the case of a semi-infinite plate with a circular
hole, etc.).

The paper is intended to constitute a basis for further investigations con-
cerning the ultimate load-carrying capacity of such plates examined as a

problem of the theory of plasticity.

Resume

Le present memoire est consacre ä 1'application de la methode dInversion
a la theorie des plaques. Cette methode est basee sur deux Operations
fondamentales:

1. La representation de la plaque par inversion, le plan moyen de la plaque
etant choisi comme plan de la variable complexe; on obtient ainsi deux
systemes correspondants: le Systeme original O et le Systeme inverse J.

2. La determination de la correspondance entre les fonctions W et w expri-
mant la fleche de la plaque dans les deux systemes.
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La correspondance entre les fonctions W et w est introduite en analogie
ä celle entre les fonctions de tension dans la methode d'inversion pour les

problemes plans de la theorie de l'elasticite. On part des relations de base
etablies, pour le cas de ,,1'inversion generaliseV', par un des auteurs en 1934
et 1935. On deduit les relations entre les champs de moments de flexion et de
torsion dans les deux systemes en mettant en evidence une etroite analogie
avec les relations dans les problemes bidimensionnels. (Ceci concerne, en
particulier, p.e. les trajeetoires des moments prineipaux, etc.). Toutefois cette
analogie n'est plus valable lorsqu'on passe aux problemes aux limites.

On considere ensuite plusieurs exemples en presentant quelques Solutions

pour une plaque circulaire percee d'un trou excentre pour differentes charges
et differentes conditions aux limites (plaque encastree ou simplement appuyee
sur son contour). On indique la possibilite de passage aux cas limites (p.e.,
pour une plaque semi-indefinie percee d'un trou circulaire, ete).

Le present travail constitue une base pour des recherches concernant la
capacite portante (la charge limite) de telles plaques traitee comme probleme
de la theorie de la plasticite.

Zusammenfassung

Die Arbeit behandelt die Anwendung der Inversionsmethode in der
Plattentheorie. Diese Methode besteht aus zwei grundlegenden Operationen:

1. Einer geometrischen Inversionsabbildung der Platte, wobei die Ebene der
komplexen Veränderlichen mit der Mittelfläche der Platte zusammenfällt;
auf diese Art erhält man zwei einander zugeordnete Systeme: das Originalsystem

O und das invertierte System /.
2. Einer gegenseitigen Zuordnung (in den beiden Systemen) der Funktionen

W und w, die die Durchbiegung der Platte darstellen.

Diese gegenseitige Zuordnung der Funktionen W und w wurde in analoger
Art wie die gegenseitige Zuordnung der Spannungsfunktionen bei Anwendung
der Inversionsmethode in der Theorie der zweidimensionalen Probleme der
Elastizitätstheorie vorgenommen.

Es wird hierbei von den Zusammenhängen der „verallgemeinerten Inversion"

(angegeben von einem der Verfasser 1934 und 1935) Gebrauch gemacht.
Es werden die Zusammenhänge, welche zwischen den Feldern der Biege-

und der Drillmomente in den beiden Systemen bestehen, abgeleitet. Diese
sind durch eine weitgehende Analogie mit Zusammenhängen, die für
zweidimensionale Probleme charakteristisch sind, gekennzeichnet. (Dies betrifft
insbesondere z.B. die Trajektorien der Hauptmomente usw.) Diese Analogie
bricht jedoch beim Übergang zu den Randbedingungen ab.
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Weiterhin wurden einige Beispiele behandelt. Es wurden die Lösungen für
eine Kreisplatte mit einer exzentrischen Öffnung, beim Auftreten von
verschiedenen Typen von Belastungen, angegeben. Es werden dabei Platten mit
verschiedenen Randbedingungen untersucht (Ränder eingespannt, Ränder
frei gestützt). Es wurde auf Möglichkeiten betreffend den Übergang zu Grenzfällen

hingewiesen (Platte in Gestalt einer Halbebene mit kreisförmigem
Ausschnitt usw.).

Die Arbeit wird als Grundlage für weitere Untersuchungen über die
Grenztragfähigkeit derartiger Gebilde, die als Probleme der Plastizitätstheorie
behandelt werden, betrachtet.
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