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Stability of Rib-Reinforced Cylindrical Shells Under Lateral Pressure

Stabilite sous charge laterale des voiles cylindriques avec nervures de renforcement

Stabilität von zylindrischen Schalen mit Verstärkungsrippen
unter seitlicher Belastung

Johannes Moe, Lie. techn., Trondheim, Norway. At present: Visiting Engineer,
Portland Cement Association, Chicago, 111., U.S.A.

1. Introduction

It is the purpose of the present paper to investigate the stiffening effect
of ribs on cylindrical shells under purely lateral pressure.

During the last decades several authors have devoted a great amount of
theoretical and experimental work to the problem of the buckling of cylindrical

shells.
When considering the special case of shells subject to lateral pressure, some

of the earliest theoretical investigations are due to Lorenz [1], Southwell
[2, 3] and v. Mises [4].

Valuable contributions were also made by Sanden, Tolke [5] and by
Flügge [6].

Windenburg and Trilling [7] compared various instability formulas and
results obtained at the U. S. Experimental Model Basin.

Further theoretical and experimental investigations were aecomplished by
R. G. Sturm [8].

Most of the earlier investigators arrived at a set of three homogeneous
partial differential equations relating the three displacement components of
the median surface of the shell, which expressed the buckling condition.

In 1934, however, Donnell [9] sueeeeded in establishing one differential
equation of the eighth order which expressed entirely the buckling condition.
The derivation was based upon certain approximations which in most cases
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are of very little importance. Certain limitations of the equation will be
discussed in Section 12.

On the basis of Donnell's equation Batdorf [10] demonstrated that the
small deflection buckling theory may be considerably simplified.

The experimental works reported in the papers mentioned above are carried
out on metallic cylinders. The only experiments known to the author, which
have been performed on reinforced concrete shells failing by instability, are
due to Lundgren [11] who tested five short shell roof modeis under lateral
pressure.

Most of the papers mentioned deal with buckling problems of isotropic
shells. In a recent report Stein, Sanders and Crate [12] have demonstrated
that Donnell's equation in a modified form may be applied to shells stiffened
by ribs and loaded with pure shear.

The present paper investigates in a similar manner the buckling of stiffened
cylindrical shells subject to lateral pressure.

2. Symbols

L length of shell.
b width of curved panel.
r radius of shell.
t thickness of shell.

q number of stiffeners
L

\q
c width of stiffener
h height of stiffener.
A area of stiffener c(h — t).

IL*

d stiffener spacing -I.

Z shell parameter l— Vi — /u,2).

D flexural rigidity of shell 1.

E J flexural rigidity of stiffener.
E Young's modulus of elasticity.
ix Poisson's ratio.
y ratio of rib stiffness to shell stiffness yyri).
a ratio of rib area to shell area 7 •

A distance between nodes measured circumferentially.
ß wave length ratio \-A
x axial coordinate.

y circumferential coordinate.
u axial displacement of the median surface during buckling.
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v circumferential displacement of the median surface during
buckling.

w radial displacement of the median surface during buckling,
positive inward.

fl«> Bmp,Cm,Dm coefficients.
e elastic strain in the circumferential direction.

K change in curvature in the circumferential direction.

p lateral pressure, positive inward,
er applied circumferential stress, positive in tension.

Gx applied axial stress, positive in tension.

T applied shear stress.
ct' o-' t' corresponding additional stresses due to buckling.
N applied circumferential force, positive in tension.

Nx applied axial force, positive in tension.

Nxy applied shear force.

N', N',N' additional forces due to buckling.
M' ,M'X, M'xy additional moments due to buckling.
0' O' additional transverse shear forces due to buckling.

ky stress parameter (— -°^2 j.
lcx stress parameter I — °^ 2 j.
F Airy's stress function for the additional median surface

stresses produced during buckling.

\Gy~~dä*' °x~~ dy*' T~ dxdy)'

U strain energy in ribs due to extensional stresses produced
during buckling.

Jjh strain energy in ribs due to bending stresses produced during
buckling.

rj relative importance of the extensional forces \rf\ -

/ (y)> 9m (x) deflection functions.
Q differential Operator.

F2 Laplace Operator [^ + ^-j.
[74 p [72 [78 (74 r/4

[7-4 inverse Operator defined by the equation F-4 (P74/) /.

8(x-id) delta function defined by the equation.

$J(x)S(x-id)dx f(id),
— CX)

q
2 V1 min p-n%

8^=^TTr4sing+Tsl%-+T-
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3. Assumptions

The derivations below are based upon the following assumptions:

1. The ribs are placed symmetrically with respect to the median surface of
the shell, as shown in fig. 1.

2. The torsional stiffness of the ribs may be neglected, and the ribs are acting
along lines in the median surface of the shell.

3. Ribs as well as shell are in a state of uniform compression before buckling.
4. The shell is made of a perfectly elastic material.
5. Plane sections perpendicular to the median surface of the shell remain

plane and normal to the deformed median surface.

6. Thickness of shell is constant during buckling.
7. Shell thickness is small compared to radius of curvature and length of shell.

8. Deflections are small compared to radius of curvature and length of shell.

~Th lt

d

-iir* iir-

Fig. 1. Section Through the Shell.

Regarding the first assumption, it is common practice to provide the shell
with ribs on one side only. In such cases it is probably correct to include the
effective width of the shell when calculating the rigidity of the ribs.

The torsional rigidity of the ribs is of little importance if the shell buckles
into one half wave in the longitudinal direction. If, however, the panels between
the ribs buckle separately, the second assumption involves some inaccuracy
on the safe side.

Assumptions 5 to 8 are well known as the basis of the "small deflection"
buckling theory.

4. Basic Equations

In this section the Donnell-equation, which is the basis of the further
derivations, is established.

The reader should note that for the present problem we are interested only
in the deflections u, v and w that develop during buckling. Deflections are
therefore measured from the position of the deformed surface just before

buckling starts.
Correspondingly, we are interested in the additional forces and moments

produced in the shell during buckling. Those quantities are denoted, Nx, Ny,
Q'X,M'X, etc.
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Donnell [9] introduced the following simplified relations between forces,
moments and deflections of the median surface of the shell:

N' Et
1-M2

'du
dx (a--V>\dy r)\

Et /dv w du\
y 1 —fi2 \dy r dx)'

N> =N> Et (du 8v\

M'=M'=-D(1-^W

(4.1)

xy yx ~v^ *~'dxdy'
Eqs. (4.1) are the same as those of the general bending theory established

by Donnell.
The same equations are used by Jenkins [13]. Holand [14] and Moe [16]

have shown that for most practical cases the Donnell-theory is of sufficient
accuracy.

Before buckling starts, the shell is assumed to be in a membrane state of
stresses, expressed by the equations:

^ + ^=0, ^ + ^- 0, ±N, + P 0. (4-2)
cx dy dy cx r y

Eqs. (4.2) express a stress condition which exists in a long cylindrical tube
loaded with constant axial load and twist at the ends, and constant lateral
pressure.

When the membrane forces reach the critical value, buckling starts. Due
to the buckling, secondary forces and moments arise, and the equations of
equilibrium take the following form:

d(Nx + N'x) 8(NVX + N'VX)_
dx cy

d(Ny + Ny)
+

d(Nxy + N'xy)
0

dy dx
ÖQ'r ÖQ'v 1/1VT AT/X AT ^W AT

<^W _ d2Wl^ + l^ + V(N»+N»)+p+NvW+Nx^+2N™~^y 0' (-3)

dx cy x

dy dx u

where N'xN'y etc. denotes the secondary forces.
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Only the third of eqs. (4.3) differs appreciably from the corresponding
equation in the bending theory. This equation expresses the equilibrium of
forces in the radial direction.

The last two terms take into account the radial components of Nx, Nxy
82wand N„„ due to the distortion of the shell element. The term N„-x—? corres-

pondingly takes into account the increased radial component of Ny due to the

¦k-g-l between the faces of the shell element.

The secondary forces N'x N'y are of an order of magnitude smaller than
Nx, Ny and Nxy. This is the reason why the secondary effects of Nx, Ny and
Nxy must be taken into account when establishing the equations of equilibrium.

There are several other secondary terms which enter into the equations of
equilibrium (see for inst. [15]), but those terms are of minor importance and
are not considered here.

Combining eqs. (4.2) and (4.3) one obtains:

8K+8N^ 0j
ZN'V

{
8N'xy _ Q>

dx dy ' dy dx
(4-4)

dQ' dQ' 1 .,T ,T,, ,T ?w) d2w j,T d2w^ + -~ + -(Ny + Ny) + Nx^^ + 2Nxy-—— + Ny-^ + p= 0.
dx dy r u y dx2 ydxdy udy2

It is convenient at this point to introduce Airy's stress function F, defined

by the following equations:

d2F 1 d2F 1 d2F 1° * -N' -N' --N' (4 5)
dy2 t x> dx2 t y9 dxdy t xy' [ }

The first two of eqs. (4.4) are then identically satisfied. From the last two
of eqs. (4.3) one further obtains

_ dM'x BM'VX _ 8M'V 3M'XV

Substituting expressions (4.1) for M'x, M'y and M'xy into eqs. (4.6) yields

These values for Q'x and Q'y are substituted in the last of eqs. (4.4), yielding
the following expression

nm / 82w n d2w 8*w av 182F\ n ,A D.

Eq. (4.8) contains two unknown quantities F and w. To solve the problem,
another equation relating these unknowns must be found.
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This is obtained by the elimination of v and u between the first three of
eqs. (4.1). Thus:

,.T, ,.„ 182F 82F\ „du

.„ J82F 82F\ wJ8v w\

(dzu
d3 v \

dxdy2 dx2dy/'

(4.9)

d2N'xy

dxdy -t d*F
dx2dy2 2 (1-\-(jl) \d x d y2 dx2dy

Solving for -E— from the first equation and for ^— from the second and° dx ^ dy
differentiating twice with respect to y and x respectively, one may eliminate
u and v by Substitution in the third of the equations. Thus, the following
expression for F is obtained

-??• <410>
r dx1

V*F -
Eqs. (4.8) and (4.10) yield one simple differential equation of the eighth

order:

^^fi Etd*wDV*w + -t-—r-tV*r2 dx*
d2w d2w d2w

OA7r-Ar + 2 T- — + (J..-7—TT +'dx2 dxdy y dy2 "t\ V*p 0. (4.11)

Eq. (4.11) is the complete Donnell-equation. As proposed by Batdorf [10],
the equation will be used in the following modified form:

~_, Et„ Ad*w
rl dx*

1°*
d2w ^ d2w d2w

|_2T (-er h
dx2 dxdy y dy2 ¥\ -p 0. (4.12)

In the discussion of the boundary conditions it will be necessary to know
u and v in terms of w. It is convenient, therefore, to deduce these relationships
here.

From the first of eqs. (4.9) it is found that
d d2 d2

dx dy1 dx1

which together with eq. (4.10) yields
d*w d*w-Ar/4 -1

dx r Y"dx* dx2dy2P-

Similarly, from the second of eqs. (4.9):

8 d2 d2 EE^-F*v =-fYF*F-fjL^V*F + — F*w,
dy dx1 dy* r

which, together with eq. (4.10) yields

— F4*; =-dy r
d*w

dx2dy2 dx1

(4.13)

(4.14)

(4.15)

(4.16)
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By integrating eqs. (4.14) and (4.16) with respect to x and y respectively,
the following relationships are found:

V*u

V*v

V
d3w d3w
dxö dxdy2

(2+m)
d3 w d3 w

+d x2 d ij d y

(4.17)

5. Derivation of the Differential Equation for a Shell
Reinforced by Ring Ribs

In the case of a shell stiffened by ring ribs the expression (4.1) for M'y
must have a correction to account for the effect of the ribs.

For a curved bar with circular axis the following relation exists between
moment and radial displacement [15]:

d2w w M
+ A7 -dy2 EJ' (5.1)

The second term on the left side of eq. (5.1) may be neglected in the present
derivation. A corresponding term has been omitted in the fifth one of eqs. (4.1).
The effect of this simplification is discussed in Section 12.

Hence one may take into consideration the stiffening effect of the ribs by
the following expression:

M'yHb -EJZ8(x-id)~,i=i v y
(5.2)

where ^ S (x — id) is a delta-function which is zero between the ribs, and equals
i l

one along the lines of action of the ribs, and q is the number of ribs.
Combining now eq. (5.2) and expression (4.1) for M'y one obtains

M' D (d2 w d2 w\
^Jx^ + J^y2) -\-ydJ]8(x — id)-

d2w

i=i dy*
(5.3)

where EJ

d distance between ribs.

Eq. (5.3) introduced into the last of eqs. (4.6) yields:

Q'y ~V
\dy* dx2dy] & 'dy3}

The circumferential force Ny just before buckling starts has the following
value:

Ny a t[l+ocdJ]S(x-id)].
i=i

(5.5)
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Introducing now the modified expression (5.4) and Ny from eq. (5.5) into
the last of eqs. (4.4), the following differential equation is obtained

7 £.*/ • i^w *
V^w +yd^Hx-id)-^-^

d2w d2w d2w
GxIx^+ TIxTy + <Ty'd~yY

q d2V) rr Q 1 d2 F
+ OLdGy^h(X-id)^ + ^[l+*d^h(x-id)-]+-

i=i dy2 r ^ r dx2

In the case of constant radial pressure one must have

-£-•
(5.6)

pr -tay[l+ocdJ]8(x-id)], (5.7)
i=i

if edge effects are neglected.
Thus eq. (5.6) can be simplified as follows:

12Z2 Ad*w 1
« 0/ 7d*w

t\ d2w ri 7^0/ n^d2w _ d2w 1
(5.8)

after elimination of F by means of eq. (4.10).
Note that the term taking into account additional axial forces in the ribs

due to buckling is neglected. The inclusion of these additional forces would
lead to a more complicated differential equation. The importance of this
simplification is discussed in Section 10.

In the further discussions it is assumed that r 0. Buckling due to pure
shear is discussed by Stein, Sanders and Crate [12].

6. Solution of the Differential Equation

It is now assumed that the shape of the buckled surface of the shell can be

expressed by a series of the following form
OO 00

niry v^ mirx x V ^ /- xw sin—^- ^jö^sm—jf- f(y) 2^am9m(x)^ (6-!)
m=l m=l

where b is the circumferential width of the panel under consideration, and n
is the number of half waves in the circumferential direction. If the expression
(6.1) for w is introduced into eq. (5.8) one cannot find the Solution in the general
way by considering one term of the deflection function separately. This is due
to the delta-functions appearing in the equation.

Eq. (5.8) will be solved applying the Galerkin method. In this method it
is assumed that certain weighted averages of the left hand side of eq. (5.8)
vanish, instead of the equation itself.

The deflection function (6.1) also acts as a weighing function.
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The coefficients am should therefore be determined from the following set
of simultaneous equations.

ZBmpam Q, p=1.2... (6.2)
W=l
bL

where Bmp J J/ (y)gp (x) Q [f (y), gm (x)] dxdy
oo
h T (6'3)

nsm-T^*miLT-QU(y),gm(x)]dxdy-
0 0 0 iv

Q(w) denotes the following differential Operator (see eq. (5.8)).

{12 Z2 d* q d*

t [ d2 q d2 11

-^[^8^+^[1+ocdi?'1S{x-id)]dr\r-
If the integrations (6.3) are carried out, one obtains the following set of

homogeneous equations from which am should be determined:

where ß — n~, (6.5)
A b

_ oxtL2 _ oytL2
x~~ Dir2 ' y ~ Dir2 ' }

2 V • m7Ti ' P7ri t* n\önrnr* 7" 7 sin sm -—-. (6.7)qmp gi+l^J g+1 g+1 v ;

§gmp takes the following values:

Sgmp + 1 if p — m is a multiple of 2(g+ 1),

8gmp — 1 if p + m is a multiple of 2 (g+ 1),

8gmp= 0 if neither or both are true.

The following notations are introduced:

MP (p2+ßr+~w^-p2kx-ß2ky,
R yßi-acß2lcy.

Eq. (6.4) then takes the form:

(6.8)

Mpap + RZ am8qmp 0. p 1,2, (6.9)
m=l

A buckled shape of the shell can only exist if the determinant of the
coefficients of eq. (6.9) is zero.
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This determinant of the coefficients is infinite. The first seven rows and
seven columns in the upper left hand corner of the determinants for the two
special cases q=l and q 3, are shown here:

q l:

q 3:

M± + R 0 -R 0 + R 0 -R
0 M2 0 0 0 0 0

-R 0 Ms+R 0 -R 0 + R
0 0 0 M± 0 0 0 0. (6.10)

+ R 0 -R 0 M5 + R 0 -R
0 0 0 0 0 M6 0

-B 0 + R 0 -R 0 M7 + R

Mx + R 0 0 0 0 0 -R
0 M2 + R 0 0 0 -R 0

0 0 M^ + R 0 -R 0 0

0 0 0 Jf4 0 0 0 0. (6.11)
0 0 -R 0 M5 + R 0 0

0 -R 0 0 0 M6 + R 0

-R 0 0 0 0 0 M7 + R

The determinants are extremely simple. The determinant (6.11) for q 3

will now be discussed and the significance of the various terms shown.
Firstly, it is observed that in the fourth row and fourth column there is

only one term that is different from zero, which can therefore be put outside
the determinant, yielding:

MA

M1 + R 0 0 0 0

0 M2 + R 0 0 -R
0 0 M3 + R -R 0

0 0 -R M5 + R 0

0

-R
-R

0

0

0

0 Jf6 + E

R
0

0

0
0

0 0 M- + R

0. (6.12)

Correspondingly, all terms -M^+1)^ can be put outside the determinant for
i l,2,3 These terms correspond to buckling patterns with nodal lines
along the ribs, as shown in fig. 2.

q =3
¦P=4

Fig. 2. Buckling Between the Ribs.
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Next, the reduced determinant is considered.
As the small deflection theory which is fundamental for the present paper,

is insufficient for cylindrical shells in axial compression, the following
discussion is limited to the case when cf„ 0.

7. Buckling under Lateral Pressure

The terms M1,M7,M13. M(2iq+1) (where i 0,1,2. in (6.12) constitute
a determinant which is independent of the other terms. Fig. 3 shows the
deformations corresponding to Mx and M7.

q =3
P=7i^

Fttt^H] ^s^
p=1

Fig. 3. Buckling Across the Ribs.

In the case of pure lateral pressure it is known that the equations
containing Mx correspond to the lowest eigenvalue of the system. This eigenvalue
can therefore be determined from the very simple determinant

-RMA Mt + R
-R

or in general form

M„ Mx + R
'*+1| -R

which reduces to the equation

M.

M

M7 + R

-R
2g+l + -"

0

0,

L«+i ["•+'(1 +*t) 0.

(7.1)

(7.2)

(7.3)

Also the determinants (7.1) and (7.2) are really infinite, but numerical
calculations show that it is quite accurate enough to consider only the first
two terms.

In fact, when q> 1, also the correcting term 1 is of very little importance,

and one arrives at the following equation:

Mq+1 [M1 + R] 0 (when q>l) (7.4)

The Solution
Mx + R 0,

which by introduction of expressions (6.8) reduces to

(7.5)
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determines the buckling load as long as this is below the value which
corresponds to Mq+1 0. The latter Solution expresses the condition under which
the shell between two consecutive ribs buckles independently of the rest of
the structure.

The buckling criteria presented above contain a parameter ß which expresses
the wave length ratio. When numerical calculations are carried out, the buckling
load must be minimized with respect to ß. This is done by trial and error.

In fig. 4 curves are given which show the relation between the stress
parameter (1 + <x)ky and the stiffness ratio y for various values of the curvature

parameter Z. The curve marked Z 0 applies to the flat plate. The dashed
curves will be discussed later on. They apply only when q= 1,

500
400

300

200

100 Z5000

Z 1000

0.10

z wo

ö io

Z IO

Z O

q number of ribs
a=A/td

40500 0.2 0.3 0.4 0.5 0 2.0 3.0 4.0 5.0 10 20 30

/ nn ~~*

Fig. 4. Influence of Rib Stiffness on the Buckling Stresses of Plates and Shells.

When minimizing the buckling load, ß has been assumed to vary con-
tinuously. This will give buckling loads which are a little too low when the
buckling pattern, which corresponds to the found value of ß, does not agree
with boundary conditions and dimensions of the shell. However, the discre-
pancies are in most cases of very little importance and on the safe side. The
buckling load varies very little with variations in ß in the neighbourhood of
the value at which buckling starts. In fig. 5 the variations of ß with y will be
found for various values of Z.
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The terms in the buckling determinant (6.12) which have not been
considered, correspond to higher eigenvalues and will not be discussed further in
the present paper. If the shell is also loaded axially, those higher buckling
modes may under certain circumstances become important and should not be

neglected.
To facilitate the interpolation for various values of Z, a new set of buckling

curves is presented in fig. 5. In that figure the straight lines corresponding
to the equations Mq+1 0 have been omitted.

The panel between two consecutive ribs should therefore be treated as an
isotropic shell, and the safety against local buckling of the panel is found by
using the curves in fig. 6, which are drawn from eq. (7.5) after putting ay 0.

In this case one must of course introduce the distance between two consecutive

ribs I -J as ^he length of the shell.

Fig. 7 shows the values of y at which the safety against buckling for the
complete structure equals the safety against individual buckling of the panels.

As previously mentioned, the third term in the series (6.1) for w is of some

importance in the case of one single rib (#=1). The buckling pattern in this
case will be studied a little more to determine the importance of a3.

When q 1 the determinant (7.2) corresponds to the following homogeneous
set of equations:

(M, + R)a, -Ra* 0,11 3
(7.6)

-Ra1 + (M3-{-R)as 0.

300

fcioo

40

^C
SOOO,

n^
2500

-rZ5000 ZIOOO

Ttr
Z2500 Z500

ffl
Z250-rZIOO

-^30- Z500

ZIOO
ZZ50 I=fcJ20:

(UOC)ky
(|+a)kyone rib only (q=1)

ZIOO

Z50
10020 30 40 503 4 50.2 0.3 0.4 0.5

^=4L^
Fig. 5. Buckling Parameters for Ring-stiffened Shells under Lateral Pressure.
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Adding the two equations one obtains

M1a1 + M3as 0,

from which
__MX (7.7)

50

40

30

'¦"!" ^y ^
.^s*

<* S *
x- S -"

h£ S'£

^
.1000 2000 5000 10,000Z—* .^_J

s»
^' ^>

/•!

50

40

30

^

1 2 3 4 5 10 20 30 40 50 100 200 300 500 1000

Fig. 6. Buckling Parameters for Isotropie Shells Under Lateral Pressure.

100i v i\i ^

40

N:

\:

^-00 q-number of ribs

1 02 o= A/tda 02 <x A/i

10 20 30 40 50 100 200 300 500 1000 2000 5000 10,000

Fig. 7. Optimum Rib Stiffness.
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Numerical calculations show that the value of a3 is zero for y 0 and
increases to 0,05^ — 0,20^, depending on the shell parameters, when y
reaches the value at which one panel buckles separately. The influence of the
rigidity of the ribs on the buckling pattern is shown in fig. 8. In fig. 8 a there
is no rib (y 0) and the shell buckles longitudinally into one half sine wave.

®

®
a.-a

Fig. 8. Effect of Variations in the Rib Stiffness on the Buckling Pattern (q= 1).

When y > 0 the buckling pattern will deviate from the sinecurve, as

demonstrated in fig. 8b. The deviation, taking its maximum value just when y
reaches the value at which the two panels buckle separately (fig. 8 c), will
usually be 10—20% of a±.

The dashed lines in fig. 5 applies when q=l. In this case the buckling load
is slightly reduced on account of the modifications of the buckling pattern
just discussed.

It is quite natural that such modifications will not influence the buckling
load when q> 1. Considering once again fig. 3, it is clear that the buckling
pattern corresponding to the value p l represents a very high buckling load.
The cylinder will surely buckle in a half-sine wave without noticeable
modification due to the influence of the term Mi

M.2qA1
in eq. (7.3).

8. Buckling of the Fiat Plate Reinforced by Ribs

If Z equals zero, one obtains the buckling condition for a flat plate
reinforced by longitudinal ribs as shown in fig. 9.

The general buckling conditions in this case take the following form:

(l+a)iy

ky —

(l+jSa)8 + yj84
ß2

[(q+l)2 + ß2]2

ß2

(8.1)

(8.2)
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Eq. (8.1) corresponds to the condition M1 + R 0. Eq. (8.2) corresponds to
Mq+1 0, and the buckling load is the minimum value found from the two
equations. In fig. 4 the Variation of ky with y is shown.

Eq. (8.1) is exactly the same equation as the one given by Timoshenko
[15] when due regard is taken to the different notations used. It is only
necessary to introduce

ßr~ß9 2yT 2hT ol and bT L, (8.3)

where the index T denotes Symbols used by Timoshenko for q=l.
Correspondingly, one may also find from eq. (6.4) the buckling load for a

flat plate loaded in the direction perpendicular to the stiffening ribs as shown
in fig. 10.

In this case
(p2 + ß2)2 + yß*8q

ICrr
vqpp

p*
(8.4)

where again only one term of the deflection function (6.1) has been considered.
In the case of one rib (q= 1), a better approximation is obtained by taking

into account the combined influence of ax and a3 as discussed in Section 7.

If p is chosen equal to the number of panels (q+ 1), then Sqpp is zero and
one obtains

ICrf.

(2+1)
(8.5)

-cry ay

Fig. 9.

1- 1 1 1 1 1 1 1 1 1 1 l 1 Kx

tt tt tt 11 tTTt-/r.

Fig. 10.
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If p is not a multiple of (#+1), Sqpp 1 and

kx=^mi?. (M)

The minimum value of kx as found from eqs. (8.5) and (8.6) yields the
buckling load.

Eq. (8.6) is in every respect in accordance with eq. (288) in [15].
This is easily seen when remembering that in this case:

9. Boundary Conditions

The assumed expression (6.1) for the deflected surface corresponds to zero
deflection and zero moments along the edges.

Introducing w from eq. (6.1) into expressions (4.17) and integrating, yields
OO 00

W Sin-y- 2_iCmC°S—j—, V COS—jf~ /^^Sin-j-, (9.1)
m=l

where Cm and Dm are functions of am, m and the shell dimensions only.
From eqs. (9.1) it is seen that at the curved edges where x 0 or x L

du
— 0, v 0, u*0. (9.2)dx

In the case of a curved panel one correspondingly finds that at the straight
edges where y 0 or y b

j^ 0, u 0, v^O. (9.3)

Hence, the deflection form (6.1) is based upon the following assumptions
concerning boundary conditions:

1. The edges are simply supported.
2. No displacements of the shell parallel to the edges.

3. The shell is free to move perpendicular to the edge in the plane of the
median surface of the shell.

In the case of a single cylindrical shell roof the edge conditions along the
curved edges are generally in good agreement with the conditions of eqs. (9.2).

If the edge beams along the straight edges have little stiffness horizontally,
eqs. (9.3) are in most cases fairly well satisfied.

Eqs. (9.2) and (9.3) are, however, not satisfied in the internal Valleys
between parallel shells, nor at the internal supports of a continuous shell.
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Batdorf [10] states that the presence of normal stresses at the curved
edges will probably not affect the buckling load appreciably. Stresses normal
to the straight edges are, however, believed to be of some importance.

10. Investigation of the Errors Made when Disregarding
Extensional Rigidity of the Ribs

As stated before, the extensional rigidity of the ribs was neglected when
establishing eq. (5.8).

An idea of the errors involved by that assumption is obtained by
comparing the elastic strain energy which is stored in the ribs due to extensional
forces, to the energy absorbed by the ribs due to bending stresses. Only the
latter part is taken into consideration in eq. (5.8).

The strain energy due to the extensional forces is:

q L b
q L b

^ tS \oyey8(x-id)dxdy ye~Lj ((Jy)2h(x-id)dxdy, (10.1)
*=1oo i=1o o

where o'y is the additional stress produced during buckling, given by the
expression:

d2F' (10.2)y dx2 '

From eq. (4.10)

E (tt\2 ttx ßny „^ _.— lyl ^sin-y-sm-^-y^, (10.3)„A „ E d2w E (tt\2 .ttx. ßrryV*F —- - ¦ » ~ — — p *
r dx1

if the first term only of eq. (6.1) is considered.

By integration one obtains

f(-Y

As (jy must be periodical, the constants of integration of equation (10.4)
equals zero.

Hence
d2F 1 Ea, ttx ßrry

°y i^=-{r^^smi7*m-ir> (10-5)

which by introduction in eq. (10.1) yields:

1 EAblaxUr
(1+|8;2\4 (?)'sk-t
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The strain energy due to bending is

q L, b
q L b

Ub=lfJJJM'yKyS(x-id)dxdy ^-^jj{^Js(x-id)dxdy.(l0.1)
"0 0 0 0

d2 W
Introducing now t—% from eq. (6.1)

q L b

U^^^a^j j[^ün^l)28{x-id)dxdy, (10.8)
o o

which by integration yields:

TT EJ&v*b
U"= 4L* a^(sin^)2. (10.9)

i=l \ '

As a measure of the relative importance of the terms neglected, take the
ratio

U AL* 1

v TTb Tr2 T^^JTß2)1' (1°'10)

which in the case of symmetrical cross section (fig. 1) equals

12Z2 (t\2 1 „„„xi=^r=F)(h) waTW' (1(U1)

From this equation it is possible to calculate in each particular case the
part of the stiffening effect of the ribs which has been neglected.

For reinforced concrete shell roofs Z varies between 10 and IO4, and
stiffening ribs are probably only used for values of Z above 100. In such cases

r] will always be less than 0,05 if -z ^ 0,10 and y < 100. Poisson's ratio is assumed
to be 0,2.

11. The Effect of Longitudinal Ribs

If the shell also is provided with axial ribs, the previous equations will be

slightly altered.
Defining yx, dx and qx as being analogous to the corresponding terms

without subscripts, but now referring to the ribs in the axial direction, the
fourth of eqs. (4.1) must be replaced by the following:

~d2w d2w 7
Q*

~ T yd2w~] /,, ,v

„, T.[d3w d3w _
Q*

0 7X<

and correspondingly
l~^3 -j/5 ?ß qu qx pß ln

(11.2)
d3w
dx3
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Eq. (11.2) is now, together with eqs. (5.4) and (5.5), introduced into the
last of eqs. (4.4) thus yielding:

12 Z2 „ Ad*w .« 7 7,d*w - «*
7 7 ,d*w

viw+-irF'i8xJ+yd^18(x-id)w+yx\^8iy~ldx)^
m i)

D ^^+^[l+^2i3(-^)]^+2r^ =0.

Eq. (11.3) corresponds to the previously derived eq. (5.8).
In the case of pure lateral load the effect of longitudinal ribs is compara-

tively small. For simplicity eq. (6.1) for the deflection function is applied,
though it is possible that a series expansion in the ^/-direction would give a
better approximation to the buckling pattern. The stiffening effect of the
longitudinal ribs will therefore probably be slightly overestimated in the
present derivations.

Solving eq. (11.3) by the Galerkin method, the following set of
homogeneous equations expressing the buckling condition is found:

12 Z2 p* 1
(p2+ß2)2 +-^r (p2+ß2^+yxP^q*nn-P2K-ß2ky\ aP

00

+ (YP-*ß*ky) 2>msSBW o,
(11.4)

771=1

qx

where 8— dk5(sin^rr)2-
^qxnn takes the following values:

8qxnn= +1 for n + (qx+l)i i 1,2,3...
8qznn 0 for U (&.+ !)».

Eq. (11.4) may also be written as follows:

(Mp)xap + B*% am\mp 0, (11.5)
m=l

where

{Mp)x (p2+ß2f+^ {p2+ßr +y*viKnn-p*K-ßzh- (n-6)

As will be seen from eq. (11.6) the influence of yx will be the one of reducing
the importance of higher buckling modes in the axial direction, since
(Mp)x Mp.

^The equality applies only when the buckling pattern involves nodal lines
along the axial stiffeners \n (qx+ l)i].

Thus, it is clear that one may, also in this case, calculate the buckling load
from the equation

Mq+1[M1 + R] 0. (11.7)
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The expression in the parenthesis yields, for ax 0, the following equation

(1+«)^=]^ +^ ß2{llß2)2+Vß2 + JßtKnn- (11.8)

The effect of longitudinal ribs for various values of y and Z is shown in
table 1. It is assumed that the circumferential ribs are so closely spaced that
local buckling of the panel between two consecutive ribs is prevented. The
effect of the circumferential ribs alone is also shown in the table. It will be
seen that it is poor economy to provide the shell with axial ribs under the

Table 1. Effect of Longitudinal Ribs

z
y 0 y 1.0 y 10 y- 100

yx 0 y^^O Yz=l yx 0 y*=10 y* 0 y*=100

100
ky

Effect
of ribs

11.90 18.34

54.0%

18.50

55.4%

57.60

384%

60.62

408%

271.1

2180%

322.0

2600%

1000
ky

Effect
of ribs

34.26 55.95

63.0%

56.00

63.0%

192.9

462%

193.7

462%

982.5

2760%

996.3

2800%

present loading conditions. The strengthening effect of the axial ribs is somewhat

overestimated in the table, for the following two reasons:
1. The assumed buckling pattern is probably not very close to the correct

one.
2. When establishing table 1 the fact is disregarded that very often the

buckling pattern will, due to the effect of the longitudinal ribs, be slightly
altered in such a way that n (qx + 1) i and therefore 8Qxnn 0. This will imply
a lower effect of the axial ribs than the one which is read from the table. When
calculating a special shell construetion with a given number of ribs this may
easily be taken into account.

If the shell is provided with axial ribs only, the buckling load is found
from the formula

_ (1+ß2)2 12 Z2
^V ~ 02 +

which in the case of a flat plate reduces to

_(l+P)a + ya8q„
v~ ß2

(11.9)

(11.10)

This equation of course leads to the same results as eq. (8.4).



Stability of Rib-Reinforced Cylindrical Shells Under Lateral Pressure 135

12. Limitations on the Formulas

Donnell [9] has demonstrated that the small terms neglected when

establishing eqs. (4.1) are of the order of magnitude (-) or f—) as compared
to the remaining terms.

Returning now to eq. (5.1) it is remembered that the second term on the
left side of the equation was neglected.

Introducing expression (6.1) for w, one finds that

d2w w
dy2 r2 (mr\2

1] [7' n\i2 + 1 (12.1).2

since b 2irr for the complete tube. Also the simplification of eq. (5.1), there-

(2\2— I
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Summary

In the present paper formulas are derived and graphs presented which
estimate the stiffening effect of ring ribs on a complete thin-walled cylinder
loaded with external lateral pressure. As a complete cylinder generally will
buckle into a great number of circumferential waves, the formulas are also
believed to apply in predicting the safety against buckling near the top of a
rib reinforced shell roof construetion. Additional account must be taken of the
influence of axial stresses on the stability of the shell.

Resume

Les relations et les courbes qui figurent dans ce memoire sont destinees

au calcul de l'influence raidissante des anneaux de renforcement sur un cylindre
ferme a paroi mince soumis ä une pression exterieure laterale.

Etant donne que generalement le voilement d'un cylindre ferme s'effectue
selon de nombreuses ondulations disposees sur ce perimetre, les formules
doivent trouver egalement application ä la determination de la secutite vis-a-
vis du voilement au voisinage de l'arete superieure des ouvrages en voüte
mince raidis par des nervures. En outre, il y a lieu de tenir compte de l'influence
des contraintes axiales sur la stabilite du voile.

Zusammenfassung

Die in der vorliegenden Abhandlung abgeleiteten Beziehungen und die
gegebenen Kurven dienen der Berechnung des versteifenden Einflusses von
Verstärkungsringen auf einen geschlossenen dünnwandigen Zylinder unter
einer äußeren seitlichen Pressung.

Da ein geschlossener Zylinder allgemein in einer großen Zahl von, dem

Kreisumfang folgenden Wellen ausbeult, sollten die Formeln auch Anwendung
finden in der Bestimmung der Sicherheit gegen Beulen in der Nähe des Scheitels

von rippenversteiften Schalendachkonstruktionen. Zusätzlich muß der
Einfluß von Axialspannungen auf die Stabilität der Schale berücksichtigt
werden.
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