Zeitschrift:	IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band:	28 (1968)
Artikel:	Comportement postcritique des plaques cisaillées raidies: deuxième partie: répartitions des contraintes et analyse de l'état limite
Autor:	Massonnet, Ch. / Škaloud, M. / Donea, J.
DOI:	https://doi.org/10.5169/seals-22186

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 14.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Comportement postcritique des plaques cisaillées raidies Deuxième partie: Répartition des contraintes et analyse de l'état limite

Verhalten von ausgesteiften Platten bei Schub im überkritischen Bereich 2. Teil: Spannungsverteilung und Analyse des Grenzzustandes

Postbuckling Behaviour of Stiffened Plates Subjected to Pure Shear 2nd Part: Distribution of Stress and Analysis of the Limit State

CH. MASSONNET Professeur Ordinaire à l'Université de Liège M. ŠKALOUD Doc. Ing. Csc. à l'Institut de Mécanique Théorique et Appliquée de l'Académie des Sciences de Prague J. DONEA Ingénieur Physicien. Ancien Aspirant F.N.R.S. Université de Liège

Introduction

Le présent rapport constitue la seconde partie d'une étude consacrée au comportement postcritique des plaques raidies cisaillées uniformément.

Dans une première partie publiée dans les mémoires de l'A.I.P.C. [1], nous avons exposé la mise en équation du problème et présenté les valeurs de la charge critique de voilement ainsi que de la déformée dans le cas particulier d'une plaque carrée renforcée par un raidisseur vertical médian de rigidité relative comprise entre zéro et trois.

L'objet de la présente note consiste en l'étude de la répartition des contraintes et l'analyse de l'état limite dans le même cas particulier d'une plaque carrée raidie cisaillée uniformément.

Par souci de clarté, il nous a paru intéressant de résumer très brièvement dans un premier paragraphe les hypothèses de base de notre analyse. Le lecteur désireux de trouver un exposé détaillé de la question consultera la référence [1].

1. Bref rappel des hypothèses de travail

L'étude linéaire du voilement des plaques raidies cisaillées uniformément nous a conduit à représenter la déformée W de l'âme par l'expression à 6 paramètres:

$$W = f_{1} \sin \frac{\pi x}{2a} \sin \frac{3\pi y}{b} + f_{2} \sin \frac{3\pi x}{2a} \sin \frac{\pi y}{b} + f_{3} \sin \frac{2\pi x}{a} \sin \frac{2\pi y}{b} + f_{4} \sin \frac{\pi x}{2a} \sin \frac{\pi y}{b} + f_{5} \sin \frac{\pi x}{a} \sin \frac{2\pi y}{b} + f_{6} \sin \frac{3\pi x}{2a} \sin \frac{3\pi y}{b}.$$
(1.1)

Les axes coordonnés sont disposés comme l'indique la fig. 1; b est la hauteur de la plaque, sa largeur est 2a.

L'expression (1.1.) satisfait visiblement les conditions aux limites relatives à la déformée d'une plaque simplement appuyée sur son contour.

La fonction d'Airy génératrice des contraintes membranaires a été obtenue comme solution de l'équation de von KARMAN :

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = E\left[\left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2}\right].$$
 (1.2)

Nous avons admis qu'au cours du voilement les bords opposés de la plaque restent rectilignes et se rapprochent librement. Nous avons supposé, en outre, que la plaque peut se déplacer librement sur les éléments qui la limitent dans la direction du bord correspondant.

Les paramètres f_i caractérisant la déformée de la plaque sont les inconnues du problème. Ils ont été déterminés par la méthode énergétique de Rayleigh-Ritz en fonction de la rigidité relative du raidisseur et de la sollicitation de cisaillement.

2. Contraintes membranaires

2.1. Les expressions analytiques

Les contraintes membranaires sont fournies par les doubles dérivations de la fonction d'Airy:

$$\sigma_{xm} = \frac{\partial^2 \phi}{\partial y^2}, \qquad \sigma_{ym} = \frac{\partial^2 \phi}{\partial x^2}, \qquad \tau_m = \frac{-\partial^2 \phi}{\partial x \partial y}. \tag{2.1}$$

Nous désignerons par α le rapport a/b de la demi-longueur et de la hauteur

de la plaque et par τ_{cr}^* la contrainte critique de cisaillement de la plaque non raidie de référence, à savoir:

$$\tau_{cr}^* = 0,8625 \frac{\pi^2 E}{\lambda^2}.$$

E est le module de Young et λ l'élancement b/e.

Avec ces notations et en divisant les paramètres f_i de la déformée par l'épaisseur e de la plaque, les expressions analytiques des contraintes membranaires s'écrivent:

$$\begin{split} \frac{\sigma_{xm}}{\tau_{cr}^{*}} &= -1,159 \left[\frac{1}{32 \alpha^{2}} f_{1}^{2} \cos \frac{6 \pi y}{b} + \frac{9}{32 \alpha^{2}} f_{2}^{2} \cos \frac{2 \pi y}{b} + \frac{1}{2 \alpha^{2}} f_{3}^{2} \cos \frac{4 \pi y}{b} \right] \\ &+ \frac{1}{32 \alpha^{2}} f_{4}^{2} \cos \frac{2 \pi y}{b} + \frac{1}{3 \alpha^{2}} f_{5}^{2} \cos \frac{4 \pi y}{b} + \frac{9}{32 \alpha^{2}} f_{6}^{2} \cos \frac{6 \pi y}{b} \\ &+ f_{1} f_{2} \left(\frac{-4 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{2 \pi x}{a} \cos \frac{4 \pi y}{b} + \frac{25 \alpha^{2}}{16 (1+2 \alpha^{2}+\alpha^{4})} \cos \frac{2 \pi x}{a} \cos \frac{2 \pi y}{b} \right] \\ &+ \frac{100 \alpha^{2}}{1+32 \alpha^{2}+256 \alpha^{2}} \cos \frac{\pi x}{a} \cos \frac{4 \pi y}{b} - \frac{16 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{2 \pi y}{b} \\ &+ \frac{100 \alpha^{2}}{1+32 \alpha^{2}+256 \alpha^{2}} \cos \frac{\pi x}{a} \cos \frac{4 \pi y}{b} - \frac{16 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{2 \pi y}{b} \\ &+ f_{1} f_{3} \left(\frac{-4 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{5 \pi x}{2 a} \cos \frac{5 \pi y}{b} + \frac{196 \alpha^{2}}{625+200 \alpha^{2}+16 \alpha^{4}} \cos \frac{5 \pi x}{2 a} \cos \frac{\pi y}{b} \\ &+ \frac{4900 \alpha^{2}}{81+1800 \alpha^{2}+10000 \alpha^{4}} \cos \frac{3 \pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &- \frac{100 \alpha^{2}}{81+72 \alpha^{2}+16 \alpha^{4}} \cos \frac{3 \pi x}{a} \cos \frac{\pi y}{b} \\ &+ f_{1} f_{4} \left(\frac{-4 \alpha^{2}}{1+32 \alpha^{2}+256 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{\pi y}{b} + \frac{4 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{2 \pi y}{b} \\ &+ f_{1} f_{5} \left(\frac{-400 \alpha^{2}}{81+72 \alpha^{2}+10000 \alpha^{4}} \cos \frac{3 \pi x}{2 a} \cos \frac{5 \pi y}{b} \right) \\ &+ f_{1} f_{5} \left(\frac{-400 \alpha^{2}}{81+72 \alpha^{2}+10000 \alpha^{4}} \cos \frac{3 \pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{64 \alpha^{2}}{81+72 \alpha^{2}+10000 \alpha^{4}} \cos \frac{3 \pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{1600 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{5 \pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{\pi x}{b} \\ &+ \frac{16 \alpha^{2}}{1+72 \alpha^{2}+1296 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{\pi x}{a} \cos \frac{\pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{\pi x}{b} \\ &+ \frac{16 \alpha^{2}}{1+72 \alpha^{2}+1296 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{\pi x}{b} \\ &+ \frac{16 \alpha^{2}}{1+8 \alpha^{2}+16 \alpha^{4}} \cos \frac{\pi x}{2 a} \cos \frac{\pi y}{b} \\ &+ \frac{16 \alpha^{2}}{1+72 \alpha^{2}+1296 \alpha^{4}} \cos \frac{\pi x}{a} \cos \frac{\pi x}{$$

$$\begin{split} & -\frac{36\,a^2}{2401+3528\,a^2+1296\,a^4}\cos\frac{7\pi x}{2a}\cos\frac{\pi y}{b} \\ & +\frac{100\,a^2}{2401+392\,a^2+16\,a^4}\cos\frac{7\pi x}{2a}\cos\frac{\pi y}{b} \\ & +f_2f_4\left(\frac{-a^2}{16\,(1+2\,a^2+a^4)}\cos\frac{2\pi x}{a}\cos\frac{2\pi y}{a}+\frac{4\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{\pi x}{a}\cos\frac{2\pi y}{b}\right) \\ & +f_2f_5\left(\frac{-16\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi y}{b}+\frac{576\,a^2}{1+72\,a^2+1296\,a^4}\cos\frac{\pi x}{2a}\cos\frac{3\pi y}{b}\right) \\ & +f_2f_5\left(\frac{-16\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{5\pi x}{2a}\cos\frac{3\pi y}{b}\right) \\ & +\frac{64\,a^2}{625+1800\,a^2+1296\,a^4}\cos\frac{5\pi x}{2a}\cos\frac{\pi y}{b}\right) \\ & +f_2f_6\left(\frac{36\,a^2}{81+72\,a^2+16\,a^4}\cos\frac{5\pi x}{2a}\cos\frac{\pi y}{b}\right) \\ & +f_2f_6\left(\frac{36\,a^2}{81+72\,a^2+16\,a^4}\cos\frac{3\pi x}{a}\cos\frac{4\pi y}{b}\right) \\ & +f_3f_4\left(\frac{-4\,a^2}{81+72\,a^2+16\,a^4}\cos\frac{3\pi x}{2a}\cos\frac{\pi y}{b}+\frac{4\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{3\pi x}{2a}\cos\frac{3\pi y}{b}\right) \\ & +f_3f_6\left(\frac{144\,a^2}{81+72\,a^2+16\,a^4}\cos\frac{5\pi x}{2a}\cos\frac{\pi y}{b}\right) \\ & +f_3f_6\left(\frac{144\,a^2}{1+32\,a^2+16\,a^4}\cos\frac{5\pi x}{2a}\cos\frac{\pi y}{b}\right) \\ & +f_3f_6\left(\frac{144\,a^2}{1+32\,a^2+256\,a^4}\cos\frac{\pi x}{2a}\cos\frac{4\pi y}{b}\right) \\ & +f_3f_6\left(\frac{-36\,a^2}{1+8\,a^2+256\,a^4}\cos\frac{\pi x}{2a}\cos\frac{4\pi y}{b}\right) \\ & +f_3f_6\left(\frac{-36\,a^2}{1+8\,a^2+256\,a^4}\cos\frac{\pi x}{2a}\cos\frac{4\pi y}{b}\right) \\ & +f_3f_6\left(\frac{-36\,a^2}{1+8\,a^2+256\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}+\frac{8100\,a^2}{1+200\,a^2+10000\,a^4}\cos\frac{\pi x}{2a}\cos\frac{5\pi y}{b}\right) \\ & +f_3f_6\left(\frac{-36\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi y}{b}\right) \\ & +f_4f_5\left(\frac{144\,a^2}{1+32\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi y}{b}\right) \\ & +f_4f_5\left(\frac{-36\,a^2}{1+8\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi x}{b}\right) \\ & +f_4f_5\left(\frac{-36\,a^2}{1+72\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi x}{b}\right) \\ & +f_6\frac{\pi x}{1+72\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi x}{b}\right) \\ & +f_6\frac{\pi x}{1+72\,a^2+16\,a^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b}\frac{\pi x}{b}\right) \\ & +f_6\frac{\pi x}{1+$$

$$+f_{4}f_{6}\left(\frac{36 \alpha^{2}}{1+32 \alpha^{2}+256 \alpha^{4}}\cos\frac{\pi x}{a}\cos\frac{4\pi y}{b}\right)$$

$$+\frac{9\alpha^{2}}{16+32 \alpha^{2}+16 \alpha^{4}}\cos\frac{2\pi x}{a}\cos\frac{2\pi y}{b}\right)$$

$$+f_{5}f_{6}\left(\frac{3600 \alpha^{2}}{1+200 \alpha^{2}+10000 \alpha^{4}}\cos\frac{\pi x}{2 a}\cos\frac{5\pi y}{b}\right)$$

$$+\frac{144 \alpha^{2}}{625+200 \alpha^{2}+16 \alpha^{4}}\cos\frac{5\pi x}{2 a}\cos\frac{\pi y}{b}\right] -\frac{p_{x}}{\tau_{cr}^{*}}.$$
(2.2a)

$$\begin{split} \frac{\sigma_{ym}}{\tau_{er}^{**}} &= -4,636 \left[\frac{9 \, \alpha^2}{8} f_1^2 \cos \frac{\pi \, x}{a} + \frac{\alpha^2}{8} f_2^2 \cos \frac{3 \pi \, x}{a} + \frac{\alpha^2}{2} f_3^2 \cos \frac{4 \pi \, x}{a} \right. \\ &+ \frac{\alpha^2}{8} f_4^2 \cos \frac{\pi \, x}{a} + \frac{\alpha^2}{2} f_5^2 \cos \frac{2 \pi \, x}{a} + \frac{9 \, \alpha^2}{8} f_6^2 \cos \frac{3 \pi \, x}{a} \\ &+ f_1 f_2 \left(\frac{-\alpha^2}{1 + 8 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{2 \pi \, x}{a} \cos \frac{4 \pi \, y}{b} + \frac{25 \, \alpha^2}{16 \, (1 + 2 \, \alpha^2 + \alpha^4)} \cos \frac{2 \pi \, x}{a} \cos \frac{2 \pi \, y}{b} \right. \\ &+ \frac{25 \, \alpha^2}{4 \, (1 + 32 \, \alpha^2 + 256 \, \alpha^4)} \cos \frac{\pi \, x}{a} \cos \frac{4 \pi \, y}{b} - \frac{4 \, \alpha^2}{1 + 8 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{2 \pi \, x}{a} \cos \frac{2 \pi \, y}{b} \\ &+ f_1 f_3 \left(\frac{-\alpha^2}{1 + 8 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{5 \pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} + \frac{1225 \, \alpha^2}{625 + 200 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{5 \pi \, x}{2 \, a} \cos \frac{\pi \, y}{b} \right. \\ &+ \frac{441 \, \alpha^2}{81 + 1800 \, \alpha^2 + 10000 \, \alpha^4} \cos \frac{3 \pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} \\ &+ \frac{225 \, \alpha^2}{81 + 72 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{3 \pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} \\ &+ f_1 f_4 \left(\frac{-\alpha^2}{4 \, (1 + 32 \, \alpha^2 + 266 \, \alpha^4)} \cos \frac{\pi \, x}{a} \cos \frac{4 \pi \, y}{b} + \frac{\alpha^2}{1 + 8 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{\pi \, x}{a} \cos \frac{2 \pi \, y}{b} \right) \\ &+ f_1 f_5 \left(\frac{-36 \, \alpha^2}{81 + 1800 \, \alpha^2 + 10000 \, \alpha^4} \cos \frac{3 \pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} \right. \\ &+ \frac{16 \, \alpha^2}{1 + 8 \, \alpha^2 + 10000 \, \alpha^4} \cos \frac{3 \pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} \\ &+ \frac{16 \, \alpha^2}{1 + 20 \, \alpha^2 + 10000 \, \alpha^4} \cos \frac{\pi \, x}{2 \, a} \cos \frac{5 \pi \, y}{b} \\ &+ f_1 f_6 \left(-\frac{9 \, \alpha^2}{4 \, (1 + 32 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{3 \pi \, x}{2 \, a} \cos \frac{\pi \, y}{b} \right) \\ &+ f_1 f_6 \left(-\frac{9 \, \alpha^2}{4 \, (1 + 32 \, \alpha^2 + 16 \, \alpha^4} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, y}{b} \right) \\ &+ f_1 f_6 \left(-\frac{9 \, \alpha^2}{4 \, (1 + 32 \, \alpha^2 + 10000 \, \alpha^4} \cos \frac{\pi \, x}{a} \, \alpha \cos \frac{\pi \, y}{a} \, \alpha \cos \frac{\pi \, y}{b} \right) \\ &+ f_1 f_6 \left(-\frac{9 \, \alpha^2}{4 \, (1 + 32 \, \alpha^2 + 81 \, \alpha^4)} \cos \frac{\pi \, x}{a} \, \alpha \cos \frac{\pi \, x}{a} \, \alpha \cos \frac{\pi \, y}{b} \right) \\ &+ f_2 f_3 \left(\frac{25 \, \alpha^2}{1 + 72 \, \alpha^2 + 1296 \, \alpha^4} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, x}{a} \, \alpha \cos \frac{\pi \, y}{b} \right) \\ &+ f_2 f_3 \left(\frac{25 \, \alpha^2}{1 + 72 \, \alpha^2 + 1296 \, \alpha^4} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, y}{b} \right) \\ &+ \frac{25 \, \alpha^2}{2 \, 401 + 3528 \, \alpha^2 + 1296 \, \alpha^4} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, x}{2 \, a} \cos \frac{\pi \, y}{b} \right) \\ \\ &+ \frac{16 \, \alpha^$$

$$\begin{split} &+ \frac{1225\,\alpha^2}{2401+392\,\alpha^2+16\,\alpha^4}\cos\frac{7\pi x}{2a}\cos\frac{\pi y}{b} \\ &+ f_2f_4 \bigg(-\frac{\alpha^2}{4}\cos\frac{\pi x}{a} + \frac{\alpha^2}{4}\cos\frac{2\pi x}{a} - \frac{\alpha^2}{16\left(1+2\,\alpha^2+\alpha^4\right)}\cos\frac{2\pi x}{a}\cos\frac{2\pi y}{b} \\ &+ \frac{\alpha^2}{1+8\,\alpha^2+16\,\alpha^4}\cos\frac{\pi x}{a}\cos\frac{2\pi y}{b} \bigg) \\ &+ f_2f_5 \bigg(\frac{-4\,\alpha^2}{1+8\,\alpha^2+16\,\alpha^4}\cos\frac{\pi x}{2a}\cos\frac{\pi y}{b} + \frac{16\,\alpha^2}{1+72\,\alpha^2+1296\,\alpha^4}\cos\frac{\pi x}{2a}\cos\frac{3\pi y}{b} \\ &- \frac{100\,\alpha^2}{625+1800\,\alpha^2+1296\,\alpha^4}\cos\frac{5\pi x}{2a}\cos\frac{3\pi y}{b} \\ &+ \frac{400\,\alpha^2}{625+200\,\alpha^2+16\,\alpha^4}\cos\frac{5\pi x}{2a}\cos\frac{\pi y}{b} \bigg) \\ &+ f_2f_6 \bigg(\frac{81\,\alpha^2}{81+72\,\alpha^2+16\,\alpha^4}\cos\frac{5\pi x}{a}\cos\frac{3\pi x}{a}\cos\frac{4\pi y}{b} \bigg) \\ &+ f_2f_6 \bigg(\frac{81\,\alpha^2}{81+72\,\alpha^2+16\,\alpha^4}\cos\frac{3\pi x}{2a}\cos\frac{3\pi x}{a}\cos\frac{4\pi y}{b} \bigg) \\ &+ f_3f_4\frac{-9\alpha^2}{81+72\,\alpha^2+16\,\alpha^4}\cos\frac{3\pi x}{2a}\cos\frac{5\pi x}{2a}\cos\frac{3\pi y}{b} \\ &- \frac{255\,\alpha^2}{625+1800\,\alpha^2+1296\,\alpha^4}\cos\frac{5\pi x}{2a}\cos\frac{5\pi x}{a}\cos\frac{3\pi y}{b} \bigg) \\ &+ f_3f_6 \bigg(-\alpha^2\cos\frac{\pi x}{a} + \alpha^2\cos\frac{3\pi x}{2a}\cos\frac{5\pi x}{2a}\cos\frac{3\pi y}{b} \bigg) \\ &+ f_3f_6\bigg(-\alpha^2\cos\frac{\pi x}{a} + \alpha^2\cos\frac{3\pi x}{2a}\cos\frac{5\pi x}{a}\cos\frac{4\pi y}{b} \bigg) \\ &+ f_3f_6\bigg(-\frac{9\,\alpha^2}{1+8\,\alpha^2+16\,\alpha^4}\cos\frac{3\pi x}{2a}\cos\frac{5\pi x}{a}\cos\frac{4\pi y}{b} \bigg) \\ &+ f_3f_6\bigg(-\frac{9\,\alpha^2}{1+8\,\alpha^2+16\,\alpha^4}\cos\frac{3\pi x}{a}\cos\frac{5\pi x}{a}\cos\frac{4\pi y}{b} \bigg) \\ &+ f_3f_6\bigg(-\frac{441\,\alpha^2}{2401+392\,\alpha^2+16\,\alpha^4}\cos\frac{7\pi x}{2a}\cos\frac{5\pi y}{b} \bigg) \\ &+ f_4f_6\bigg(\frac{4\,\alpha^2}{1+72\,\alpha^2+16\,\alpha^4}\cos\frac{3\pi x}{2a}\cos\frac{\pi y}{b} \bigg) \\ &+ f_4f_6\bigg(\frac{9\,\alpha^2}{1+72\,\alpha^2+16\,\alpha^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b} \bigg) \\ &+ f_4f_6\bigg(\frac{4\,\alpha^2}{1+72\,\alpha^2+16\,\alpha^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b} \bigg) \\ &+ f_4f_6\bigg(\frac{9\,\alpha^2}{1+72\,\alpha^2+16\,\alpha^4}\cos\frac{\pi x}{2a}\cos\frac{\pi x}{b} \bigg) \end{aligned}$$

.

$$\begin{aligned} &+ \frac{9\,a^2}{16\,(1+2\,a^2+a^4)}\cos\frac{2\pi\,x}{a}\cos\frac{2\pi\,y}{b} \\ &+ f_5f_6\Big(\frac{36\,a^2}{(1+200\,a^2+10\,000\,a^4}\cos\frac{5\pi\,x}{2a}\cos\frac{5\pi\,y}{2a}\cos\frac{5\pi\,y}{b} \\ &+ \frac{900\,a^2}{625+200\,a^2+16\,a^4}\cos\frac{5\pi\,x}{2a}\cos\frac{\pi\,y}{b}\Big)\Big] - \frac{p_y}{7e^5}. \end{aligned} (2.2\,b) \\ &\frac{7}{m^*_{ev}} = -2,318\,\left[f_1f_2\Big(\frac{-2\,a^2}{1+8\,a^2+16\,a^4}\sin\frac{2\pi\,x}{a}\sin\frac{2\pi\,y}{b} + \frac{25\,a^2}{1+32\,a^2+256\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{4\pi\,y}{b} \\ &+ \frac{25\,a^2}{16\,(1+2\,a^2+a^4)}\sin\frac{2\pi\,x}{a}\sin\frac{2\pi\,y}{b} + \frac{25\,a^2}{1+32\,a^2+256\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{4\pi\,y}{b} \\ &- \frac{8\,a^2}{1+8\,a^2+16\,a^4}\sin\frac{5\pi\,x}{a}\sin\frac{2\pi\,y}{b} \Big) \\ &+ f_1f_3\Big(\frac{-2\,a^2}{1+8\,a^2+16\,a^4}\sin\frac{5\pi\,x}{2\,a}\sin\frac{\pi\,y}{b} \\ &+ \frac{490\,a^2}{625+200\,a^2+16\,a^4}\sin\frac{5\pi\,x}{2\,a}\sin\frac{\pi\,y}{b} \\ &+ \frac{1470\,a^2}{81+1800\,a^2+10000\,a^4}\sin\frac{3\pi\,x}{2\,a}\sin\frac{5\pi\,y}{b} \\ &+ \frac{150\,a^2}{81+72\,a^2+16\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{4\pi\,y}{b} + \frac{2\,a^2}{1+8\,a^2+16\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{2\pi\,y}{b} \Big) \\ &+ f_1f_4\Big(\frac{-120\,a^2}{1+32\,a^2+256\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{4\pi\,y}{b} + \frac{2\,a^2}{1+8\,a^2+16\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{2\pi\,y}{b} \Big) \\ &+ f_1f_6\Big(\frac{-120\,a^2}{1+32\,a^2+256\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{5\pi\,y}{b} \\ &+ \frac{160\,a^2}{1+72\,a^2+10\,000\,a^4}\sin\frac{3\pi\,x}{2a}\sin\frac{5\pi\,y}{b} \\ &+ \frac{160\,a^2}{1+200\,a^2+10\,000\,a^4}\sin\frac{3\pi\,x}{2a}\sin\frac{5\pi\,y}{b} \\ &+ \frac{160\,a^2}{1+20\,a^2+10\,000\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{5\pi\,y}{b} \\ &+ f_1f_6\Big(\frac{54\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{5\pi\,y}{2a}\sin\frac{5\pi\,y}{b} \\ &+ f_1f_6\Big(\frac{154\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{5\pi\,y}{b} \\ &+ f_1f_6\Big(\frac{154\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{6\pi\,y}{b} \\ &+ f_1f_6\Big(\frac{154\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{6\pi\,y}{b} \\ &+ f_2f_8\Big(\frac{150\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ f_2f_9\Big(\frac{150\,a^2}{1+72\,a^2+1206\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,y}{b} \\ &+ \frac{26\,a^2}{2401+3528\,a^2+1296\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,y}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+392\,a^2+16\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+392\,a^2+16\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+392\,a^2+16\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+392\,a^2+16\,a^4}\sin\frac{\pi\,x}{2a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+392\,a^2+16\,a^4}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,x}{a}\sin\frac{\pi\,y}{b} \\ &+ \frac{350\,a^2}{2401+$$

$$\begin{split} &+ f_2 f_4 \left(\frac{-\alpha^2}{16 \left(1 + 2 \,\alpha^2 + \alpha^4 \right)} \sin \frac{2\pi x}{a} \sin \frac{2\pi y}{b} + \frac{2 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{a} \sin \frac{2\pi y}{b} \right) \\ &+ f_2 f_5 \left(\frac{-8 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{b} + \frac{96 \,\alpha^2}{1 + 72 \,\alpha^2 + 1296 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{3\pi y}{b} \right) \\ &- \frac{120 \,\alpha^2}{625 + 1800 \,\alpha^2 + 1296 \,\alpha^4} \sin \frac{5\pi x}{2 \,a} \sin \frac{3\pi y}{2 \,a} \\ &+ \frac{160 \,\alpha^2}{625 + 200 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{5\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \\ &+ \frac{160 \,\alpha^2}{625 + 200 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{\pi y}{b} \\ &+ f_2 f_6 \left(\frac{54 \,\alpha^2}{81 + 72 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{a} \sin \frac{2\pi y}{a} \right) \\ &+ f_2 f_6 \left(\frac{-6 \,\alpha^2}{81 + 72 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{\pi y}{b} + \frac{2 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{3\pi y}{b} \\ &+ f_3 f_4 \left(\frac{-6 \,\alpha^2}{81 + 72 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{\pi y}{b} + \frac{2 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{3\pi y}{b} \right) \\ &+ f_3 f_4 \left(\frac{-6 \,\alpha^2}{81 + 72 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{3\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_3 f_5 \left(\frac{36 \,\alpha^2}{1 + 32 \,\alpha^2 + 256 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{5\pi x}{2 \,a} \sin \frac{3\pi y}{b} \right) \\ &+ f_3 f_5 \left(\frac{36 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{a} \sin \frac{4\pi y}{b} \right) \\ &+ f_3 f_6 \left(\frac{-18 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{a} \sin \frac{4\pi y}{b} \right) \\ &+ f_3 f_6 \left(\frac{-18 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_4 f_5 \left(\frac{-18 \,\alpha^2}{1 + 8 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_4 f_5 \left(\frac{-24 \,\alpha^2}{1 + 72 \,\alpha^2 + 16 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_4 f_6 \left(\frac{9 \,\alpha^2}{1 + 200 \,\alpha^2 + 10000 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \sin \frac{5\pi y}{b} \right) \\ &+ f_4 f_6 \left(\frac{9 \,\alpha^2}{1 + 200 \,\alpha^2 + 10000 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_5 f_6 \left(\frac{360 \,\alpha^2}{1 + 200 \,\alpha^2 + 10000 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{5\pi y}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_5 f_6 \left(\frac{360 \,\alpha^2}{1 + 200 \,\alpha^2 + 10000 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \sin \frac{\pi y}{b} \right) \\ &+ f_5 f_6 \left(\frac{360 \,\alpha^2}{1 + 200 \,\alpha^2 + 10000 \,\alpha^4} \sin \frac{\pi x}{2 \,a} \sin \frac{\pi y}{2 \,a} \sin \frac{\pi$$

Dans les expressions (2.2.a) et (2.2.b), p_x et p_y représentent les valeurs moyennes des sollicitations normales aux bords de la plaque.

Dans l'hypothèse admise du rapprochement libre des bords opposés au cours du voilement, ces quantités sont nulles.

2.2. Valeurs numériques des contraintes membranaires

Les valeurs numériques des contraintes membranaires σ_{xm} , σ_{ym} , τ_m ont été calculées pour une plaque carrée de côté 2 a, cisaillée uniformément et renforcée par un raidisseur vertical médian de rigidité relative γ/γ^* comprise entre zéro et trois.

Les valeurs de la sollicitation extérieure de cisaillement τ ainsi que celles des contraintes sont exprimées par leur rapport à la charge critique τ_{cr}^* de la plaque non raidie de référence.

Fig. 2.

Fig. 3.

Les figures 2 et 3 montrent respectivement les allures de σ_{xm} et σ_{ym} pour $\gamma/\gamma^* = 0$ et $\tau/\tau_{cr}^* = 4$. Il apparaît clairement sur ces figures que les contraintes ont des valeurs égales en deux points symétriques par rapport au centre de la plaque. De plus, ces contraintes sont auto-équilibrées puisque les sollicitations normales moyennes au bord de la plaque sont nulles.

On constate par les calculs détaillés que, si le passage de $\gamma/\gamma^* = 0$ à $\gamma/\gamma^* = 1$ réduit très sensiblement les valeurs des contraintes membranaires, le passage de $\gamma/\gamma^* = 1$ à $\gamma/\gamma^* = 3$ provoque une réduction nettement moins forte.

Que γ/γ^* soit égal à 1, 2 ou 3, la contrainte σ_{xm} a son maximum positif au

point (x=0, y=a) et son maximum négatif au point (x=0,75a, y=0). La contrainte σ_{ym} a son maximum positif au point (x=0,75a, y=0,25a) et son maximum négatif au point (x=0, y=0,25a).

Les figures 4, 6 et 8 montrent l'allure de σ_{xm} pour $\tau/\tau_{cr}^* = 4$ et $\gamma/\gamma^* = 1, 2, 3$. Les diagrammes des contraintes sont limités à la demi-plaque ($p \le x \le a$; $0 \le y \le 2a$) pour les raisons de symétrie déjà mentionnées.

Les figures 5 et 7 donnent l'allure de σ_{ym} pour $\tau/\tau_{cr}^* = 4$ et $\gamma/\gamma^* = 1$ et 2. Les diagrammes sont limités à la portion $(0 \le x \le 2a; 0 \le y \le a)$ de la plaque. On constatera sur toutes ces figures que les contraintes membranaires sont auto-équilibrées.

Fig. 7.

3. Contraintes de flexion

3.1. Expressions analytiques

Les contraintes de flexion varient linéairement sur l'épaisseur e de la plaque. Leurs valeurs maxima ont pour expression:

$$\sigma_{xt} = \mp \frac{E e}{2 (1 - \nu^2)} \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right),$$

$$\sigma_{yt} = \mp \frac{E e}{2 (1 - \nu^2)} \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right),$$

$$\tau_f = \mp G e \frac{\partial^2 w}{\partial x \partial y} = \mp \frac{E e}{2 (1 + \nu)} \frac{\partial^2 w}{\partial x \partial y}.$$

(3.1)

Il est avantageux d'exprimer ces contraintes par leur rapport à la contrainte critique de la plaque non raidie de référence.

Compte tenu de l'expression (1.1.) de la déformée w, on obtient pour une plaque carrée de côté 2a:

$$\begin{aligned} \frac{\sigma_{xf}}{\tau_{cr}^{*}} &= \mp \left(2,357 f_{1} \sin \frac{\pi x}{2a} \sin \frac{3\pi y}{2a} + 5,924 f_{2} \sin \frac{3\pi x}{2a} \sin \frac{\pi y}{2a} \right. \\ &+ 10,957 f_{3} \sin \frac{2\pi x}{a} \sin \frac{\pi y}{a} + 0,8281 f_{4} \sin \frac{\pi x}{2a} \sin \frac{\pi y}{2a} \\ &+ 3,312 f_{5} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} + 7,453 f_{6} \sin \frac{3\pi x}{2a} \sin \frac{3\pi y}{2a} \right), \\ \frac{\sigma_{yf}}{\tau_{cr}^{*}} &= \mp \left(5,924 f_{1} \sin \frac{\pi x}{2a} \sin \frac{3\pi y}{2a} + 2,357 f_{2} \sin \frac{3\pi x}{2a} \sin \frac{\pi y}{2a} \\ &+ 5,606 f_{3} \sin \frac{2\pi x}{a} \sin \frac{\pi y}{a} + 0,8281 f_{4} \sin \frac{\pi x}{2a} \sin \frac{\pi y}{2a} \\ &+ 3,312 f_{5} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} + 0,8281 f_{4} \sin \frac{\pi x}{2a} \sin \frac{\pi y}{2a} \\ &+ 3,312 f_{5} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} + 7,453 f_{6} \sin \frac{3\pi x}{2a} \sin \frac{3\pi y}{2a} \right), \end{aligned}$$
(3.2)
$$&+ 3,312 f_{5} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} + 1,338 f_{2} \cos \frac{3\pi x}{2a} \cos \frac{\pi y}{2a} \\ &+ 3,567 f_{3} \cos \frac{2\pi x}{a} \cos \frac{\pi y}{a} + 0,446 f_{4} \cos \frac{\pi x}{2a} \cos \frac{\pi y}{2a} \\ &+ 1,784 f_{5} \cos \frac{\pi x}{a} \cos \frac{\pi y}{a} + 4,013 f_{6} \cos \frac{3\pi x}{2a} \cos \frac{3\pi y}{2a} \right). \end{aligned}$$

3.2. Valeurs numériques des contraintes de flexion

Le manque de place ne nous permet pas de reproduire les valeurs numériques des contraintes de flexion pour les valeurs 0, 1, 2 et 3 de γ/γ^* et une sollicitation extérieure $\tau/\tau_{er}^*=3.5, 4, 6$ et 8.

On remarque par l'étude de ces valeurs que, pour la plaque non raidie, les contraintes σ_{xf} et σ_{yf} sont maximum au centre, ce qui est évident puisque les contraintes de flexion ont la même allure que la déformée.

L'allure des contraintes σ_{xf} et σ_{yf} pour $\tau/\tau_{cr}^* = 4$ est donnée aux figures 9 et 10 pour une moitié de la plaque.

Comme pour les contraintes membranaires, le passage de $\gamma/\gamma^* = 0$ à $\gamma/\gamma^* = 1$ réduit très sensiblement les contraintes, tandis que le passage de $\gamma/\gamma^* = 1$ à $\gamma/\gamma^* = 3$ provoque une réduction nettement moins forte.

Que γ/γ^* soit égal à 1, 2 ou 3, le maximum positif de σ_{xf} a lieu au point (x=0.75a, y=0.5a), le maximum négatif au point (x=0.25a, y=0.75a). Quant à σ_{yf} , le maximum positif a lieu au point (x=0.75a, y=0.5a), le maximum négatif au point (x=0.25a, y=a).

Les figures 11 et 12 montrent l'allure de σ_{xt} et σ_{yt} pour $\gamma/\gamma^* = 2$ et $\tau/\tau_{cr}^* = 4$.

Fig. 10.

Fig. 12.

4. Contraintes membranaires de comparaison

La contrainte membranaire de comparaison a pour expression:

$$\sigma_{mc} = \sqrt[2]{\sigma_{xm}^2 + \sigma_{ym}^2 - \sigma_{xm}\sigma_{ym} + 3\tau_m^2}.$$
(4.1)

Les valeurs de σ_{mc}/τ_{cr}^* sont données pour $\gamma/\gamma^* = 0, 1, 2, 3$ dans les tableaux I, II, III, et IV en fonction du cisaillement τ/τ_{cr}^* .

		$\gamma/\gamma^* =$	= 0	$ au/ au_{cr}^{m{st}}$:	= 3,5	
	a/9 a			x/2a		
y/2a	$y_{ }^{2}a$	0	0,125	0,250	0,375	0,500
	0	7,308	6,876	7,194	6,823	6,558
	$0,125 \\ 0,250$	$6,901 \\ 7,116$	6,939 6,985	$6,871 \\ 6,254$	6,665 6,018	7,259 7,318
	0,375 0,500	$6,755 \\ 6,542$	6,854 7,332	6,173 7,319	5,871 7,122	7,175 7,306
	0,625 0,750	6,357 6,138	7,441 6,960	7,930 7,579	8,030 8,086	7,175 7,318
	0,875 1,0	6,070 6,063	6,554 6,066	7,089 6,154	7,610 6,432	$7,259 \\ 6,558$
			1	1		

 $Tableau \ Ia$

 $\sigma_{mc}/\tau_{cr}^{*}$

 $\gamma/\gamma^* = 0$ $\tau/\tau^* = 4.0$

0	$ au/ au_{cr}^{+}=4$,0

a19 a	x/2a					
y/2a	0	0,125	0,250	0,375	0,500	
0	9,055	8,334	8,886	8,142	7,737	
0,125	8,393	8,202	8,139	7,777	8,664	
0,250	8,734	8,326	7,260	6,915	8,790	
0,375	8,027	8,101	7,163	6,778	8,691	
0,500	7,703	8,782	8,763	8,579	8,948	
0,625	7,429	8,872	9,491	9,748	8,691	
0,750	7,060	8,147	8,950	9,771	8,790	
0,875	6,945	7,618	8,362	9,169	8,664	
1,0	6,930	6,935	7,090	7,597	7,737	

Tableau Ib

$$\gamma/\gamma^* = 0$$
 $\tau/\tau^*_{cr} = 6,0$

$$\sigma_{mc}/ au_{cr}^{*}$$

 $\gamma/\gamma^* = 0$ $\tau/\tau^*_{cr} = 8,0$

y/2a	x/2a					
	0	0,125	0,250	0,375	0,500	
0	16,690	14,699	16,342	13,588	12,670	
0,125	14,966	13,272	13,344	12,163	14,271	
0,250	15,890	13,825	11,388	10,565	14,655	
0,375	13,307	13,034	11,076	10,376	14,809	
0,500	12,487	14,498	14,323	14,327	15,623	
0,625	11,881	14,490	15,392	16,381	14,809	
0,750	10,796	12,798	14,121	16,267	14,655	
0,875	10,471	11,877	13,365	15,412	14,271	
1,0	10,410	10,414	10,872	12,633	12,670	

y/2a	x/2a					
	0	0,125	0,250	0,375	0,500	
0	24,784	21.475	24,296	19.235	17 819	
0,125	21,998	18,353	18,637	16,570	19,924	
0,250	23,545	19,426	15,583	14,308	20,569	
0,375	18,783	17,988	15,022	13,975	21,029	
0,500	17,425	20,229	19,832	20,093	22,429	
0,625	16,485	20,110	21,174	22,964	21,029	
0,750	14,581	17,437	19,187	22,720	20,569	
0,875	14,022	16,172	18,372	21,749	19,924	
1,0	13,898	13,895	14,690	17,996	17,819	

Tableau II a

$$\gamma/\gamma^* = 1.0 \qquad \tau/\tau_{cr}^* = 3.5$$

 σ_{mc}/τ_{cr}^*

```
\gamma / \gamma^* = 1,0 \tau / \tau_{cr}^* = 4,0
```

a./9 a	x/2a					
$y_{ } 2a$	0	0,125	0,250	0,375	0,500	
0 0,125 0,250 0,375 0,500 0,625 0,750	$\begin{array}{c} 6,077\\ 6,076\\ 6,072\\ 6,084\\ 6,126\\ 6,072\\ 6,062\\ \end{array}$	6,077 6,066 6,221 6,306 6,212 6,157 6,234	6,087 6,098 6,482 6,670 6,290 6,024 6,144	6,102 6,154 6,339 6,504 6,277 5,993 6,074	6,077 6,197 6,137 6,168 6,253 6,168 6,137	
0,875 1,0	6,064 6,069	$6,182 \\ 6,073$	$6,155 \\ 6,070$	$6,178 \\ 6,072$	$6,197 \\ 6,077$	

	x/2a					
$y_{/2}a$	0	0,125	0,250	0,375	0,500	
$\begin{array}{c} 0\\ 0,125\\ 0,250\\ 0,375\\ 0,500\\ 0,625\\ 0,750\\ 0,875\\ 1,0 \end{array}$	6,980 6,977 6,962 7,003 7,115 6,954 6,928 6,931 6,949	6,981 6,947 7,261 7,446 7,278 7,138 7,280 7,169 6,965	$\begin{array}{c} 7,020\\ 6,995\\ 7,752\\ 8,138\\ 7,414\\ 6,917\\ 7,155\\ 7,143\\ 6,954\end{array}$	7,080 7,135 7,467 7,765 7,336 6,836 7,028 7,211 6,961	6,982 7,233 7,110 7,128 7,267 7,128 7,110 7,233 6,982	

•

Tableau II b

$$\gamma/\gamma^* = 1,0 \qquad \tau/\tau_{cr}^* = 6,$$

$$\sigma_{mc}/ au^{m{*}}_{cr}$$

$$au/ au_{cr}^{m{*}}=6,0$$

$$\gamma/\gamma^*$$

$$/\gamma^* = 1,0$$
 $\tau/\tau^*_{cr} = 8,0$

al 9 a	x/2 a					
y ₁ 2a	0	0,125	0,250	0,375	0,500	
0 0,125 0,250 0,375 0,500 0,625 0,750	$10,884 \\ 10,803 \\ 10,749 \\ 10,856 \\ 11,377 \\ 10,589 \\ 10,396 \\ 1$	$10,818 \\ 10,627 \\ 11,666 \\ 12,475 \\ 12,198 \\ 11,412 \\ 11,517 \\$	11,235 10,584 12,730 14,331 12,556 10,951	$11,659 \\11,199 \\11,742 \\12,649 \\11,722 \\10,454 \\11,143 \\$	$10,801 \\ 11,578 \\ 11,053 \\ 10,838 \\ 11,205 \\ 10,838 \\ 11,053 \\ 11,055 \\ 1$	
0,875 1,0	10,406 10,499	11,123 10,599	11,254 10,538	11,656 10,611	11,578 10,801	

		x/2a					
y/2a	0	0,125	0,250	0,375	0,500		
$0 \\ 0,125 \\ 0.250$	15,476 15,188 15,090	15,015 14,726 16,360	16,312 14,572 17,233	16,830 15,414 15,504	14,813 16,020 14,969		
$ \begin{array}{c c} 0,375\\ 0,500\\ 0,625 \end{array} $	$ 14,948 \\ 15,644 \\ 14,418 $	17,716 17,533 16,075	19,988 17,996 15,495	16,778 16,003 14,430	$14,291 \\ 14,791 \\ 14,291$		
0,750 0,875 1,0	$13,878 \\ 13,881 \\ 14,025$	$15,691 \\ 15,036 \\ 14,175$	$15,803 \\ 15,541 \\ 14,149$	15,557 16,354 14,359	14,969 16,020 14,813		

Tableau III a

$$\gamma/\gamma^* = 2,0$$
 $\tau/\tau^*_{cr} = 3,5$

$$\sigma_{mc}/ au_{cr}^{m{*}}$$

$$\gamma/\gamma^* = 2$$

$$\gamma/\gamma^*=2,0$$
 $au/ au_{cr}^*=4,0$

a./9 a	x/2a					
$y_{ }^{2}a$	0	0,125	0,250	0,375	0,500	
0 0,125 0,250 0,375 0,500 0,625 0,750 0,875 1,0	6,072 6,073 6,068 6,082 6,107 6,067 6,063 6,063 6,063 6,067	$\begin{array}{c} 6,072\\ 6,076\\ 6,197\\ 6,234\\ 6,123\\ 6,115\\ 6,212\\ 6,169\\ 6,070\\ \end{array}$	$\begin{array}{c} 6,078\\ 6,119\\ 6,438\\ 6,535\\ 6,174\\ 5,990\\ 6,127\\ 6,132\\ 6,068\end{array}$	6,086 6,156 6,326 6,428 6,198 5,973 6,055 6,137 6,069	6,072 6,166 6,129 6,151 6,209 6,151 6,129 6,166 6,072	

x/2 a					
0	0,125	0,250	0,375	0,500	
6,969 6,970 6,952 7,007 7,096 6,945 6,929 6,929	6,970 6,965 7,239 7,343 7,133 7,064 7,273 7,179	6,998 7,041 7,749 7,993 7,220 6,815 7,114 7,102	7,036 7,141 7,493 7,726 7,243 6,763 6,948 7,110	6,969 7,172 7,087 7,133 7,266 7,133 7,087 7,159	
	0 3,969 3,970 3,952 7,007 7,096 3,945 3,929 3,930 3,947	0 0,125 3,969 6,970 5,970 6,965 5,952 7,239 7,007 7,343 7,096 7,133 5,945 7,064 5,929 7,273 5,930 7,172 5,947 6,963	0 0,125 0,250 6,969 6,970 6,998 6,970 6,965 7,041 6,952 7,239 7,749 7,007 7,343 7,993 7,096 7,133 7,220 6,945 7,064 6,815 6,929 7,273 7,114 6,930 7,172 7,102 6,947 6,963 6,951	0 0,125 0,250 0,375 5,969 6,970 6,998 7,036 5,970 6,965 7,041 7,141 5,952 7,239 7,749 7,493 7,007 7,343 7,993 7,726 7,096 7,133 7,220 7,243 5,945 7,064 6,815 6,763 5,929 7,273 7,114 6,948 5,930 7,172 7,102 7,119 5,947 6,963 6,951 6,956	

Tableau III b

$$\gamma/\gamma^* = 2,0$$
 $\tau/\tau^*_{cr} = 6,0$

$$\sigma_{mc}/\tau_{cr}^{*}$$

$$\gamma/\gamma^* = 2,0$$
 $\tau/\tau^*_{cr} = 8,0$

y/2a	x/2 a						
	0	0,125	0,250	0,375	0,500		
$\begin{array}{c} 0 \\ 0,125 \\ 0,250 \\ 0,375 \\ 0,500 \\ 0,625 \\ 0,750 \end{array}$	10,694 10,685 10,601 10,890 11,371 10,489 10,398	$10,697 \\ 10,553 \\ 11,554 \\ 12,099 \\ 11,507 \\ 11,026 \\ 11,633$	10,958 10,670 13,087 14,192 11,742 10,380 11,317	$11,310 \\ 11,179 \\ 12,153 \\ 12,978 \\ 11,511 \\ 10,056 \\ 10,765 \\ 1$	$10,708 \\ 11,355 \\ 11,053 \\ 11,099 \\ 11,531 \\ 11,099 \\ 11,053 \\ 11,055 \\ 1$		
0,875 1,0	$10,401 \\ 10,516$	$11,244 \\ 10,667$	$11,097 \\ 10,541$	$11,252 \\ 10,589$	$11,355 \\ 10,708$		

y/2a	x/2 a					
	0	0,125	0,250	0,375	0,500	
0 0,125 0,250 0,375 0,500 0,625 0,750 0,875	$14,598 \\ 14,539 \\ 14,421 \\ 14,854 \\ 15,796 \\ 14,068 \\ 13,874 \\ 13,878 \\$	$14,563 \\ 14,198 \\ 16,022 \\ 17,158 \\ 16,271 \\ 15,182 \\ 15,993 \\ 15,284 \\$	$15,273 \\ 14,249 \\ 18,351 \\ 20,627 \\ 16,662 \\ 14,234 \\ 15,667 \\ 14,152 \\$	$16,057 \\ 15,293 \\ 16,657 \\ 18,095 \\ 15,820 \\ 13,476 \\ 14,814 \\ 15,585$	$14,579\\15,692\\15,113\\14,946\\15,659\\14,946\\15,113\\15,692$	
1,0	14,107	14,455	14,162	14,276	14,579	

	$\gamma/\gamma^* =$	= 3,0	$ au/ au_{cr}^{*}=3,5$				
y/2a	x/2 a						
	0	0,125	0,250	0,375	0,500		
0	6,071	6,071	6,077	6,083	6,070		
$0,125 \\ 0,250$	6,072 6,067	6,078 6,191	6,121 6,423	$6,154 \\ 6,317$	6,157 6,124		
$\begin{array}{c} 0,375\\ 0,500 \end{array}$	$6,081 \\ 6,103$	$\begin{array}{c} 6,219\\ 6,115\end{array}$	$6,504 \\ 6,154$	$\substack{6,408\\6,183}$	6,146 6,200		
$0,625 \\ 0.750$	$6,066 \\ 6.063$	6,109 6.206	$5,986 \\ 6.123$	5,970 6.050	$6,146 \\ 6,124$		
$0,875 \\ 1,0$	6,063 6,066	$6,165 \\ 6,070$	6,127 6,067	$6,127 \\ 6,068$	6,157 6,070		

σ_{mc}/ au_{cr}^{*}		γ/γ^*	= 3,0	$ au/ au_{cr}^{m{*}}$	= 4,0		
		x/2a					
	$y_{/2}a$	0	0,125	0,250	0,375	0,500	
	0	6,968	6,969	6,995	7,029	6,967	
	0,125	6,970	6,972	7,056	7,146	7,160	
	0,250	6,950	7,237	7,754	7,501	7,081	
	0,375	7,010	7,324	7,964	7,718	7,133	
	0,500	7,095	7,103	7,177	7,220	7,264	
	0,625	6,944	7,053	6,796	6,746	7,133	
	0,750	6,929	7,278	7,112	6,933	7,081	
	0,875	6,930	7,175	7,095	7,099	7,160	
	1,0	6,946	6,964	6,950	6,955	6,967	

 $Tableau \ IVb$

$$\gamma/\gamma^* = 3.0$$
 $\tau/\tau^*_{cr} = 8.0$

	γ/γ * =	= 3,0	$ au/ au_{cr}^{*}$ =	= 6,0	
			x/2a		
y/2a	0	0,125	0,250	0,375	0,500
0	10,678	10,682	10,922	11,238	10,689
0,125	10,680	10,577	10,735	11,187	11,290
0,250	10,581	11,547	13,160	12,223	11,030
0,375	10,929	12,008	14,097	12,999	11,143
),500	11,365	11,331	11,517	11,429	11,594
0,625	10,477	10,968	10,281	9,970	11,143
0,750	10,400	11,689	11,331	10,682	11,030
.875	10,400	11,284	11,065	11,145	11,290
1,0	10,520	10,688	10,544	10,585	10,689

y/2a	x/2a						
	0	0,125	0,250	0,375	0,500		
$0 \\ 0,125 \\ 0,250$	14,493 14,479 14,322	14,491 14,197 15,949	15,088 14,344 18,528	15,817 15,276 16,868	$14,521 \\ 15,523 \\ 15,092$		
0,375 0,500 0,625 0.750	$14,927 \\ 15,752 \\ 14,024 \\ 13,882$	16,892 15,791 15,002 16,116	$20,410 \\ 16,104 \\ 13,969 \\ 15,686$	$18,222 \\ 15,669 \\ 13,292 \\ 14,617$	$15,119 \\ 15,874 \\ 15,119 \\ 15,092$		
0,875 1,0	13,879 14,123	15,390 14,521	15,080 14,171	15,322 14,269	15,553 14,521		

Tableau IVa

On constatera que, quel que soit le raidissage, l'écart entre les valeurs maximum et minimum de σ_{mc} pour une charge donnée est d'environ 25%.

La figure 13 montre la variation en fonction de la sollicitation τ/τ_{cr}^* de la contrainte membranaire de comparaison maximum $(\sigma_{mc})_{max}/\tau_{cr}^*$.

La ligne hachurée montre les valeurs de $\sigma_{cm\,max}$ pour une plaque qui ne voile pas. En ce cas,

$$\frac{\sigma_{cm\,max}}{\tau_{cr}^*} = \sqrt{3} \frac{\tau}{\tau_{cr}^*}.\tag{4.2}$$

5. Etat limite de la plaque

En attendant d'avoir une théorie analytique du comportement post-critique dans le domaine plastique, on peut se baser dans une analyse approximative de l'état limite des plaques sur la solution des équations correspondant au comportement parfaitement élastique (voir les équations (1) de la première partie de ce mémoire [1]).

En vue de définir l'état limite des plaques en acier, on peut accepter les points de vue suivants:

a) Tenons compte d'abord à la fois des contraintes de membrane et des contraintes de flexion.

Mesurons l'intensité de l'état de contrainte par la contrainte de comparaison σ_c calculée selon l'hypothèse de HUBER-MISES-HENCKY:

$$\sigma_c = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3 \tau^2}, \tag{5.1}$$

où σ_x , σ_y , τ désignent les sommes des contraintes de membrane et de flexion. L'état limite dans ce cas est déterminé par la condition

$$\sigma_{c max} = R_e, \tag{5.2.}$$

indiquant que la contrainte maximum de comparaison $\sigma_{c max}$ atteint la limite élastique R_e .

En ce cas, l'état limite des âmes est donné par le début de plastification à la surface à l'endroit de la plaque le plus sollicité. Le début de plastification ne correspond pas à la ruine de la plaque; c'est pourquoi cette définition est assez conservatrice.

b) On peut ensuite considérer les contraintes de membrane uniquement.

De manière analogue, l'état limite est déterminé par la condition

$$\sigma_{cm\,max} = R_e. \tag{5.3}.$$

On suppose ainsi que les pointes de contrainte de flexion s'annulent dans le domaine plastique.

Il est vrai que même la sollicitation limite déterminée par la définition (b) ne correspond pas à la charge ultime. Mais, en tous cas, elle est moins conservatrice que la contrainte limite déterminée par (a), parce qu'elle correspond déjà à un certain degré de plastification de l'âme.

C'est pourquoi nous avons utilisé ce concept dans l'analyse de l'effet de la rigidité flexionnelle d'un raidisseur vertical médian sur l'état limite d'une plaque carrée cisaillée.

Les sollicitations limites résultantes $\bar{\tau}$ sont données pour l'acier doux A 37 ($R_e = 2400 \text{ kg/cm}^2$, par conséquent $R_e^{\tau} = 1385 \text{ kg/cm}^2$) et pour $\gamma = 0$ (âme non raidie), $\gamma = \gamma^*$, $\gamma = 2\gamma^*$, $\gamma = 3\gamma^*$ à la figure 14.

Les contraintes critiques τ_{cr} , déterminées dans la première partie [1] de ce mémoire, sont également indiquées sur cette figure à titre de comparaison.

Il apparaît clairement que la sollicitation limite $\bar{\tau}$ est (sauf pour les minceurs faibles) substantiellement plus élevée que la contrainte critique τ_{cr} , ce qui indique l'effet bienfaisant du comportement hypercritique des plaques minces. Par exemple, pour $\gamma = 0$, $\bar{\tau}$ est, pour $\lambda = 200$, supérieur de 159%, et, pour $\lambda = 400$, de 626% à τ_{cr} ; tandis que pour $\gamma = 3\gamma^*$: $\bar{\tau}$ est pour $\lambda = 200$, de 13.8% et pour $\lambda = 400$ de 183% plus élevé que τ_{cr} .

L'analyse de la sollicitation limite $\bar{\tau}$ montre que cette grandeur est considérablement influencée par la rigidité flexionnelle γ du raidisseur vertical. Par exemple, $\bar{\tau} (\gamma = 3\gamma^*)$ est, pour $\lambda = 200$, de 20,5%, et, pour $\lambda = 400$, de 15,6% plus élevé que $\bar{\tau} (\gamma = 0)$.

Il résulte en outre de la fig. 14 que la contrainte limite $\bar{\tau}$ continue à croître si la rigidité γ dépasse la valeur optimum théorique γ^* , ce qui est en accord avec les conclusions de la première partie [1] de ce mémoire, où l'on a montré,

entre autre, que l'efficacité du raidisseur de rigidité relative $\gamma = \gamma^*$, est limitée dans le domaine post-critique.

Il faut souligner toutefois qu'en donnant à la rigidité flexionnelle γ du raidisseur la valeur $\gamma = 3\gamma^*$, on réduit certes considérablement la déformée du raidisseur et de la plaque, mais le bénéfice en sollicitation limite (dans le cas considéré d'une plaque carrée, cisaillée, renforcée par un raidisseur vertical médian) est assez faible.

Bibliographie

[1] CH. MASSONNET, M. SKALOUD et J. DONEA: Comportement postcritique d'une plaque carrée raidie cisaillée uniformément. Mémoires de l'A.I.P.C., Vol. 27, 1967, p. 187 à 210.

Résumé

Le présent mémoire constitue la seconde partie d'une étude sur le comportement postcritique des plaques raidies cisaillées uniformément, dont la première partie a été publiée dans le Volume 27 des Mémoires A.I.P.C., p. 187 à 210. Son objet est l'étude de la répartition des contraintes et l'analyse de *l'état limite* dans le cas particulier d'une plaque carrée.

Deux définitions différentes de l'état limite de la plaque sont examinées successivement. En adoptant la moins conservatrice des deux, qui définit l'état limite par la condition $\sigma_{cm\,max} = R_e$, où $\sigma_{cm\,max}$ est la plus grande contrainte membranaire et R_e la limite d'élasticité du métal, on montre numériquement que la contrainte limite $\bar{\tau}$ est substantiellement plus élevée que la contrainte critique τ_{cr} , le gain allant jusqu'à 626% pour une plaque non raidie de minceur b/e = 400. On montre aussi qu'en donnant au raidisseur la rigidité relative $\gamma = 3\gamma^*$, on réduit considérablement la déformée du raidisseur et de la plaque dans le domaine postcritique, mais le bénéfice sur la contrainte limite $\bar{\tau}$ est par contre assez faible.

Zusammenfassung

Diese Abhandlung bildet den zweiten Teil einer Studie über das überkritische Verhalten einer gleichmäßig durch Schub beanspruchten, versteiften Platte, deren erster Teil in den Abhandlungen der IVBH, Band 27, auf den Seiten 187 bis 210 abgedruckt ist. Die Verteilung der Spannungen sowie die Berechnung des Grenzzustandes für die Quadratplatte sollen behandelt werden.

Zwei Definitionen für den Grenzzustand werden nacheinander betrachtet: Wenn man die weniger konservative der beiden anwendet, dieselbe den Grenzzustand durch die Bedingung $\sigma_{cm\,max} = R_e$, wo $\sigma_{cm\,max}$ die größte Membranspannung und R_e die Streckgrenze des Metalles bedeuten, gibt, kann man numerisch zeigen, daß die Grenzschubspannung $\bar{\tau}$ wesentlich über der kritischen Schubspannung τ_{kr} liegt; für eine unversteifte Platte der Dicke b/e = 400steigt der Gewinn bis zu 626%. Ebenso wird gezeigt, wenn man der Steife die relative Steifigkeit von $\gamma = 3\gamma^*$ zuweist, daß sich dann die Verformungen derselben und der Platte im überkritischen Bereich beträchtlich verringern, jedoch der Gewinn für die Grenzschubspannung $\bar{\tau}$ im Gegensatz dazu gering bleibt.

Summary

Present paper constitutes the second part of a study on the postbuckling behaviour of stiffened plates subjected to pure shear, whose first part has been published in the IABSE Publications, Vol. 27, p. 187 to 210. Its aim is the study of the distribution of stress and the analysis of the limit state in the particular case of a square plate.

Two different definitions of the limit state of the plate are examined in turn. Adopting the less conservative of the two, which defines the limit state by the condition $\sigma_{cm\,max} = R_e$, where $\sigma_{cm\,max}$ is the largest membrane stress and R_e the yield point of the metal, it is shown numerically that the limit stress $\bar{\tau}$ is substantially higher than the critical stress τ_{cr} , the benefit amounting to 626% for an unstiffened plate with a "thinness" b/e = 400. It is also shown that, by giving to the stiffener a relative rigidity $\gamma = 3\gamma^*$, the transverse displacements of the stiffener and the plate are considerably reduced in the postbuckling range; on the other hand, the increase in limit stress $\bar{\tau}$ is relatively small.