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Notation

a spacing of webs in box-beam section
b half-width of bridge
c position of load from the support
D1 coupling rigidity per unit length of the bridge
D2 coupling rigidity per unit width of the bridge
Dx flexural rigidity per unit width of the bridge
Dy flexural rigidity per unit length of the bridge
Dxy torsional rigidity per unit width of the bridge
Dyx torsional rigidity per unit length of the bridge
E elastic modulus
G shear modulus
h overall depth of bridge
/ second moment of area
J torsional second moment
2 H total torsional rigidity of the bridge
Hn load function
L span of bridge
Mx longitudinal bending moment per unit width of the bridge
My transverse bending moment per unit length of the bridge
Mxy torsional moment per unit width of the bridge
Myx torsional moment per unit length of the bridge
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n harmonic
Rx longitudinal reactive force per unit width of the bridge
Ry transverse reactive force per unit length of the bridge
SB shear stiffness
Vx longitudinal shear per unit width of the bridge
Vy transverse shear per unit length of the bridge
w total vertical deflection

wB deflection due to bending
ws deflection due to shear

yp distance of Station from the load
oc torsional parameter
as effective torsional parameter
ocn parameter dependent on the harmonic
rj1 dimensionless parameter defining the left hand edge of the bridge
rj2 dimensionless parameter defining the right hand edge of the bridge
9 flexural parameter
0S effective flexural parameter
y shearing strain

Introduction

The box section beam is finding increasing application in bridge construction.

The section is relatively light in weight but strong in torsion and flexure.
A bridge deck which is composed of a multi-cell box section (six or more cells)

Fig. 1. Vierendeel distortion of
multi-cell box beam bridges.

may be analysed as an orthotropic plate by conventional methods [1,2,3].
However if the webs or flanges of the box are slender, distortion of the cross-
section is likely to occur in the absence of transverse diaphragms. Fig. 1

illustrates the deformation of the transverse cross-section in the manner of a
vierendeel frame. Such vierendeel distortion will cause an increase in both
deflection and longitudinal moment values in the proximity of concentrated
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loads. Massonnet and Gandolfi [4] have drawn attention to this effect and
showed that increases in deformation can be dramatic in the case of shear -

weak sections. They also suggest a semi-empirical approach to the determination

of deflection and moment in practical cases. More recently, Sawko and
Cope [5] have also considered shear distortion in box beams using a limited
approach based on the assumption of a plane stress condition in the flanges
of the box.

In a large proportion of practical designs of multi-cell box beam bridge
decks significant shear distortion of the transverse cross-section will not
occur but clearly neglect of this effect in all cases could have serious implica-
tions. In this paper the Huber orthotropic plate equation is modified by the
introduction of an additional parameter to account for shear distortion. The
resulting differential equations are solved by the use of half-ränge Fourier
series and a general method of analysis is developed for the determination of
deflections, moments and shears in a simply supported multi-cell box-section
bridge deck under concentrated or line loads.

Theoretical Analysis

In addition to the customary assumptions made in the analysis of elastic
plates, the following assumptions are made:

1. The total deflection of the deck is equal to the sum of the deflections due
to bending and shear, i.e.

w wB + ws, (1)

where w is the total deflection; wB and ws are the deflections due to bending
and shear respectively.

2. The transverse shear is equal to the product of the shear stiffness and
the slope of the shear deformation in the transverse direction

V, SJ°M, (2)

where SB is the shear stiffness of the deck. The value of SB is explained later
in the section on elastic rigidities of the deck.

3. The curvature of the deck in the longitudinal direction is derived from
the total deflection while for the transverse direction it is derived from the
deflection due to bending only.

Thus, ** S' (3)

** -W' (4)
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It follows from this assumption that the longitudinal and transverse bending
moments are

m --\d 8-^y+D~]

(5)

(6)

The twisting moments in the two orthogonal directions x and y are obtained
from the shearing strain

7 dxdy SB\8xj y '

From Eq. (2) this may be expressed as

¦( d2w d2w*

dxdy dxdyi
\

_ d2w±
J dx djdy

(8)

Hence the shearing strain is a function of the deformation due to bending
only and the twisting moments become

d2wB
Mxy= Dxyy= D

Myx -Dyxy -D
xvdxdy

d2wB
yx

7-

8x dy'

dx

(9)

(10)

1 Myx

-7- ^,_J_C4!!__*
iy Mxy \y/-\i~—

/ '
y'9\

av

(My+^dy)
V.+

3x

-.-, 3MXy
dx)

9V*
dx,

<Mx+-^dx>

(Myx + -^dy>
ax

Fig. 2. Free-body diagram of an element of the deck.

From these moment-curvature relationships, the shearing and reactive
forces (see Fig. 2) may be shown to be

ldMx dMvx\ \t,Pw ._ ^yzwB
dx3 yx ' ~i;dxdy2

d*w

¦]•

ldMv dMxy\ r ff» d*w d*wB]
v \ 8y dx lvdys^2dx2dyxvdx*dy\'

(11)

(12)



TRANSVERSE SHEAR DEFORMATION IN MULTICELL BOX BEAM BRIDGES 173

Consideration of the equilibrium of the vertical forces and the summation
of moments in the two orthogonal directions leads to the usual equation for
elastic plates

d2Mx 8*MU d2Myx d*Mxv-^y + ~iry+ _ a - r, 7v -p(x,y). (15)
dx1 dy1 dxdy dxdy

In terms of the deflections w and wB this equation may be expressed as

r, d4^ ,_. _. _, d^wB _. d4w> ^ d*wB „„.^^+(^+^+^fe^+jD2^w+jDi'V=2>(x'2/)- (16)

It is apparent from this expression that if wB w, the equation reduces to
the Huber orthotropic plate equation [6].

The slopes in the transverse direction may be expressed as

dw dwB+dw,_
dy dy dy

From Eqs. (2) and (12),

|l?___2_l! + £ (18)
dy dy SB

D£2+D.£k +D~£&l (¦»>
dw dwn 1

or
dy dy SI y dy* ldx2dy xvdx2dy

The equation may be re-arranged into the form

dw dwB d*wB d*w d*wB^T-'^Xr +^TT+^o^o +^j/o,2o, - °- (2o)

Thus, the three original basic assumptions result in two simultaneous differential

Eqs. (16) and (20) in w and wB. If the load and deflections are expressed
in half-ränge Fourier sine series, for the nth harmonic of the series the
contributions to the total and bending deflections may be written as

wn Wnsinocnx, (21)

wBn WBnsin ocnx, (22)

where ocn -j—. (23)

and L is the span of the deck.
The complete Solution may be split into homogeneous and particular parts.

For the homogeneous part, the following ordinary differential equations are
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obtained if Eqs. (21) and (22) are substituted into Eqs. (16) and (20), with
p(x,y) set to zero:

d*Wnd2 W
«*Dx Wn-*\D2-^-^(D1 + Dxy + Dyx)

dy2

d "Bn j^
(_> ffBn

dy2 v dy^
0,

Sn^-S„~^ + DßJ^-yD9^-«ZD^'^ 0.B dy "B dy

Using the Operator notation

v dy3

D71

dy dy

dm

dy™'

these two equations may be expressed in matrix form as follows

¦a\Dx-alD^
_SBD-«ID2D

¦ocl(D1 + Dxy + Dvx)Dz + DyD*-

-{SB + *lDxy)D + DyD*

W

w,Bn_

(24)

(25)

(26)

(27)

For a non-trivial Solution, the determinant of Eq. (27) must be zero, hence

(28)

{( - SB Dy _>*) + [«* Dx Dy + al D, SB + «* D2 Dxy + «« SB (Dx + Dxy + Dyx)

W,L rrBn
- ai D2 (D1 + Dxy + D„_)] Ds + [- <Dx 8B - «• Dx Dy] D}

For simplicity, the following substitutions are made:

2H*=(D1 + Dxy + Dyx),

Pi =~SBDy,
P2 SB (D2 + 2 H*) + «» [DxDy -D2 (D1 + _>„_)],

P3 =-Dx(SB + **Dxu)

and the Operator equation may be written as

i-ro-

(29)

(30)

(31)

(32)

(33)

The absence of the term in D° implies that the total deflection function is of
the form

w wB + ws + c constant).

For this to be compatible with Eq. (1), the constant c must be zero which
implies that the power of the Operator equation may be reduced by one, thus

{PxD* + a2nP2D2 + «iP3}
lWBn]-ra-

Consider now an ordinary differential equation of the type
d£ W d2W
dy' dy2

(34)

(35)
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and assume a Solution of the form

Wn A &*«**, (36)

where A is an arbitrary constant. Upon Substitution into Eq. (35), the characteristic

equation is obtained as

Px(aLns)^^2nP2(aLns)2^^nFz 0. (37)

The roots may be evaluated by quadratic formula and the expression for the
quantity s of the roots may be obtained as

The four roots are + (<xns1), +(ans2), — (a^Sj) and —(ocns2). This may be
generally represented as ± ocn Sj so that j will have values of 1 and 2 only.

Introducing a parameter ocs such that

(Dxy + Dyx + D1 + D2) + §i [Dx Dy - D2 (D, + Dyx)]
a,

B
_____ (39)

2iD*D*(1+*£r)
the quantity Sj of the root may be simplified as

-'-^(1+-^")'^^rr- (40)

Upon inspection of Eq. (40) it becomes apparent that another parameter
s identified as

These parameters ocs and 9S are the equivalents of the torsional and flexural
parameter oc and 6 originally by Massonnet [2] for use in the conventional
orthotropic plate theory. It follows that

r (Dxy + Dyx + D1-{-D2)hm a^ xv vx 1
— cc (42)

8^~ 2iDcrD„'x^y
and lim ds ^-1/^ 6. (43)

SB-+00 L \ Dy

Clearly the parameters ocs and 6S vary with the harmonic hence a generalized
notation will be employed in the Solution.

Solution of the Orthotropic Plate Equation

Consider a bridge deck of span L and width 2 6 as an orthotropic plate
simply supported along the ends x 0 and x L. The complete Solution of the
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non-homogeneous Eq. (16) may be obtained by adding the homogeneous and
particular parts of the Solution,

w wh + wp. (44)

The letters h and p will be used as superscript or subscript as appropriate to
denote the quantities associated with the homogeneous and particular parts
respectively. wv is the particular part of the Solution obtained by considering
the effect of the loading. This does not in general satisfy all the boundary
conditions. wh, the homogeneous part is added to give the complete Solution.
The homogeneous part has to satisfy the equation without the lateral load

p (x, y) but with the boundary forces acting on it.

Homogeneous Solution

The roots of the characteristic equation may be real or complex and exist
in pairs denoted by +(ocnSj) and —(ocnSj) where j has values 1 and 2. The
amplitude of the deflection function may be written as

2

wh 2 (Af e-^8^* + A$+2e+(XnSiyh), (45)
l=i

2

w%= 2 (Bf e-^^yh + J5ä+2 e+a»8,t/Ä) m (46)
1=i

For the homogeneous Solution, the distance of the reference Station measured
transversely from the longitudinal centre line of the deck is denoted by yh.
Stations to the right of the centre line are considered positive and those to
the left as negative.

The relationships between the arbitrary constants in Eq. (45) and (46) may
be established from the conditional Eq. (25) if these deflection funetions are
substituted into it, thus

(SB-** D2) (- «nsj A) e-nsm) + (SB-«2nD2) (*n8j Aj+2 e+**s^)

-[SB-Dyals]+a2nDxy](-ansjBfe--nsm) (47)

-[SB-^oiÄj+aJßJfa.^^e^^) 0.

Collecting all terms which are funetions of e~a«s>Vh and equating them to
zero, an equation is obtained relating the arbitrary constants Af and B%,

* ysB-Dyaisi+aiDxyy (S)

The same relationship may be shown to exist between Bf+2 and Af+2 if all
terms containing e+0CnSJyh are collected and equated to zero.

Setting FWj=§ §t2= ^f+^D <49>
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the deflection funetions for the homogeneous part may be written as follows:

(50)wh 2 sinocnx 2 (Afe-(XnSJyh + Af+2e+CCnSiyh),
n=l 1=1

oo 2

wB= 2 sin an x 2 F wj (Aj e~are S/ Vh+A$+2e+0Ln Sj l
n=l 1=1

It may be shown from Eq. (49) that the
Bh Eh

lim F W =2- 9+2 1um ± vf3 h 1

and the bending deflection is equal to the total deflection of the deck.

(51)

(52)

Particular Solution

An infinitely wide bridge deck, as seen in Fig. 3 under the action of a line
load expressed in sinusoidal form, will be used in evaluating the deflection

i*

*y
Fig. 3. Coordinate axis for infinitely wide bridge deck.

function wp. For the particular part, the deflections may be expressed as
oo 2

wp 2 sina^^ 2 (Afe-^s^p-[-Af+2e+0CnS^p),
n=l 1 1

2

wb 2 sinan£ 2 (Bf e-^^vp + Bf+2e+ocns)yp)
n=l ?=1

(53)

(54)

where the arbitrary constants are identified by the superscript p. The transverse

distance of the Station from the load is denoted by yp. To preserve the
symmetry of the system, an absolute value will be used for yp thus an adjust-
ment in sign is necessary for anti-symmetric quantities such as Ry for example.
This will be fully explained later.
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For the deflection function and its derivates to vanish at distances far from
the load, the positive pairs of the roots anSj will be discarded and the remaining
expressions are simplified to the forms

w» 2 smocnxj]Afe-(X-s^p, (55)
n=l 1=1

oo 2

wb 2 sina^x 2 Bfe-^^yp. (56)
n 1 1 1

Since the same conditional equation applies to the homogeneous and particular

Solutions, the arbitrary constants Bf and Af are related in the same way
as Bj and Af, and hence the particular parts of the deflection funetions may
also be written in terms of the factor F Wj

oo 2

vP 2 sinanx2 Afe-^p^p, (57)
n=1 1=1

oo 2

wb= 2 sin an x 2 F wj Af e-«"siVp. (58)
n=l 1=1

The two arbitrary constants (Af=1 and Af=2) are obtained from the two
boundary conditions under the load, namely:

1. For each harmonic, the slope of the bending deflection in the transverse
direction is zero,

(EL -

and by Substitution of Eq. (58)
00

^FWjSjAf 0. (60)
l=i

2. The reactive force under the load is equal to half the load. If the applied
load is expressed in half-ränge Fourier sine series, then for each harmonic

(Rpv)Vp=o -^manx, (61)

where Hn is a load function which may be derived for any form of load. This
boundary condition may be expressed in terms of the deflection funetions as

follows:

or 2 Af[Dyals^FWj-(Dxy + Dyx)oclsjFWj-D2alsj] -^. (63)
l=i *

For simplicity, the term inside the bracket of Eq. (63) may be replaced by
FRyj, thus

F Ryj [Dy ^ ,3 F Wj _ {Dxy + Dyx) as Sj FWj-D2 ocl Sj] (64)

and the two arbitrary constants are determined accordingly.
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Complete Solution

The complete Solutions for w and wB are obtained by adding the
homogeneous and particular Solutions:

co 2

w % sinocnx%[Afe-«"sJyp + Afe-«nsiy* + Af+2e+(Xnsiyf>], (65)
n=l 1=1

oo 2

wB= 2 sin ocn x 2 F Wj [Af e~^siyp + Af e~a*8>yh + Af+2 e+a*s?^]. (66)
?i=i ?=i

Both deflection funetions are symmetrical and it is therefore convenient to
use the notation S Yj for the function inside the bracket of Eqs. (65) and (66),
so that

SYj (Af e-«*siyp + Af e~«"siyh + Aj+2e+(X"siyh). (67)

It must be emphasized here that the term S Yj is a function of the number of
the harmonic, the value of j and also the transverse positions of both the
load and the reference Station. The deflection funetions may be simply written
as

w 2 sina?^2 STj9 (68)
n=l 1=1

oo 2

wB= % sinocnxZ FWjSYj. (69)'
n=l 1=1

The distance yp of the Station from the load is an absolute value as already
mentioned in the derivation of the particular Solution. This means that for a
symmetrical function such as w, the contribution of the particular part
Af e-ocnsjyP requires no change of sign. However, for antisymmetrical funetions
such as Mxy, Myx, Vy and Ry, it is necessary to consider the particular part as

KAfe-^^p,
where K has the value of + 1 if the Station is to the right of the load and — 1

if it is situated to the left.
Consider the anti-symmetric reactive force Ry such that

oo 2

Ry= 2 sina^2 (FR^KAfe'^^p
+ FRyj Af e~a" siy* + FRyj+2 Af+2 e+a* *iv*)m * '

The quantity F Ryj+2 may be obtained from the expression for F Ryj by
replacing Sj by — Sj. It then becomes apparent that

F Ryj+2 -F Ryj. (71)

This change of sign is consistent for all anti-symmetric funetions mentioned
earlier on since each is dependent on an odd power of the root ocnSj. Thus, the
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term inside the bracket of Eq. (70) may be replaced by a simple notation
A S Yj so that

ASYj F Ryj(KAf e-^siyp + Af e-^^p - Af+2e+0L*sil (12)

With these notations S Yj and ASYj, the deflections, moments, twists, shears
and reactive forces may be expressed in an abbreviated form.

Boundary Conditions

The four arbitrary constants of the homogeneous Solution are obtained
from the boundary conditions at the edges of the deck. If the deck is elastically

*.>¦¦... _.N.

/
/"

yp

El
GJ

- \X\N\V\N \\N

AX

/

iy2b
h

\ NNNS-AXSNVk

Load

F<_VVVVAV\V<

i?|b-

/
El
GJ

t_t?—? yp
yn

Fig. 4. Coordinate axes.

restrained by edge beams of flexural rigidity EI and torsional rigidity GJ
as shown in Fig. 4, the boundary conditions may be written as

{Ml b + (M%k=b =+GJ \Sx2dyjVp^nib + \dx*dy]yh=b\'

,t.«,x ,_r*x A 7 f/ 3%" \ jdswh\ 1
<*5 W+WW-* -oj [(j^) + [j^lJ

(73)

(74)

(75)

(76)
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Z{(FRyj+ociEI) [Afe-vib + Afe-ßq -(FRyj-oc*nEI)Af+2eßi} =0,(11)
1=1

X{(FRyj+ociEI) [Afe-vzßi + Af+2e-ßq-(FRVj-oiiEI)Afeßi} =0, (78)
l=i
2 {(FMyj - al Sj G J) [Af e-m ft + Af e~ßq + (FMyj + «» Sj G J) Af+2 eft} 0,(79)
l=i
2 {(FMyj-oclSjGJ)[Afe-^ß^Af+2e-ßq + (FMyj + alSjGJ)Afeßj} 0, (80)
l=i
where ßj ocnSjb (81)

and FMyj (D2 a* -Dy oc2 s2 F Wj). (82)

Thus the four arbitrary constants are determined by solving these four equations

simultaneously. With the deflections w and wB known, the bending and

twisting moments, shearing and reactive forces are determined by successive

differentiation. These are summarized as follows:

Deflection
oo 2

Total: w Ysinanx £SY}. (83)
91=1 1=1

oo 2

Bending: wB Y sinanxY FW^SYj). (84)
n=l 1=1

Longitudinal Bending Moment:

Mx 2 sin*nxZ FMxjSYj. (85)
71=1 1=1

Transverse Bending Moment:
oo 2

My Zwy^xXFM^SY,. (86)
71=1 1=1

Transverse Twisting Moment:

Mxy 2 cosanx 2 FMxyj ASYj. (87)
n=l 1=1

Longitudinal Twisting Moment:
oo 2

Mvx 2 cosanx£FMyxiASY}. (88)
71=1 1=1

Longitudinal Shearing Force:
oo 2

Vx Y coso^xZ FV^SYj. (89)
71=1 1=1

Transverse Shearing Force:
oo 2

Vy Z ema^zZFVyjASY,. (90)
71=1 1=1
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Longitudinal Reactive Force:
oo 2

Rx __ cosanxXFRxjSYr (91)
71=1 1

Transverse Reactive Force:

Ry 2 sinan^2 FRyjASYj. (92)
71=1 1=1

The quantities i^^- and FMyj have been defined earlier and the rest are
given as follows:

FMxj =(««__.-«a_JZ)1P^)> (93)

FMtyi -Dxy^8iFWi, (94)

PJflw/ JDv.a2.yPW5, (96)

PFX, =Dxal-(D1 + Dyx)alsJFWj, (96)

PÄ_. =Dxal-(D1 + Dxy + Dvx)als^FWj, (97)

PFW. =(JDv_|-i).1,_i)_«PR5-_)a<_3.,. (98)

Elastic Rigidities of the Deck

Considering a multicell box-beam bridge deck without intermediate
diaphragms (see Fig. 6), the flexural rigidities, Dx and Dy in the longitudinal and
transverse directions respectively, may be defined in terms of moment per
unit curvature and are independent of the value of the shearing rigidity SB.
For the calculation of Dx, the second moment of area of the longitudinal section
is taken in the usual way. This value is expressed per unit width and then
multiplied by the value of Young's modulus to give the flexural rigidity Dx.
The corresponding flexural rigidity in the transverse direction is obtained
from the top and bottom flanges of the deck.

The torsional rigidity Dxy is obtained by considering the shear flow in the
multicell structure. For decks where webs and flanges are relatively small as

compared with the dimensions of the deck, Wittrick's equation [7] may be
used. For decks with six or more cells, the torsional rigidity may be obtained
by neglecting the net shear flow through the internal webs since these are
generally small; the effective shear flow is taken along the flanges and outer -

most webs. Thus Bredt's single-cell formula [8] may be used. The torsional
rigidity is expressed per unit width and Dxy is taken as one-half of this quantity.
If the deck is closed at the ends by diaphragms, then a similar approach may
be used to calculate Dyx in the longitudinal direction.

The coupling rigidities Dx and D2 are both taken as Poisson's ratio times
the contribution to Dy from the flanges.
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The shear stiffness SB may be obtained by considering a transverse slice
of the deck of unit width subjected to equal and opposite shearing forces Vyl
and Vy2dX the ends as shown in Fig. 5. This isolated slice may be considered
as a frame with points of contraflexure in the flanges midway between the

E

Vyi

yz

El2

y2Fig. 5. Assumed frame deformation
(Holmberg).

webs. Holmberg [9] has shown that for such a frame the shear stiffness SB

may be simplified to the form
1

SB ah
+ a^[3h(I1 + I2)+aI3]

12EI3 l2E[12hI1I2 + aI3(I1 + I2)]

It will be appreciated that the assumptions involved in Holmberg's analysis
are not completely realistic. However, in comparisons with more accurate
analyses involving the use of Computer programs for vierendeel frameworks,
Holmberg's method has been found to give safe values for a ränge of web
and flange dimensions. It is adopted here as a simple and conservative
procedure for assessing shear stiffness.

Discussion of Results

In order to show the effect of vierendeel distortion on the load distribution
characteristics of the deck, a twelve cell box-beam bridge deck is taken as an
example. The dimensions are shown in Fig. 6 and the elastic rigidities in flexure,
torsion and shear are calculated in the appendix.

The results are expressed in terms of distribution coefficients for deflection
and moment. These coefficients were obtained by dividing individual values
of deflection or longitudinal moment by their mean value as obtained from
simple beam theory. For convenience the transverse bending moment is
expressed in terms of the mean longitudinal moment. Using these elastic
rigidities, the deck was analyzed with and without shear deformation and the
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results for central and two eccentric positions of concentrated load at midspan
are shown in Figs. 7, 8 and 9. The values of deflection, longitudinal and transverse

bending moment were computed using nine harmonics of the series.
For the shear stiffness SB, Holmberg's equation was used. From these figures
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Fig. 8. Distribution coefficients for longitudinal moment.

it is apparent that the effect of vierendeel distortion on the deck is highly
localized under the load. The peak values of the distribution coefficients for
longitudinal moment vary from two to three times the corresponding values
obtained using the conventional orthotropic plate theory, depending on the
eccentricity of the load. A more realistic comparison may be made by con-
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sidering the areas under the curves. With the load at stations 0, b/2 and b,

the percentage increases in the moment carried by the beams under these loads
with the inclusion of the shear correction are 150, 126 and 86% respectively.
This indicates the magnitude of the shear deformation effect and the necessity
for taking account of it in design, especially when the webs of the multi-cell
box beam bridge deck are fairly thin.

The presence of shear deformation decreases the peak value of transverse
moment as shown in Fig. 9. This is to be expected as the shear stiffness SB
has the effect of reducing the overall rigidity of the deck in the transverse
direction leading to a decrease of transverse moment.

The effect of shear stiffness on the load distribution characteristics of the
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Fig. 10. Relation between peak value of distribution coefficient and shear stiffness.
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deck is shown in Fig. 10. To illustrate this effect on the example bridge deck,
values of SB are plotted against the distribution coefficients for deflection.
The load is placed at the edge to produce the peak value of distribution coefficient.

For convenience the first harmonic only was considered. From this
figure it appears that rapid increases in the value of Kwmax occur at low values
of SB. As the shear stiffness is increased the distribution coefficient approaches
the value obtained from conventional orthotropic plate theory.
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Figs. 11 and 12 are included to illustrate the effect of the number of
harmonics on the values of the flexural and torsional parameters 6S and ocs (Eqs.
(39) and (41)). It is shown in the theoretical analysis that the parameters ocs

and 6S are funetions of the harmonics. This makes it a difficult, if not impossible,
task to reproduce the results in the form of design curves for the benefit of
designers who do not have ready access to a digital Computer. This can only
be a practical proposition if distribution coefficients are obtained from the
first harmonic of the series only. Experience has shown that up to nine
harmonics are required in order to obtain accurate results with an analysis
including shear deformation, especially for the values of moments and shears.

Conclusions

A theoretical analysis has been presented for determining the effect of
vierendeel distortion on the load distribution characteristics of multicell box
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beam bridges. It has been shown that this effect is somewhat localized in the
vicinity of the load. Large increases in the peak values of longitudinal moment
occur under the load as a direct consequence of vierendeel distortion, with an
accompanying decrease in the transverse bending moment of the deck.
Approximately, the increases in the peak values of deflection and longitudinal
moment are inversely proportional to the shear stiffness of the deck. When
SB is infinitely large the values correspond with results from conventional
orthotropic plate theory.

The flexural and torsional parameters have each been shown to be a function

of the harmonics. The use of a digital Computer is imperative for an
accurate Solution.
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Appendix: Illustrative Example

The dimensions of the bridge deck are shown in Fig. 6. For the purpose of
calculating the elastic rigidities of the deck in flexure and torsion, the value
of Poisson's Ratio is taken as 0.15. The elastic rigidities are determined as
follows:

D -L (12003 --^L x 9003| E 89.325 x IO6 Emm4/mm,x 12\ 1000 / '

Dy =-1-(12003-9003)# 83.25 xl06jE/mm4/mm,
IA

Dx =D2 vDy 0.15x83.25 x IO6 E 12.49 X 106#mm4/mm,
1 G4_42 Öx4(12000xl050)2 __ ^arl

XV *X 4f 2xi21oo(^x2+4^) /mm'

2X15000(^X2 + ^X2)
2H (Dxy + Dyx + D1 + D2) 154.54 x 10« i?mm4/mm.

Using Holmberg's formula, the shear stiffness is obtained as

SB 0.834 E mm2/mm.
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For the conventional orthotropic plate theory the parameters a and 6 are as
follows:

H 154.54 ^ _oc — 0.896,
iDxDy 2/89.325X83.25

b \IWX 12100 4/89l25ö TV^ 2X 15000 V "83^ °-41°-
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Summary

A theoretical analysis is presented for the analysis of multicell reetangular
box beam bridges, without intermediate diaphragms, which considers the
effect of Vierendeel distortion of the deck. The Solution is expressed in Fourier
Half-Range Sine Series and as such it is limited to simply supported bridge
decks. The edges may be free or elastically restrained by edge beams of known
elastic rigidities in flexure and torsion. The equations for deflection, moments
and shears are derived and an illustrative example is included to show the
effect of Vierendeel distortion on the load distribution characteristics of the
deck. Comparison is made with conventional orthotropic plate theory.
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Resume

On presente une analyse theorique applicable au calcul des ponts en caisson
multicellulaire sans entretoises, avec l'influence de l'effet de Vierendeel sur la
chaussee. La Solution est donnee sous forme de series de Fourier et eile est
limitee au cas des plaques simplement supportees. Les bords peuvent etre
libres, ou partiellement encastres par des entretoises extremes de rigidites
flexionnelle et torsionnelle connues. On etablit les equations pour les fleches,
les moments et les efforts tranchants; ä l'aide d'un exemple, on montre l'effet
de Vierendeel sur la repartition des charges sur la chaussee. On compare les

resultats avec la theorie conventionnelle des plaques orthotropes.

Zusammenfassung

Es wird eine theoretische Analyse für die Berechnung mehrzelliger
Kastenträger-Brücken, ohne Querscheiben, unter Beachtung der VierendeelWirkung
der Fahrbahn durchgeführt. Die Lösung wird in Fourier-Reihen ausgedrückt
und ist auf einfach gelagerte Fahrbahnplatten begrenzt. Die Ränder können
frei oder durch Endträger von bekannter Steifigkeit hinsichtlich Biegung und
Torsion eingespannt sein. Die Gleichungen für Durchbiegung, Momente und
Schub werden abgeleitet, und an einem Beispiel wird die VierendeelWirkung
auf die LastVerteilungscharakteristiken der Fahrbahn gezeigt. Zudem wird
ein Vergleich mit der konventionellen orthotropen Plattentheorie angestellt.
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