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7. Discussion of IABSE PROCEEDINGS

Theorie perfectionnee des poutres droites ä

parois minces (Improved Theory for Thin-
Walled Straight Beams)

Charles Massonnet, P-55/82, published November
1982 in IABSE PERIODICA 4/1982

A discussion by W. H. Wittrick, Emeritus Professor,
University of Birmingham, England

A recent paper by Massonnet (1) is concerned with
a particular aspect of the problem of shear lag in
thin-walled structural members of uniform cross-
section subjected to a uniformly distributed transverse

loading, so that the bending moment varies
quadratically and the shearing force and torque
vary linearly with the longitudinal co-ordinate z.
He refers to a report by me (2), written in 1951,
which was primarily concerned with shear lag in
aircraft wing boxes of non-uniform cross-section
subjected to a smoothly varying but non-uniformly
distributed transverse loading, so that the bending
moment and torque may have any smooth Variation
along the length.
Shear lag arises, of course, from the longitudinal
warping of initially plane cross-sections due to
shearing strains in the walls, and I pointed out in

my 1951 paper (2) that it could be considered
under two quite distinct headings, namely
distributed shear lag and end effects. It is well known
that if the distribution of shearing stress over any
particular cross-section is specified, then the warping

of that cross-section out of the plane can be

determined, apart from rigid body displacements.
In general. if the shearing force and torque vary
with z in some smooth but arbitrary way, the
difference in warping between neighbouring cross-
sections due to engineers' theory shearing stresses
is incompatible with the longitudinal strains due
to engineers' theory bending stresses. A redistribution

of stress is therefore required, in order to
provide compatibility, and this is the origin of what
I called distributed shear lag. A stress system that
has been corrected so as to satisfy compatibility
and which, like engineers' theory, still satisfies
equilibrium requirements was referred to as a basic
stress system. For any given distribution of load,
there is an infinite number of basic stress Systems;
the particular one that provides the correct Solution

to any given problem is that which, in addition,
satisfies the required conditions of freedom or
constraint at the ends of the member. For example,
suppose that the member is a cantilever with its
tip free, and its root encastre; in general a basic
stress system will satisfy neither the requirement
of zero longitudinal stress at the tip nor zero warping

at the root and there will be only one such

system that does so. However, since every basic
stress System is, by definition, in equilibrium with
the transverse applied loads the difference between

any two of them corresponds to the stresses that
arise from a self-equilibrating System of external
forces acting on each of the two end cross-sections.

By Saint-Venant's Principle the stresses arising
from such a self-equilibrating System decay with
increasing distance from the end at which it is

applied. Thus the whole problem can be split into
two parts; (a) find any basic stress system, and (b)
find the additional self-equilibrating Systems of
forces that must act at the two ends, and the
stresses that they produce, in order to satisfy the
end conditions. Each of these two parts of the
problem results in a modification of engineers'
theory stresses, though in the case of a tubulär
member with an encastre end it is the end effects
that are likely to be the most significant.
The first point that l wish to make about
Massonnet's paper is that his analysis is concerned

only with the first of the two problems just
described, namely distributed shear lag. However
he makes the statement that his Solution is unique,
and quotes Kirchhoff's uniqueness theorem in
justification. This is incorrect, since the uniqueness
theorem requires for its validity not only that the
requirements of equilibrium and compatibility
throughout an elastic body be satisfied but also
that the boundary conditions of specified trac-
tions or specified displacements over the entire
surface shall be satisfied. Since no end conditions were
considered, it is clear that the uniqueness theorem
does not apply, and his Solution is merely one of an
infinite number of Solutions of the equations (5.1)
and (5.2). The one that he has actually obtained is
characterized by the fact that the distribution of
shearing stress t throughout the member is identical
with that obtained from engineers' theory. As
mentioned by Massonnet my 1951 paper (2) showed
that such a basic stress System exists in the special
case of a uniform member with linearly varying
shearing force and torque. More generally, my
paper showed that, if the bending moment and

torque vary as polynomials in z, there exists a basic
stress system in which o contains a series of terms
proportional to the bending moment and its even
derivatives plus terms proportional to the odd
derivatives of the torque whilst, conversely, r
contains a series of terms proportional to the torque
and its even derivatives plus terms proportional to
the odd derivatives of the bending moment. Two
integral equations, one for o and one for t, were
derived in the paper, which enable these terms, of
progressively higher order, to be calculated for a

thin tube oi any uniform single-cell cross-section
by repeated quadrature. As well as a thin wall the
tube may also contain any number of concentrated
"booms", i.e. longitudinal members that carry direct
stress.

The second point that I wish to make is concerned
with the equation of compatibility — equation (3.7)
or (5.2) — that Massonnet uses. namely
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I believe that this equation is correct only if the
boundary of the cross-section consists of a series
of straight sides. The reason is that if the boundary
is curved the co-ordinate s is one of a triad of moving
axes and it is necessary to use the strain-displace-
ment relations for a shell, rather than those of plane
stress, in deriving the compatibility equation. When
this is done an additional term equal to

Jl
3z2

appears on the right hand side of the above equation,
where un is the displacement normal to the wall
surface and r the radius of curvature of the boundary
of the cross-section.

Moreover, in deriving equation (5.10), Massonnet
states that

_3j
3s2

M y
0

where the term in parentheses is the engineers'
theory bending stress. But, this also is correct only
if the boundary is straight, in which case y varies
linearly with s. Thus the theory on which the paper
is based is, I believe, valid only for structures formed

from flat walls. The analysis of my 1951 paper
(2) was not restricted in this way.
My remaining comments are concerned with the
Solution which is given in §6.2 for the uniformly
loaded Tee-section. It is stated at the beginning that
the effects of shear lag are negligible in the web,
which is assumed to be "massive", and thereafter
the correction Aa is considered only for the flange.
The constants of integration are then determinded
from (i) symmetry, and (ii) equation (6.10), which
says that the total longitudinal force in the flange
due to the Act stresses is zero. I do not think that
the neglect of the web in this way can be justified,
since it is obvious that, for compatibility of
longitudinal strains, the Act stress must be the same in
both the web and the flange at their junction. This
must surely imply that the resultant force and bending

moment arising from the Act stresses in the web
are just as significant as those in the flange. Finally,
if account is taken of the web, the Variation of Act

across the width of the flange, although symmetrical
about the centre, has a discontinuity of slope
3(Au)/3s on the centreline, and does not have
zero slope as suggested by equation (6.11).

MASSONNET, Ch.: Improved Theory for Thin-
walled Straight Beams.
IABSE Proceedings, P-55/82,
November 1982, pp. 81-95.

2. WITTRICK, W. H. On the Problem of Shear Lag
in Non-Uniform Cylindrical
Tubes. Report SM 164 ofthe
Aeronautical Research
Laboratories, Melbourne, 1951.

Reply of the author
The author agress generally with the considerations
of professor Wittrick. He feels that it should be
emphasized that his paper [1] and Wittrick's paper of
1951 [2] have not the same aim. The problem solved
by Wittrick, namely that of shear lag in non-uniform
cylindrical tubes subjected to non-uniform transverse
loading, leads to two coupled integral equations that
the author has found too cumbersome for practical
use. In the "Computer age", where we live, such
Problems would be solved by using a Computer program.
The author's aim was very different from that of
Wittrick : it was to show that for prismatic beams,
the classical theory of bending-torsion of thin-walled
members could be extended to the case of quadra-
tically varying bending moments and linearly varying

torques. The only correction is the introduction
of a distribution of normal stresses Act called "distributed

shear lag".
For this reduced problem, the theory presented is

much simple than Wittrick's equation. Be said in
passing, it is rather unfortunate that because of the
limitation imposed to the paper, the author has been
obliged to leave the practical application of the
theory to the distribution of shear lag in plate and
box girders to another paper [3].
However, professor Wittrick is right in histwocritics:
1) The compatibility equation on which the theory

is developed is only correct for thin-walled profiles

with straight walls. This should have been
explicitely said in the paper.

2) The distributed shear lag computed in the paper
assumes some relaxed conditions at the ends of
the beam, namely N(Act) 0 and Mx(Act) 0
[equations (5.14.) and (5.15.)].
The simplicity of the stress distribution yields
obviously from the neglect of the end conditions
which are discussed in Wittrick's paper but lead
to very cumbersome computations. Anyway,
the author agrees with professor Wittrick that
Kirchhoff's unicity theorem cannot be invoked
(see bottom of page 85) because the boundary
conditions have not been specified here on the
end surfaces of the beam.

Additional reference.

[3J R. Maquoi et Ch. Massonnet: Une evaluation
simple de la largeur efficace due au trainage de
cisaillement. Construction Metallique N° 2-1982,
pp. 17ä24.

Professor Ch. Massonnet
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