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Initial Elastoplastic Buckling of Stiffened Plate Assemblies

Flambement en regime elastoplastique de panneaux raidis

Elastoplastisches Beulen ausgesteifter Platten
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SUMMARY
A matrix technique using harmonic analysis is shown which allows the study of the elastoplastic
buckling of stiffened panels subjected to longitudinal loading and residual stresses. The
bifurcation of equilibrium method is used. Therefore the edge loads are supposed to be acting in the
middle plane of the panel and geometrical imperfections are ignored.

RESUME

Les auteurs exposent une technique matricielle d'analyse harmonique, qui permet d'analyser le

flambement en regime elastoplastique de panneaux raidis sollicites par des charges longitudinales

et contraintes residuelles de la soudure. La methode de la "bifurcation" est appliquee
avec les hypotheses suivantes: les charges laterales sont supposees agir au centre, les
imperfections geometriques sont negligees.

ZUSAMMENFASSUNG
Es wird gezeigt, wie mittels harmonischer Analyse das elastisch-plastische Beulen ausgesteifter
Platten unter Längsbelastung erfasst werden kann. Dabei werden Eigenspannungen berücksichtigt.

Das Problem wird als Verzweigungsproblem behandelt, weshalb zentrische Belastung
angenommen wird und geometrische Imperfektionen ausser Betracht bleiben.
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1. INTRODUCTION

This paper presents a matrix technique using harmonic analysis
which allows the study of the elastoplastic buckling of stiffened
panels subjected to longitudinal loading. Residual stresses (welding

stresses) are taken into account in calculation but geometrical
imperfections are not. Therefore, this theory can be used for

stiffened plates with low width - thickness ratios because such
plates have little postbuckling strength and small geometrical
imperfections have not a great influence on their ultimate strength.

2. ANALYSIS

As it is known, there are two different basic methods to study the
buckling of steel structural elements under compression: the bifm~
cation of equilibrium method, which determines the critical loads
of ideal structural Systems; and the divergence of equilibrium
method, which obtains the ultimate loads in real structural
Systems. The basic difference between these two methods is that while
the first one studies buckling as a state of neutral equilibrium
(i.e. an infinite number of Solutions), the second considers
buckling as a problem of strength (i.e. the highest point in the load
-deflection diagram).

*-—*—"edge loadjge load

end diaphragm

end diaphragm

£—*-—*~~"6dge load Aa2

end diaphragm

dal
,n«5

j—-f—V—-j—-j—-*—-w end diaphragm^/\ljUJxx/^ Aff ///j2xuko.
oD*n-section stiffeners £•—*¦—open-section stiffeners

end diaphragm

Trough-shaped stiffeners

Fig. 1. Tipical examples of stiffened panels

In order to study the panel buckling (figure l) using the bifurcation
method, the problem must be idealized. The assumptions are:
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- The material has an elastic-perfectly plastic
stress-strain relationship (figure 2).

- Each one of the plates that make up the
panel remains plane before buckling.

i

- The idealized residual stress platterns (fi
gure 3) satisfy the seif-equilibrating conditions

- Lastly, it is assumed that no strain rever-
sal takes place at the instant of buckling.

To simplify terminology, the term INITIAL
GEOMETRY is used throughout for the state of
deformed equilibrium due to edge loads and
residual stresses. Likewise the forces induced

by these loads will be called PRIMARY
FORCES.

The question we are addresing when studyin£
the buckling of panels using the bifurca- compression

tion of equilibrium method is the following
Is it posible for the stiffened panel to be
also in equilibrium in an infinite number
of deformed configurations that are very
close to the so-called INITIAL GEOMETRY?

To answer this question, the differential
equations of equilibrium of each plate in a

slightly deformed configuration must be
integrated

To make this Integration easier, we postula-
te the existence of diaphragms in both ends
of the stiffened panel (Levy-type Solutions)
and we suppose too that the plates that make

up the panel are divided across its width
into a number of strips in a way such that
in any of these strips the following conditions

must be met:

Assumed

Fig. 2.
Stress-strain curve

- If the strip behaves elastically the
PRIMARY longitudinal FORCE must be approximately

constant in the transverse direction.

- If the strip behaves plastically the
PRIMARY longitudinal DEFORMATION must be
approximately constant in the transverse direction
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Fig. 3- Assumed welding
residual stresses
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Fig. 4. One of the strips that make up the plates of the stiffened pane

When imposing boundary conditions for the longitudinal edges where
the different strips are assembled (equilibrium and compatibility
conditions), a homogeneous set of equations is obtained. Some of
the coefficients are transcendental functions of the load parameter

X and others are constant This set of equations admits inf ini.
te Solutions for those values of X that make the determinant of its
coefficients vanish. Our objective is, precisely, lo obtain these
values of X X (critical values).cr
2.1. Governing differential equations for equilibrium of the strips
in a slightly deformed position.

At buckling, the initially plane strips (figure 4) that make up the
plates of the stiffened panel are subjeet to small displacements
that in turn induce SECONDARY FORCES.

Let be w (x,y) the deflections of the middle plane of the strip.
Then, the SECONDARY FORCES due to flexure are:
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whereas if the in-plane displacements of the middle plane are
u* (x,y), v* (x,y), the induced SECONDARY MEMBRANE-FORCES will be:

N~ Et (k
x 1

au*
dx

öu*N Et (k
y 2 ax

+ k

+ k

av*,
2 ay

Va--*

xy
Et k,

ay
au* av*.

(2)

ay

22

^
Fig. 6. Secondary forces

in-plane behaviour

where

1 k2 =vkl k and k, —; -1 4 2(l+v)

if the strip behaves elastically, and

1

'1
" 3E/Ep+5-4V k2 2k.

1
4k. and k, ; ; -1 4 3E/Ep+2(l+u)

if the strip behaves plastically (assuming that the deformation
theory of Bijlaard [l] is valid in the plastic ränge).

The governing differential equations of equilibrium in a slightly
deformed position, when both primary and secondary forces are pre
sent, take the form:

•Flexural behaviour [2]

a"w* ,„. v a4w*
+ (2k +4k + k,

1 ^ *dx axBy2 ay4

-Extensional behaviour [2]
er

12 ax a
0

(ki - ¦} — + (k2+k4} älTä7 + k4

Et2 a x

a2u*

ay2
0

(3)

(4)

(k -)
a2v*

+ (k0+k.) av
2 4 äxäy

0 (5)
o x dy

The above expressions have been obtained assuming that at the
beginning of buckling the middle plane deflections are small.
This assumption allows us to apply the linear theory for thin pla
tes under flexure and to uncouple the aforementioned two types of
behaviour of the strip.
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2.2 Integration of the set of equations.

A series Solutions of the Levy-type of the form

w* (x,y) 2 W„(y) sin —7~ (6)
n^t n L

*¦ r \ S i \ nnx _,u* (x,y) 2 Un(y) cos —— (7)
n=t n i

v* (x,y) 1 V (y) sin ^ (8)
n=t n L

automatically satisfy the boundary conditions in the ends of the
plate with transverse diaphragms.

Substituting Eq. (6) into Eq. (3) and integrating one obtains

*n (y) ¦ 2 A'„ er'V (9)

where

', v

i-t

2 2 12 o k,
n " /, \ n TT \ I „, .2 W1 TT ' J— (k2+2k4) t- || ((k2+2k4) - k3k,)

r< (i«l.4)=-

Substituting Eq. (7) and Eq. (8) into Eq. (4) and Eq. (5) and int£
grating one obtains

v (y) 2 A1 er' y (10)n 1 5 n

V (y) 2 L' Ar er' y (11)

where /
n rr \ -S ± VS2 - 4 RT

r' (,=5,8) " - 1 V 2 R

dv n2 TT2

L, ^ - xj zi - k41
n

~

nn ii i \—;— r (k + k

R=k3k4 ; T=(kx - -|-)(k4 - -j^) ; S=(k.2 +2k2k4 -k, k3+(k3+k4)—)
se ae K

The infinite series expressions for w v u gxven. in equations
(6)j (7) and (8) are functions of a set of constants A

These constants are obtained from the boundary conditions on the
longitudinal edges (y o, y a) where the different strips are
assembled.
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These boundary conditions are: equilibrium equations and compatibi
lity of displacements on the nodal lines. As there are no loads
applied in the nodal lines, the boundary conditions translate into
a homogeneous set of equations. This set of equations (eight for
each one of the constitutive strips) takes the general form

2 2 2 cn
n-i k=i 1 1

I- 7. 8(k-1) +1

2^, Ä „ej - e. 8( k-i) + i .i MXZt 2. Cr, An k smn=l k=1 1=1 l

n77X2 2 2 cr5"u-,) + '

n=l k=l i=.
An.k sin

00

2 2 2 cl
n=l k=1 ,=i

I -4. a(k-i) + i

2 2 2c8n=i k=l ,fl Ln
8J-3. B|k-lH

2 2 2 c8
n=' k=i 1=1

2 2 2 c8
n=l k=l 1=1

J- 2. 8( k-l) + i

J-1. 8( k-i) + i

oo r

2 2 2 c8
n=l k=t ,=1

8J. 8( k-1)+ i

An.k COS

An.k sin

An.k COS

n?7x
L

nffx
L

n?7x
L

n?7x
1

n?7x
L

(12)

wheije : 1, 2. (r number of constitutive strips)

The coefficients C are, in general, transcendental functions of
the load parameterX and of the integer n. For arbitrary values of
n and X the set of equations is only satisfied when the coefficients
A are zero, that is, the stiffened panel is only in equilibrium
if'the initial geometry is maintained. However, the homogeneous set,
as it is readily proved, admits an infinity of Solutions for those
valUes of X that make the determinant of the coefficients associated

with each n vanish.

_1.8r ntl»
Cnsin —

C8n-cosn-f *-n I

Cn

Cn

ri.erC n

,.8r, sr
Cn

In fact, for each integer n there is an infinity of such values of
X= X What we are interested in is the least value of them all,crX= X as it can be shown that for X < X the so-called INI-cl cl
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TIAL GEOMETRY is a stable equilibrium configuration whereas for
X > X

„ it is an unstable one.cl
The equilibrium deflected shape at the instant of buckling
(buckling mode), is longitudinally defined by n and, transversely, by
the coefficients A'

n,k
The number n (equations 6, 7 and 8) defines the number of sinusoi.
dal half-waves in which the total length of the panel is divided
at the instant of buckling.

The coefficients A' can be obtained substituting X X in
the set of equations'(12 Since this is a homogeneous set and its
determinat is zero, all the coefficients can be given as functions
of one of them that may be taken as an arbitrary constant. This
is the case, then, of a deformed configuration whose shape is
determined but its magnitude is not (infinite Solutions).

3. STIFFNESS HARMONIC METHOD FOR THE STUDY OF ELASTOPLASTIC BUC¬

KLING OF STIFFENED PANELS.

In the previous paragraph it has been shown that the stiffened
panels, longitudinally loaded in their middle plane, buckle sinusoi-
dally, in a way such that the total length of the panel is divided
into an integer number of half-waves. Therefore, both the deflected
shape of each one of the strips that make up the panel and the
interaction forces between the strips also vary in a sinusoidal way.

This fact allows us to apply the stiffness harmonic method for the
study of the buckling of the stiffened panels.

First, we analyze each individual strip, looking for a relation
between the applied sinusoidal loads and the corresponding sinusoi.
dal displacements. Once the previous relation has been obtained
(stiffness matrix of a Single strip), we shall proceed to assemble
the strips along the nodal lines, establishing the equilibrium and
compatibility conditions. In this way, the sinusoidal displacements
of the nodal lines (line joints) are related to the external loads
acting on those nodal lines. But, since there are no external loads
applied on the nodal lines, the set of equations is a homogeneneous
one. The non-trivial Solutions define the critical loads and the
associated buckling modes.

3.1 The sinusoidal stiffness matrix for a flat strip.

Firstly, the problem will be analyzed assuming that the loads that
are applied on the longitudinal edges induce flexural forces only.
The case where the forces induced are membrane forces only, will



IABSE PERIODICA 3/1982 IABSE PROCEEDINGS P-53/82 61

be considered later on.

- The out-of planes stiffness matrix,

With reference to figure 7 and making use of Eqs. (l, 6 and 9), one
obtains

XV

?>-

o* ^a

a (b)

Fig. 7. The out-of-plane stiffness matrix

m
1

m
1

fl ?1

m
2 "2

f2 ?2

Et
12

2 2
i

2
i n " l1

r, (k3ri2 - (k2+4k4) a^)
2 2

r. a 2 n n >

-e ¦ (k3r, -k2 -j-)
2 2

r- a 2 n n-r e ' (kr -(k +4k ——)' 3 ' 2 4 L (13)

öl 51

wl "l

62 52

W2 *2

-r ei

n

rn
n

,4
n

(14)

1=1,2,3,4

Equations (13) and (14) can be written in matrix form as

f. 5p Ä„ (15)

G„ AP (16)
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Finally, the out-of-plane stiffness matrix of the strip Kp is
obtained from equations (15) and (16)

fp Kp dp (17) where Rp Dp Gp"

- The in-plane stiffness matrix.

With reference to figure 8 and making use of Eqs. (2, 7, 8, 10 and
11), one obtains.

V
N. >V X •»/

&. V̂VNs>
%

ß»

(b)(a)

Fig. 8. The in-plane stiffness matrix

i, sin nrrx
l

•. cos nrrx
1

i2 sin n77X

l

' cos
nJ7x

l

Et

(k2^Y~ 1' -k3L'nr. )sin ™

i i i nn t1 n nrrx
("k4(ri + TLn),COS L~

:-er'a(k »'
2 1

k L r. sin —
3 n ' L

r.a. nrr ,!•>•. nrrx(k e ' (r + —— L ))cos ——
4 'In 1

(18)

nrrx
vi sin ~T

nrrx
u cos —j—

nrrx
v2 sin —

nrrx
u2 cos —

L sin ——
n L

COJ

r- a i nrrx
e L sm —;—n L

r- a nrrx
e cos —:—

(19)

i=5,6,7,8
Equations (l8) and (19) can be written in matrix form as
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fl 5l \
dL GL Al

(20)

(21)

Finally, the in-plane stiffness matrix of the strip K is obtained
from equations (20) and (21)

fC (22) where

- Global behaviour.

The stiffness matrix of the
strip considering flexural and
extensional behaviour simultaneously,

is obtained putting
together the expressions (17)
and (22).

Where the coefficients p:.
and L(j (i,j l,2,3 and 4)
are transcendental functions of
the strip geometry, of the
longitudinal force or deformation
and of the integer n (n 1,2,3

m! 1

fl

"2
|

'f2

"l

Fl

"2

r2

p«., p,.3 a, p..4

pa.i P2.2 P2.3 Pa.«

P* P« Px, ",..

p«. p« P-J, p.«

1,, 1.2 l,.,

U, ki 1»j

u.

h.
I

I

B'l
1

ö2 i

.)•

3.2. The process of setting up the sinusoidal stiffness matrix of
the stiffned panel.

The matrix expression (stiffness matrix of the strip) has just
been obtained that relates the loads acting on the sides of the
strip to the displacements of those sides.

The next step is to assemble all the strips along the nodal lines
of the stiffened panel. For this, compatibility of displacements
must be established first along all the nodal lines, that is, the
displacements along the sides of the strips must be compatible
with the displacements of the nodal lines to wich these strips are
attached. Equilibrium equations for loads are then set up imposing
that the sum of all the loads acting on the sides of the strips
that meet along a nodal line be equal to the external loads acting
there. After this process, the following set of equations is finally

obtained

K n 1, 2, 3, •)

where
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F array defining the amplitudes of the sinusoidal loading
applied on the nodal lines.

K stiffness matrix of the stiffened panel.n

D array defining the amplitudes of the sinusoidal displace¬
ments of the nodal lines.

As there are no external loads applied on the nodal lines
Ö R 5 (n 1, 2, 3, • • •)

n n

the critical loads and their associated buckling modes being defined

by the non-trivial Solutions.

Thus, to determine the critical loads of the sttiffened panel, the
values of X X that make the determinant vanish must be eva-crluated for each n.

It should be born in mind that the terms of the stiffeness matrix
are transcendental functions of X and n. Therefore for each n there
are, in general, infinite values of X that make the determinant of
K vanish.

n

In fact we are only interested in the least value of X As the
terms of the stiffness matrix vary with X in a complex way, taking
zero or infinity values at irregulär intervals, a suitable iterative

technique has to be used that insures convergence to the least
eigenvalue. For this, it proves convenient to use an algorithm,
initially proposed by Lord Rayleigh to analyze structural dynamics
problems, and that has been reelaborated later by Wittrick [3], in
order to apply it to instability problems.

3.3. Computer enalysis.

Applying these criteria a Computer program has been written that
studies the influence of welding residual stresses in the value
of the least critical load of a stiffened panel, assuming elastic
or elastoplastic buckling.

The input data for the program is: the geometry of the cross-section
of the panel, the edge longitudinal loading of each plate,

the distribution of welding residual stresses, the number of longi.
tudinal bands in which we wish to discretize the zones of the plates

in which there is a transverse Variation of the longitudinal
force, and the number of longitudinal bands in which we wish to
discretize the plastified zone of the plates in which there is a

transverse Variation of the longitudinal deformation.

The stiffened panel of figure 9 has been analysed by means of
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this program, for different values of the length of the panel.

Curves 1 and 2 have been obtained assuming that there are no
welding residual stresses and, in the first case, linear elastic
behaviour, of the structural material, whereas in the second case
elastoplastic behaviour has been assumed.

Curves 3 and 4 have been obtained supposing elastoplastic
behaviour of the structural material and considering that there are
welding residual stresses whose values are a / a 0.25 and

a I o 0.5 respectively.r y

Examining the figure 9, we can conclude that the residual stresses,
together with the elastoplastic behaviour of the structural material,

have a marked influence on the value of the least critical
load corresponding to a local buckling mode. On the other hand, it
can also be seen that when the panel buckles by flexure of its
stiffeners, the welding stresses only have an influence if the
primary loading (edge loads plus residual stresses) causes plasticity
to occur in the stiffeners, thereby decreasing its flexural and
torsional stiffness. This last phenomenon can be observed in the
part AB of curve 4.

4. A COMPARISON OF THIS THEORY WITH THE AVAILABLE TEST RESULTS.

Figs. 10 and 11 Show a comparison of the available test results with
the theoretical results obtained for the buckling strength of unstif
fened and stiffened plates subjected to longitudinal loading and
residual stresses.

In both cases we can see that, in the ränge 0,6 < ß < 1,2, there
is a good agreement between the theoretical curves and the test
results

When /3 is greater than 1,6 the "ultimate strengths" are higher than
the "critical stresses" because these plates have a high postbuckling
strength; when' ß is less than 0,6 the "ultimate strengths" are higher

too than the "critical stresses" because these plates buckle
when the material is working in the CD zone of the stress-strain dia
gram (figure 2

5. SUMMARY.

The elastic buckling of stiffened panels has been studied by
Wittrick-Williams [4], Smith [5], Przemieniecki [6], etc.

These authors analyze the panel by breaking it up into a set of
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thin flat rectangular plates that are joined along odal lines. The
interaction of the plates connected along nodal lines is studied
using a matrix technique of harmonic analysis. In some cases [4]
the stiffness matrix of each plate is obtained by folded plate
analysis, whereas in other instances [5] the stiffness matrix of each
plate is obtained by finite-strip method.

This matrix technique can be extended, as it is shown in this
paper, to handle the elastoplastic buckling of stiffened panels. As
far as the authors know, no previous publication has tackled this
problem in all of its aspects. However, it must be pointed out
that several papers have been written in that direction. Among
them reference should be made to Fukumoto-Usami-Okamoto [6] and
Hasegawa-Ota-Nishino 7 • In these papers certain simplifications
have been made that confine the analysis to elastoplastic buckling
of panels with uniformly spaced open-section stiffeners.
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