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Physical-Mathematical Models and Theoretical Considerations

Modèles physico-mathématiques et considérations théoriques

Physikalisch-mathematische Modelle und theoretische Überlegungen

R.F. WARNER
Associate Professor of Civil Engineering

The University of New South Wales
Kensington, Australia

1. INTRODUCTION

Theoretical studies of slender compression members tend to fall into two
distinct categories, depending upon whether or not effects such as load
eccentricity, out-of-straightness, and geometric and material imperfections are
taken into account. In one approach, perfectly axial loads are considered to
act on an ideal structural system and the critical load, Pcr> is determined at
which bifurcation of equilibrium occurs. In the other approach, load eccentricity,

end moments and other effects are considered, and lateral deflections
are found to ^increase with increasing load. The load typically increases at a
decreasing rate, until the peak value P is reached. A fall-off in load then
occurs, with a further increase in deflection. The two types of analysis are
illustrated in Fig. 1. p
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FIG. 1: METHODS OF ANALYSIS

Although information obtained from the idealized bifurcation load concept
finds some application in current design procedures (1,9), theoretical studies
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of reinforced concrete compression members tend to concentrate on the calculations

of the load carrying capacity P

The behaviour of slender concrete compression members is complicated
considerably by creep and shrinkage effects, and special consideration must be
given to time-varying behaviour under sustained loadings. However, concrete
compression members tend to be stocky in comparison with metal compression
members, and in practice slenderness effects are often of negligible importance.
In such cases, analysis and design are considerably simplified, in that load
carrying capacity of a "short" member can be equated to the ultimate strength
of the section.

Theoretical methods of analysis are here considered for both short and
slender members subjected to short-term and sustained loadings. It is to be
emphasized that the prime interest is in underlying concepts, and no attempt is
made to provide a systematic review of previous research work; this latter
task has been undertaken recently by several technical committees for the joint
ASCE-IABSE Conference on Tall Buildings, and the reader is referred to relevant
reports (22,26).

Theoretical structural analysis proceeds typically from an analytic
representation of relevant material properties, to an evaluation of the load
deformation characteristics of a cross section, and thence to an analysis of
the behaviour of elements and frames. It is convenient to follow this sequence
here, and in the following section the behaviour of plain concrete under direct
compressive stress is discussed.

2. MATERIAL PROPERTIES

The response of plain concrete to short-term direct compressive stress,
shown schematically in Fig. 2a, is distinctly non-linear and anelastic.
Simplified representations are required for the analysis of reinforced concrete
behaviour, the most frequently used models being linear-elastic (Fig. 2b),
nonlinear elastic (Fig. 2c), and non linear elastic-plastic (Fig. 2d). More
complicated and more realistic models have been developed for special studies of
the ductility and behaviour of structural concrete under cylces of loading and
unloading (36).

FIG. 2: CONCRETE UNDER SHORT-TERM
COMPRESSIVE STRESS

The "ultimate" strain in compression, eu, is frequently used in ultimate
strength calculations. This is the limiting strain value at which the stress-strain
curve is assumed to terminate abruptly, and at which crushing of concrete is
supposed to occur in bending. Experimental evaluation of eu is a most
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difficult procedure, since e apparently depends on a wide range of factors, not
least important of which are the deformation characteristics of the testing
machine. An alternative approach, which may be preferable in fundamental studies,
is to allow the stress-strain curve to extend indefinitely, and to identify
failure of a piece of material, of a cross-section, or of a structure, as the
state reached when the rate of increase of applied load is zero (19, 37, 42).
This approach also allows theoretical determination of suitable values of e

for use in simplified calculation procedures.

The tensile strength of plain concrete is low in comparison with the
compressive strength, and is usually neglected in calculations of the behaviour
and strength of compression members.

Analysis of the time-dependent properties of plain concrete is made on the
assumption that total strain is made up of instantaneous, creep and shrinkage
components which are independent and additive.

e(t) Ej (t) ^(t) esh (t) (2.1)

The shrinkage component is taken to be stress independent, and is evaluated
from measurements on unstressed test specimens. Although this phenomenological
approach is open to to question and criticism, a practical computational
alternative has yet to be proposed.

Linearity of creep with respect to stress level appears to be a reasonably
accurate assumption provided the stress remains low; i.e., less than some
limiting value a Values quoted for a range widely, between 25 and 50 percent
of the crushing strèngth. Concrete creep in the linear range is bounded,
partially time-hardening and partially recoverable.
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(a) Plain Concrete (b) Reinforced concrete

FIG. 3: RHEOLOGICAL MODELS

Rheological models proposed for concrete creep usually contain a number of
Kelvin-Voigt elements in series (14). A reasonably simple model of the linear
viscoelastic phase is shown in Fig. 3a. The first Kelvin-Voigt element is
recoverable, and represents viscoelastic deformation; the second is non-
recoverable, and represents remaining creep. A wide assortment of rheological
models of concrete is reviewed by Neville (29). However, very few of these
have been used in studies of structural concrete behaviour. One exception is
the model proposed by Torroja and Paez (38).

The creep component (t) is affected by the entire stress history, and
both differential and integral expressions have been developed for the analysis
of creep strains in the presence of time-varying stress.
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One of the simplest and most widely used analytic representations of concrete
creep was developed by Dischinger (10) on the assumption of complete time
hardening. For a constant sustained stress, a(t) o s oc, a creep function is
defined,

<Kt) ek(t)/e. (2.2)

which can be evaluated from a simple creep test. Because of the linearity
assumption, <j>(t) is a pure time function, independent of stress level. The
creep strain resulting from a constant stress first applied at time t, 0<x<t,
is taken to be

ek(t,x) (<t>(t) - <j>(t)) ei (2.3)

Eq. 2.3 is an expression of the Whitney parallel creep curve assumption. The
rate of creep, ek(t), is dependent on current stress level but independent of
previous stress history,

êk(t) (t) V-4)
c

and the total stress-dependent rate of change of strain is thus

è(t) i(t) (2.5)
c c

Eq. 2.5 can be formulated in various ways. It is similar in all essential
respects to the "rate-of-creep" method.

Perhaps the most widely criticized aspect of the Dischinger creep law is
that it predicts complete time hardening; i.e., that predicted creep deformation

approaches zero as t becomes large. Various modifications have therefore
been proposed, ranging from a simple lumping of the non-ageing component in
with the elastic component (30), to the use of higher order differential
equations (23)

Integral expressions for linear creep give more flexible analytic models,
but also require much more extensive test data and can lead to a mathematically
more complicated analysis of structural behaviour. To allow for partial time-
hardening, the creep function of Eq. 2.2 must be taken to depend not only on
the time t of the process, but also on the age at loading, x. The creep strain
at time t produced by a stress increment Ao(x) at time x is thus

ûek<-t,T-' <Kt,x) (2.6)
c

An integral expression for the total creep strain at time t is obtained by
superposing the strains produced by all stress increments (25),

t t
ek(t) dek(t,T) -i- <|>(t,x)dx (2.7)

x=0 c x=0
With the creep strain per unit stress (specific creep) expressed as

C(t,r) A- <|.(t,x) (2.8)
c

and evaluated experimentally, the total stress-dependent strain is obtained as
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•t ^ C(t,T)dT+ (2.9)
T 0

Eqs. 2.5 and 2.9 and various modifications of these equations have been
used in studies of compression member behaviour in the linear creep range.
Non-linear modifications have also been proposed for the analysis of sustained
overload behaviour (15,41).

By considering the stress history to consist of a constant major component
equal either to the initial value o(0) or the final value 0(°°), and a variable
secondary component, convenient expressions for analysis can be derived from
Eq. 2.9 (13). These have been applied to structural concrete by Trost (39).

The analytic treatment of the properties of reinforcing steel is relatively
straightforward, and elastic-plastic relations for both tensile and compressive
stress are usually used. Curvilinear and multilinear relations are sometimes
used to give a more realistic representation of post-elastic behaviour.

3. LOAD-DEFORMATION CHARACTERISTICS OF STRUCTURAL CONCRETE IN COMPRESSION
AND BENDING.

Theoretical studies of the behaviour and load carrying capacity of
reinforced concrete compression members usually require a preliminary analysis of
the load-deformation characteristics of a short segmental length of member. Of
particular importance are the rotation and lateral shortening which occur as the
result of an eccentrically applied thrust. A simplified representation for the
case of short-term loading is the moment-thrust-curvature relation, which allows
the curvature K to be determined for any combination of thrust P and moment M

acting simultaneously on the cross-section. In more complicated loading cases,
where cycles of loading and unloading and periods of sustained loading are
involved, there is no simple useful way of representing the load-deformation
characteristics, and the deformation history must be evaluated for the
particular loading history.

3.1 Axial Loading

In the idealized case of a short-term axial load applied to a steel-concrete
section, the curve of load versus axial shortening is obtained from the stress-
strain curves for the component materials on the assumption of full strain
compatibility, as shown in Fig. 4 (37).

*Pc + *ps p

£
C

£
U

FIG. 4: SHORT-TERM AXIAL LOADING

The load carrying capacity, P is determined by the condition
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The failure strain e which occurs at Pu is also determined by Eq. 3.1.

Some practical difficulty arises in the calculation of P in that concrete
properties (including the maximum concrete stress au) in the compression member
are likely to differ somewhat from those determined from specimen tests.

Fig. 4 and Eq. 3.1 cease to be valid if premature failure occurs by splitting
or spalling of the outer layers of concrete. This might or might not be

triggered by outward buckling of the reinforcing bars. Minimum cover and minimum
lateral reinforcement requirements usually prevent separation of the outer
concrete, even in the case of encased steel sections. However, confinement of the
inner concrete core by large amounts of lateral ties and helical reinforcement
can have an effect on the pverall response to axial thrust. Lateral confinement
increases the crushing strength a and also changes the shape of the stress-strain
relation. Kent and Park (20) suggest that lateral ties in rectangular sections
are not completely effective in confining the concrete, except in the corners,
and that the main effect of the ties is to improve ductility in the post-ultimate,
unloading stage. Tests by Rusch and Stöckl (34) indicate that the strength of
core concrete is considerably increased by helical reinforcement. However, their
test data indicate apparent inadequacies in various physical models which have
been proposed for the quantitative analysis of the carrying capacity of helically
reinforced columns. Serviceability problems involving premature spalling are
not likely to be of practical importance in compression members, provided
neither very small nor very large quantities of lateral or helical reinforcement
are used.

The effect of sustained axial loading can be represented in terms of a
rheological model by placing a linear spring (representing compressive reinforcement)

in parallel with the model of plain concrete. This is shown in Fig. 3b.
A very significant transfer of force from concrete to steel occurs with time,
because of the apparent softening of the concrete. When the section contains
very small amounts of reinforcement, light sustained loading,coupled with concrete
shrinkage, can produce yielding of the steel. Quantitative analysis of the
process can be carried out quite simply on the assumption of full strain compatibility

and linear elastic steel behaviour. A differential or an integral expression
can be used to represent concrete behaviour. Shrinkage strains contribute

significantly to the stress redistribution and should be included in the
analysis. The additional shortening of the column, which accompanies the
stress redistribution, can be of practical importance, especially in tall.build¬
ings

Variations in stresses and deformations which are produced by a prior
history of sustained loading have little direct effect on the carrying capacity
of the section, although there may be some slight secondary effect in that the
concrete crushing strength can be changed perceptibly by prior sustained stress.

3.2 Short-Term Eccentric Loading

In the case of a short-term thrust P applied with uniaxial eccentricity e

to a cross section, the moment-thrust-curvature relation is calculated on the
assumption of plane distribution of strain over the section. The strain distribution

is defined by the extreme values and Stresses in the concrete and
steel can be calculated for a prescribed strain distribution if non-linear
elastic models (Fig. 2c) are used for material behaviour. Equilibrium considerations

then allow the magnitude of the force P and the eccentricity e^ to be
determined for any chosen strain distribution. The curvature is also obtained
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immediately from the strain distribution.

Although the equilibrium calculations can be made analytically, a finite
approach is more suitable for use with a computer, especially when repeated
calculations are required, as in the analysis of slender members. The section
is partitioned into a finite number of small concrete and steel areas, and
equilibrium equations are written in terms of the elemental forces acting on
the areas. This finite approach is particularly suitable in the case of
biaxially eccentric loading and in the case of sections of irregular shape (40).
It will be noted that calculations must be made indirectly if deformations are
to be evaluated for a prescribed loading condition. Trial and error calculations
are required, for example, to produce the moment-curvature relation for a given
constant force P.

The assumption of planar strain distribution in the section appears to be
adequate when th.e concrete Stresses remain compressive over the entire section,
but becomes questionable when the ôccentricity is so large that tensile cracks
appear in the concrete. There is then a concentration of deformations in the
vicinity of the cracks, and a complex variation in stress distribution occurs
along the member length in the region between cracks. Local bond conditions
and crack spacing and crack widths thus affect the magnitude and distribution of
deformations. In such circumstances, calculated curvatures at a cross section
are, at best, idealized average values for a finite length of the member.

In view of this, it may well be more realistic to calculate rotations in
short segmental lengths. An advantage of the rotation calculation is that
factors representing bond characteristics and crack-spacing can be more readily
incorporated in the analysis. When large deformations are to be considered in
the post-ultimate, unloading phase of hinge development, consideration of a
finite length of member appears to be unavoidable (33).

When cycles of loading and unloading are to be considered, the simplifying
assumption of non-linear elastic material behaviour is usually replaced by more
realistic stress-strain laws with unloading-reloading paths. The simple concept
of a unique moment-thrust-curvature relation then becomps quite inadequate and
a step-by-step analysis procedure must be used to determine the deformation
history for a prescribed loading history (42).

3.3 Ultimate Strength

In Fig. 5 a typical family of moment-curvature relations is shown. Each
curve represents a constant value of P. High ductility is displayed when the
value of P is small. This is indicated by the extended flat portion of the
curves in which moment remains almost constant for large increases in curvature.
As the value of P increases, the flat portion of the curve decreases in extent,
and finally disappears. Moment-rotation curves for a short segment of the
member would display similar shape characteristics to those of Fig. 5.

The moment carrying capacity at a prescribed load value P is obtained from

§ - ° (3"2)

which is analogous to Eq. 3.1. Simplified calculations of ultimate strength are
usually made by setting the extreme compressive concrete strain equal to a
fixed ultimate value e Values chosen for c usually lie in the vicinity of
0.003. This simplified approach gives quite satisfactory results when the
moment-curvature relation displays a flat portion near maximum moment, since the
computed moment is then quite insensitive to assumptions regarding deformations.
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It will be noted that the ultimate strain criterion produces a conservative
estimate of ultimate strength, in that the moment is calculated for a point on
the moment curvature curve, so that the value obtained cannot be greater than
that defined by Eq. 3.2.

As the force P becomes larger, the moment-curvature curve peaks more
sharply, and the difference between the Computed moment and the peak moment is
likely to increase. When P is so large that compression exists over the entire
section, the value of 0.003 for e leads to significant error and must be
reduced.

Various concrete compressive stress blocks are available, which provide
reasonably simple and accurate ultimate strength calculation methods. The
relation between load and maximum moment, which defines the load carrying
capacity of %he section, can be represented by an interaction curve, as shown

IN BENDING AND COMPRESSION

In the case of biaxial bending, a three dimensional interaction surface is
required to represent load carrying capacity. See Fig. 6b. Calculation of load
carrying capacity can also in this case be based on the ultimate strain criterion;

however, the procedure becomes tedious, in that various trials must be made

to determine the position and inclination of the neutral axis. Various simplified
interaction equations and ultimate strength charts are available in the

literature which simplify the calculation of ultimate strength in compression
and biaxial bending.

3.4 Sustained Eccentric Loading

When a sustained eccentric load acts on a cross section, a transfer of
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compressive force takes place from the region of concrete under compressive
stress to the adjacent compressive reinforcement, as in the case of the axially
loaded section. If the loading is constant and the eccentricity is large enough
to cause cracking of the section, there is little change in the tensile force in
the tension steel, despite the considerable redistribution in compressive stresses.

The increase in curvature with time is thus produced primarily by the increased

deformations in the compressive region of the beam, and depends very much

on the creep properties of the concrete and the quantity and position of the
compressive steel.

Theoretical analysis of time-varying stresses and strains under sustained
eccentric loading is complicated by the shifting position of the neutral axis
of stress, and the shrinkage induced non-coincidence of the neutral axes of
stress and strain. It is interesting to note that predicted behaviour is
nonlinear, even when shrinkage effects are ignored and linear constitutive relations
are used to describe material behaviour.

Although theoretical analysis can be carried through to closed form
solutions in a few special cases, some form of numerical analysis usually becomes

necessary, if only to obtain solutions to non-linear differential and integral
equations. In such circumstances, there are advantages in going straight to
the step-by-step analysis, in which stresses and strains are evaluated in a

finite number of fibres at1 a finite number of time instants. In contrast to
theoretical analysis, the step-by-step analysis avoids unnecessary restrictive
assumptions regarding material behaviour, cross section shape, load history, etc.
Simplified methods of analysis of creep and shrinkage effects have been proposed
for the case of sections in pure bending, but have not been sufficiently developed

and tested for sections in combined bending and compression. Thus, use of
a distorted concrete stress-strain relation has been suggested for the evaluation
of long term response, but has not been thoroughly checked. There is indeed
some indication (27) that this method can give misleading results, especially
when used in the analysis of creep buckling phenomena.

4. SLENDERNESS EFFECTS

Fig. 7a shows a slender reinforced concrete compression member subjected to
end thrusts P at equal end eccentricities e. Although the load and support
conditions are much simpler than those usually encountered in practice, the
behaviour of this compression member is of considerable practical importance,
in that current design procedures often rely on the concept of an "equivalent"
pin-ended column (Ersatzstabverfahren) (21). The articulated bar-spring assemblage

shown in Fig. 7b might be regarded as a simple physical model of the
member in Fig. 7a. It provides a convenient means of studying the essential
behaviour of the slender member, while avoiding the mathematical complexity of
a complete analysis.

4.1 Lateral Deflections

The moment resisting spring at B allows the assemblage to carry the
eccentric end thrusts P. Provided deformations remain small, the rotation 6(t)
in the spring at any time t is related to the lateral deflection v(t) at mid-
depth as follows,

0(t) 4v (t) /1 (4.1)

in which I is the system length.
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FIG, 7: SLENDER COMPRESSION MEMBER FIG. 8: VISCOELASTIC ANALYSIS
AND BAR-SPRING MODEL OF SECOND ORDER LATERAL

DEFLECTIONS.

The response of the assemblage to load is governed by the moment-rotation
characteristics of the spring, just as the response of the compression member
is governed by the moment-curvature characteristics in critical sections.
Initially, the spring is considered to be linear visco-elastic, with the total
rotation made up of a creep component, 0^(t), and an instantaneous component,
0. (t). The latter is related to the internal moment M (t) in the spring by
tiie spring constant k, r

Mr(t) k0.(t) (4.2)

The constitutive relation for the spring is taken to be

M (t) M (t)
é(t) -Zç— + -ïg— Kt) (4.3)

in which <j>(t) is a bounded creep function. It will be noted that Eq. 4.3 is
analogous to the Dischinger creep equation for concrete in uniaxial compression,
Eq. 2.5.

In the case of short-term loading only, the creep component 0v(t) is zero,
and all reference to time t can be deleted. The internal moment or resistance
in the spring is then

M^ =4 kv/I (4.4)

and the external moment applied to the spring is

Mg P(e+v) (4.5)

By equating internal and external moments

M M M (4.6)re v '
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one obtains the following load-deflection relation,
P 4 y —-— (4.7)I e + v •' j

If the eccentricity e is set equal to zero, the elastic critical
(bifurcation) load is found to be

Pcr 4 k/Ä (4.8)

and with the "safety coefficient" v defined as

v Pcr/P (4.9)

the lateral deflection v is obtained from Eq. 4.7 as

v e (4-10)

With the initial first order moment defined as M Pe, Eqs. 4,5 4,6 and 4.10
can be rearranged to give 0

M
1

p M0 (4.10a)
P
cr

Time-varying behaviour is now considered for a constant sustained load
P(t) P The moment and the rotation in the spring both increase monotonically
with time, the rates of increase being M(t) Pv(t) and 6(t) 4 v(t)/£,
respectively. Substitution of these expressions into Eq. 4.3 and rearrangement
gives

*(*) im f4 nle + v(t) v-1

Integration of Eq. 4.11 and substitution of the initial value v e/(v-l), as
given by Eq. 4.10, yields the following expression for lateral °deflection,

|>"W e I TTTT exP C^TT") " 1 (4.12)

The term v(t) consists of a creep component v, (t) and an instantaneous,
recoverable component v.(t). The latter is somewhat larger than the initial,
instantaneous value v because of the gradual increase in moment, i.e.

vt(t) vq + Av.(t) (4.13)

The term v^(t) can be evaluated from the instantaneous rotation, v.(t)
£0^(t)/4, where 0^(t) P(e + v(t))/k. Substitution for v(t) and rearrangement
gives

vi(t) e exp (4-14;)

The creep component v^(t), which would remain upon sudden unloading of the
assemblage, is obtained by subtracting v.(t)from v(t),

vk(t) e |exp (^P-) - 1 (4.15)

Equations 4.10, 4.12, 4.14 and 4.15 will be recognized as those derived
by Dischinger (10), in his classic analysis of slender concrete columns. An
analysis of the member shown in Fig. 7a, with Eq. 2.5 taken to represent
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material properties, would yield similar equations, however with the Euler load

replacing the bifurcation load Pc^ given by Eq. 4.8.

A form of Eq. 4.10 is used in the current ACI design provisions (1) to
account for slenderness effects in reinforced concrete members under short-term
loading, while Eq. 4.15 is used in a slightly modified form in the current
German reinforced concrete code, DIN 1045 (9), for estimating creep deflections
in slender concrete compression members.

A linear viscoelastic analysis as indicated above obviously ignores many
effects of practical importance, and gives a highly idealised account of the
actual behaviour of reinforced concrete compression members. In particular,
the instantaneous bending stiffness EI in Eq. 4.16 is assumed to be constant
and unaffected by the thrust P. The effects of tensile and compressive
reinforcement are not taken into account, and the reduction in stiffness which is
caused by the formation of tensile cracks is ignored. In practical applications,
for example in the design provisions of ACI 318-71 and DIN 1045, approximate
semi-empirical expressions are therefore used for the bending stiffness term in
order to allow, to some extent, for such short-comings (21, 24).

4.2 Stability Failure

The results of the above analysis are presented graphically in Fig. 8. The

straight lines OF and EF are plots of Eqs. 4.4 and 4.5 and show the internal and
external moments, M and M as functions of the instantaneous deflection v..Y 6 iThe intersection point F represents the equilibrium state defined by Eq. 4.6.
At time t, the instantaneous deflection has increased by Av.(t) (Eq. 4.13), and
there has been a corresponding outward movement of the equilibrium point along
OF to H. The external moment is now represented by line GH, which is a plot of
the following equation,

The creep deflection ^(t) is seen to have the same effect an an additional
increment in eccentricity.

Fig 8 shows clearly that the assemblage, and by analogy also the concrete
compression member, remain in a stable state, irrespective of the presence or
absence of creep, provided only that the applied load is less than the bifurcation

load, v > 1.0. The equations thus represent a second order deflection
analysis only. In fact, of course, stability failure can occur under both short-
term and sustained loadings which are much smaller than the bifurcation load.
It is important to recognize the deficiencies in the above analysis which must
be rectified, in order to obtain an adequate treatment of stability failure.

The long term deflections predicted by Eq. 4.12 are finite and bounded,
provided only that v > 1.0. It is interesting to note that this result is very
largely a reflection of the implied assumption of full time hardening in the
creep process. If a creep law with partial ageing is adopted, an analysis along
the lines suggested by Östlund (31) indicates that deflections become unbounded
at time infinity if the sustained load is in the range Pj^P^Pj:) where is a

limit load less than the bifurcation load P„.E

P,
E (4.16)

M0(t) P(e + vk(t) + vi(t)) (4.17)

Reduced modulus expressions for P^ have been derived by Östlund and also
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by Distefano (11) which take the form

2 Er 1

(4.18)

1 + (4.19)

The parameter a is a measure of the total non-hardening component of creep,
which would be obtained in a long term test (t-x-w») on an aged (x-*>°) concrete
specimen, i.e.

lim lim [<Kt,r)] (4.20)

(t-T)- f-X»

The analysis made by Ostlund and Distefano can be indicated in very simple terms
using the bar-spring model of Fig. 7b. If, analogously to Eq. 2.9, the total
spring rotation 0(t) is expressed as

Kt) ¥ M(t) 3M(T)
St 4>(t,T) dx

T 0

(4.21)

then expressions for 0(t) and M(t) in terms of deflection v(t) can be substituted
to give the following integral equation for lateral deflection.

rt 3v(T) ^ j
3t <Ht,x) dx

T 0

V(t) v-1 (4.22)

Numerical solution of this equation with an appropriate creep function gives the
time-increasing deflection of the assemblage. The result of any analysis of the
boundedness of the deflection at various loads depends of course on the form of
the creep function.

Although this type of analysis gives a more adequate treatment of the creep
properties of the concrete, at least in the linear phase, and provides also for
the possibility of stability failure at loads smaller than the bifurcation load,
the results will still be quite unrealistic in many cases, because the instantaneous

response has been assumed to remain linear when the moments and deflections
increase without bound. The limit load does not therefore correspond

to any physically observable phenomenon and is, at best, an unsafe upper bound
value for the sustained load which can be carried indefinitely. The analysis
of behaviour under short-term loading is of course equally unrealistic, owing
to the assumption of unbounded linear response, and P is an upper bound value
for the short-term load carrying capacity.

To illustrate the more realistic situation of non-linear instantaneous
response, a softening of the spring in the bar-spring assemblage in Fig. 7b
is now considered to occur with increasing moment. The curved line OZX in Fig.
9a represents the relation between internal moment M and instantaneous
deflection v.. In the case of the compression member in Fig. 7a, a similar
type of moment-deflection relation would be obtained from a curved moment-
curvature curve.

A sequence of four equilibrium points, corresponding to a sequence of
equilibrium configurations at loads P^, P P and P again, with increasing
deflection v^, is shown in Figs. 9a and 9B for the case of instantaneous loading.
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P is reached when the rate of increase
of load with respect to deflection (Fig.u9b) is zero,
The short-term load carrying capacity

dP
dv.l

0 (4.23)

In Fig. 9a it can be seen that Eq. 4.23 defines a state of neutral equilbrium
for which 1

are equal,
for which the rates of increase of external and internal moments, Mg and M^

3M
e

3v.l

3M
r

3v.l
(4.24)

Non-linearity of the M -v. relation has a significant effect on behaviour
under sustained loading. T?ie situation is illustrated in Fig. 10 for a

constant sustained load P applied at eccentricity e. Fig. 10a is similar to one

used by Mauch (27) in 'his discussion of creep effects in concrete columns. As

shown previously in Fig. 8, the creep deflection v^(t) acts as an additional
eccentricity. Thus, at time t, the line of external moment in Fig. 10a has
moved outward from EF to GH. If the system were suddenly overloaded at time t,
a load carrying capacity of P (t) would be obtained (represented by the slope
of line GI in Fig. 10a), whicH would be somewhat less than thé original load
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carrying capacity P at time zero (represented by the slope of line EZ in Fig.
9a). It should be noted that only the short-term component, v.(t), of the
total deflection v(t) is shown in Fig. 10b. 1

Two quite different patterns of behaviour are now possible, depending
upon the magnitude of the sustained load P For values which are smaller than
a critical value P^, P < P^, the potential load carrying capacity P (t) sinks
gradually with increasing time from the initial value P to a final uasymptotic
value P* at time infinity. However, if P is sufficiently large, The
potential load carrying capacity sinks until at a critical time t .it becomes
equal to the applied load P At this stage creep buckling occurs. The creep
induced neutral equilibrium state is represented by line JK and point K in
Fig. 10a. For the limiting case, P^ P^, the critical time approaches infinity.

The patterns of behaviour described here for the bar-spring assemblage also
apply to the reinforced concrete compression member and the three loads P P*
and P^ are of prime importance in the design process. Because of the bounded
nature of concrete creep, design for finite life is neither necessary nor
desirable in the case of reinforced concrete compression members. Calculations
directed towards the determination of critical times t are of secondary importance

in practice.

By identifying failure as the state reached when the potential load
carrying capacity, P (t), becomes equal to the applied external load, P (t) a
general failure criterion can be developed for reinforced concrete columns (42),
which is applicable to creep buckling failure (gradual decrease in P (t) to the
value P (t)), to short-term stability failure (sudden increase in P,Yt)), and to
more complicated situations which cannot be uniquely classified (simultaneous
rise in P.(t) and decrease in P (t)). This failure criterion bears some similarity

to the inspection procedure of Hoff and Fraeijs de Veubeke (7).

The simplified method of analysis illustrated in Figs. 9 and 10 can be
applied to a reinforced concrete member. The main complication to be considered

is the effect of axial thrust on the moment-curvature relation for the cross
section of the member. If the deflection curve for the member is approximated
by portion of a sine wave (8), a relation between deflection and curvature at
mid-depth is obtained in lieu of Eq. 4.1, and the moment-thrust-curvature relation

for the critical section at mid-depth (Fig. 5) can be transformed into a
moment-thrust-deflection relation which can be represented by a family of
moment-deflection curves, as in Fig. 11.

AM

e0

FIG. 11: MOMENT-THRUST-DEFLECTION RELATION.

The relation between external moment M and deflection is lineare
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Mg PCe + (4.25)

and plots in Fig. 11 as a straight line with slope tan'^P, For a prescribed
load P, a simple graphical procedure can be used to establish a critical
eccentricity e which together with P will produce immediate short-term stability

failure. The failure condition is illustrated in Fig. 11, and is defined
by the requirement of Eq. 4.24.

It can be seen from Fig. 11 that the maximum moment in the critical
section at the instant of stability failure is likely to be considerably smaller
than the moment carrying capacity of the section. Only when the eccentricity
is very large will the strength of the critical section of a slender member be
exhausted at failure. Indeed, stability failure can occur long before the
carrying capacity of the section is reached. It will thus be noted that the
substitution of an ultimate strength calculation for a stability calculation,
although frequently used as a basis for simplified methods of design, lacks
theoretical justification and can lead to unconservative results in the case of
very slender members with near axial loading.

If a simplified analysis for creep deflections is adopted, for example as
in Eq. 4.15, the reduced load carrying capacity P* can also be determined for a
given level of prior sustained loading, P Alternatively, the limiting creep
buckling load P^ can be determined by trial and error for a given eccentricity e.If the moment-curvature relations can be approximated by bi-linear or tri-linear
lines (21), this method of analysis becomes quite simple in application.

An interesting question with respect to creep effects arises in the
representation of material properties. Although a creep law which displays less than
full hardening (a>0) is required to detect unbounded long-term deflections in
the presence of linear instantaneous response, the situation is less clear cut
when the instantaneous response is markedly non-linear. It could well be that
a quite simple analysis of creep deflections, for example as with Eq. 4.15, will
then give reasonably realistic values of P* and P^.

It will be noted that a non-linear creep phase will occur in the final
stage of behaviour just prior to creep buckling. Nevertheless, this phase is
usually of relatively short duration, since the unloading of compressive stress
from concrete to compression steel delays the build-up of concrete stresses.
Large increases in the concrete compressive stress apparently do not occur until
after yielding of the compression steel (41). It is not therefore unreasonable
to ignore the final complicated non-linear phase in a simplified analysis of
creep buckling.

4.5 Incremental Analysis

The method of analysis of reinforced concrete compression members considered
in the previous section is based on a number of approximations and simplifying
assumptions. In particular, a time-invariant moment-thrust-curvature relation

has been used to represent the instantaneous response of the mid-depth
section at all times, 0<t<œ. In fact, however, prior creep under sustained load
produces a local redistribution of compressive stresses between concrete and
steel and there is the distinct possibility of some or all of the compression
steel reaching the yield stress during a period of sustained service loading.
Although this does not perceptibly alter the final ultimate strength of the
section, it can produce a softening in the short-term response of the section
to moment increments, and hence some reduction in the ultimate load P (t).
Nevertheless, the simplified method gives useful estimates of load carrying



R.F.WARNER 17

capacity and also of lateral deflections under short-term and sustained service
loading. It will be noted that the method is restricted to the standard case of
a pin-ended member with end loads applied at equal eccentricities, such that the
deflected shape can readily be approximated.

If a more accurate treatment of this standard case is required, or if a more
complicated support condition and loading history is to be considered, a numerical

step-by-step analysis must be used. By introducing into the assemblage of
Fig. 7b additional degrees of freedom of deformation in the form of further pins
and moment resisting hinges, a physical model is obtained which provides a good
conceptual picture of member behaviour, as well as a basis for quantitative
analysis. Such bar-spring models were suggested by Biezeno and Grammel (4) and
have been used by Kabaila and Hall (18) in studies of elastic frame stability.
By choosing non-linear creeping moment springs which match closely the load-
deformation characteristics of a short segment of the compression member, a
realistic analysis can be made of member behaviour and load carrying capacity for
both short-term and sustained loading conditions.

The analysis of time-varying behaviour is effected by a discretization of
the time-scale into a finite number of increments. Equations for creep and
shrinkage are rewritten in a form suitable for the calculation either of increments

in strain on the assumption of constant stress acting over each time
interval, or of decrements in stress for constant strains maintained over the
time interval (5) Changes in external loads are usually considered to occur
in small increments at specified time instants.

Discretization along the member length can be made either by considering
curvatures at a finite number of stations, or by considering rotations in a
finite number of short segments. The latter approach is of course equivalent
to the use of the multi-spring assemblage. Calculation of the deflected shape
is carried out'by numerical integration of curvatures or by summation of
rotations.

Incremental analysis requires a computation procedure for determining the
load-deformation characteristics of a cross section or of a short segment. It
is therefore convenient to discretize the section into a finite number of small
concrete and steel areas, as discussed in section 3.2 of this report.

The state of the system at a given time instant and load level can thus be
prescribed by the deflected position and deformed shape of a finite number of
segments along the member, together with stresses and strains in a finite
number of steel and concrete elements in each segment. At each step in the
analysis, a trial-and-error or search procedure is required to identify the
state of the system which satisfies all local and overall equilibrium requirements,

all local compatibility requirements and all geometric and static
boundary conditions. Incremental analysis has been used by various investigators
in studies of a wide variety of effects, including constant and variable
sustained load histories, biaxial bending, and frame-column interaction (8, 12,
16, 17, 28, 35, 42).

When computerized, the step-by-step or incremental analysis procedure
becomes, in effect, a dynamic simulation of the structural system. It has been
described as a numerical reconstruction of a real or conceivable physical test
on a structural element (18).

Computerized incremental analysis procedures are of little direct value in
any normal design procedure. Their main use is as research tools which, together
with experimental investigation, provide a means of identifying and evaluating
the various important factors affecting compression member behaviour.

Bg. 3 EB
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It should be noted that computer-oriented analysis procedures tend to give
a detailed, "worm's eye" view of the behaviour of the compression member, and
provide little direct information on overall behaviour patterns. Useful
information of a general nature might well be obtained through the use of statistical
methods in the design and analysis of large computer experiments. Analysis of
variance techniques might for example be used on data obtained from a factorial
design in order to identify prime variables. Simplified relations involving
only prime variables might then be obtained using regression analysis. These
and other techniques could well be put to use to take advantage of the many step-
by-step analysis procedures which have been developed.

4.4 Frame Action

Reinforced concrete compression members do not usually exist as individual
load carrying elements, but as components of structural frames. The behaviour
of a compression member cannot really be isolated from overall frame behaviour,
and a realistic analysis of the member in effect requires an analysis of the
entire frame.

If the non-linear, anelastic, time-varying properties of structural concrete
are to be taken into account, frame analysis become a formidable task. The
incremental analysis procedure can of course be extended to subassemblages and
small frames. Nevertheless, demands on computation time and capacity of the
computer installation rapidly become governing factors in any analysis of this
type. Investigatory studies using the incremental analysis procedure are primarily
of use in evaluating and, where necessary, calibrating simplified methods of
analysis and design.

An intermediate approach can be taken, whereby less accurate but more
tractable assumptions are made concerning material behaviour and load-deformation
characteristics. Thus, standard stiffness methods of frame analysis can be
adapted to take into account non-linear elastic behaviour, hinge formation and
secondary lateral deflections in columns. Although non-linear methods of computer

frame analysis have been suggested as a future basis for design (26),
expense and relative inaccessibility prevent their use at the present time.

In simplified methods of analysis and design, the compression member is
isolated from the rest of the frame, and interactive effects are represented in
an approximate manner, for example by end restraints applied to a pin-ended member.

Such methods will be reviewed in more detail in the introductory report
to Theme II of this Symposium.

5. CONCLUDING REMARKS

In preceding sections of this report attention has been restricted to
deterministic models of concrete compression member behaviour. In the formulation

of adequate design procedures account must be taken of large and unavoidable
variabilities in structural geometry, material properties and in-service conditions.

Attention has recently centered on the use of probabilistic models of
structural behaviour as a more appropriate basis for the treatment of structural
safety and reliability. Although a promising start has been made in this field
(3), largely by Benjamin and his associates, much more work is required. Some

difficulties involved in the introduction of probabilistic concepts into
compression member design have been discussed recently by Winter (43).

Despite various inadequacies in the present state of knowledge, computer
oriented incremental analysis procedures provide reasonably good - but by no
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means precise - predictions of the behaviour and load carrying capacity of
reinforced concrete compression members for a wide range of loading conditions.
Such procedures can be applied to members which are either isolated (standard
pin-ended case) or are components in structural subassemblages. For practical
design calculations, however, simplified methods must be available which account
for the most important factors affecting behaviour and strength, while avoiding
the complexities of a detailed analysis.

Various simplified procedures for the analysis of individual compression
members have been reviewed in this Theme I report. Not surprisingly, the
simplest methods also prove to be the least accurate. In order to obtain
the simplicity and general applicability required of an adequate design procedure,

some degree of accuracy must clearly be sacrificed. Indeed, one of the
basic decisions which any code writing body must make, involves the choice of
an appropriate and acceptable balance between the conflicting requirements of
accuracy and simplicity.
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SUMMARY

In the report the basic theoretical aspects of the behaviour of reinforced
concrete compression members are reviewed. Attention is centered on physical -
mathematical models which allow load carrying capacity and deformations and
deflections under service load conditions to be evaluated. Of particular importance
are those theoretical considerations which must be taken into account in the
development of practical design procedures.

RESUME

Les aspects théoriques fondamentaux du comportement des pièces comprimées
en béton armé sont passés en revue. L'attention est donnée aux modèles physico-
mathématiques qui permettent d'évaluer la capacité de charge et les déformations et
déflections pour différents cas de charge. L'importance des considérations théoriques
devant être prises en considération pour le développement de nouveaux procédés
pratiques de calcul est soulignée.

ZUSAMMENFASSUNG

Der vorliegende Bericht enthält die grundlegenden theoretischen Gesichtspunkte
Uber das Verhalten von Stahlbeton-Druckgliedern. Das Augenmerk richtet sich dabei
auf physikalisch-mathematische Modelle, welche die Abschätzung der Tragfähigkeit,
der Deformationen und Durchbiegungen unter Gebrauchslasten gestatten. Von besonderer

Wichtigkeit sind jene theoretischen Ueberlegungen, welche bei der Entwicklung
praktischer Bemessungsverfahren in Betracht zu ziehen sind.
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