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Mesh Formulation of the Yield Line Method by Mathematical Programming
La formulation en mailles de la méthode des lignes de rupture par la programmation mathématique

Die Netzformulierung der Bruchlinienmethode mit Hilfe der mathematischen Programmierung

A.M.A. DA FONSECA J. MUNRO

Civil Engineering Department Civil Engineering Department
University of Oporto Imperial College

Portugat London, England
SUMMARY

The vield line method has been formulated as a mathematical programming problem using a mesh
description of a finite element network. The fundamental structural relations have been transformed
to an equivalent primal-dual pair of mesh linear programs using the Kuhn-Tucker theory. These
programs, along with the primal-dual pair of nogal linear programs derived previously, provide a
choice of four programs available for computaticn. A comparison has been made of the relative com-
putational effort required for these programs when using a simplex-based computer code.

RESUME

La formulation en mailles développée pour la méthode des éléments finis a été appliguée a la méthode
des lignes de rupture. On a obtenu une paire ,,primal-dual’” de programmes linéaires équivalente aux
relations structurales qui gouvernent la dite description, en utilisant la théorie de Kuhn-Tucker. Ces
programmes offrent, avec la paire ,,primal-dual’’ de programmes linéaires déja dérivée pour ta descrip-
tion nodale, un éventail de quatre programmes de calcul. On a finalement comparé les difficultés de
calcul inhérentes & chacun de ces programmes en utilisant Falgorithme du Simplex.

ZUSAMMENFASSUNG

Die Bruchlinienmethcde wurde mit Hilfe einer Netzbeschreibung eines finiten Element-Netzes darge-
steilt. Die grundlegenden strukturellen Beziehungen wurden unter Verwendung der Kuhn-Tucker
Theorie zu einem entsprechenden ,,primal-dualen’ Paar von linearen Programmen transformiert. Diese,
und das friiher hergeleitete ,,primal-duate’’ Paar von linearen Programmen fiir die Knotenbeschreibung,
liefern eine Auswahl von vier fir die Berechnung verflgbaren Programmen. Schliesslich wurde der fiir
jedes dieser Programme erforderliche relative Rechenaufwand bei Verwendung des Simplex Algorithmus
verglichen, ‘
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1. INTRODUCTION

The plastic limit analysis and synthesis of structural frames may be formulated
conveniently as linear programs (LPs) using either a mesh [1] or nodal [2]
description of the structure to formulate the fundamental static and kinematic
relations. Each description leads to a primal-dual pair of LPs and thus, for
the numerical computation, a choice must be made between four possible programs.
Whilst the nodal description is most commonly used, it has been shown [3][4]
recently that the required computational effort with respect to simplex-based
algorithms is greatly reduced when the mesh description is employed.

A particularly simple and convenient form of manually-computed plastic limit
analysis is embodied in the yield line method (YLM) fS][6 . This method may

be automated to the plastic limit analysis [7] and synthesis [8] of r.c. slabs
through FEs and linear programming. The LPs formulated in this way have the
same algebraic structure as those obtained previously for frames using the nodal
description. Since the programs obtained from the mesh description for frames .
had computational advantages, it would appear logical to seek a corresponding
mesh formulation for the slab problem and to see if these advantages carry over
to this different class of problem.

The nodal description commences with a statement of the (nodal) fundamental
kinematic relations and then seeks the corresponding static relations such

that an appropriate criterion of consistency is satisfied. The criterion
adopted [7] is that of static-kinematic duality (SKD) [1]. The mesh description
to be presented herein commences with a statement of the (mesh) fundamental
static relations and then derives the corresponding kinematic relations such
that SKD is maintained.

2 STATICS

The normal bending moments (@) at the FE sides are considered as the superposi-
tion of a particular solution (mg) which equilibrates the loading and a comple-
mentary solution (mc) which consists of a linear combination of independent
self-equilibrating moment fields.

TS Mt &

The particular solution can be readily obtained if, as indicated on Fig. 1, the
slab is split into cantilevers.

DK<

Fig.1: Cantilever Slabs
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Clearly, such a procedure

implies edge fixity. However, if other boundary

conditions pertain, then they can be incorporated as outlined elsewhere [9].

The complementary solution
meshes. The simplest such

(mc) will be based on a set of linearly independent
set will be obtained from the FEs which are incident

on each of the nodes except one. Such a set is shown in Fig. 2 and these meshes
are analogous to the regional meshes of frame theory [k].

Fig.2: Linearly independent set
of finite element meshes

For example, the complemen

tary solution total normal bending moments at the

FE sides of the mesh represented in Fig. 3 may be expressed in terms of two
static parameters (p1 and p2) in the following form

i mSI_ [ sin o,
m o = sin Qg
me3 sin ag
m_y sin Oy,

_mSS_ _snn Qg

Fig.3:
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Example of finite element mesh

Now, if relations (2) are established for all such regional meshes, then they
can be assembled in the following compact form

m = B
~C ~

R (3)
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and the parameters p will be termed the mesh actions. Thus, the mesh equili-
brium equations (1) become

T = m + E p (4)

3. KINEMATICS

The conditions of compatibility for every mesh must ensure that the modal

angular deformation rates (8) across yielding FE sides correspond to continuity
of vertical displacements. For example, for the FE sides of the mesh represented
in Fig. 3,

sin 0y sin Oy sin Qg sin Oy sin Gg 61 ) 0
cos a, COs 0, COS @y COS Oy  COS Qg éz ) 0
%3 (5)
éh
%)

Now, if these compatibility conditions are imposed on every mesh of a FE system,
then they can be stated in the following compact form

80 9 - 0 (&)

The contragredient relation connecting equations (3) and (6) is a manifestation
of their consistency with respect to SKD.

Once again, the special treatment of various boundary conditions is discussed
more fully elsewhere [9].

4, CONSTITUTIVE RELATIONS

The YLM employs a simple yield criterion

§T m - m € 0 (7)

~ o~

where m, is the vector of the magnitudes of plastic moments of resistance and
the normality matrix N is given by

vos -]

where | is the identity matrix.

It is convenient to express the plastic modal deformations (8) in terms of
non-negative components h

- - e -
8., = x, - X where X: > o , X 2 0
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Thus
B = Nx (8)
¥
where x = |=| 30
~ o ~

and N is the normality matrix as previously described. Relations (8) constitute
the flow rule for the considered problem.

The parity rule linking the static and kinematic variables can be expressed in
the following complementary way.

xT [ﬂTT - m*] = 0 (9)

~

B+ FUNDAMENTAL STRUCTURAL RELATIONS

The particular solution bending moments (mo) may be expressed as the sum of those
due to dead load (m ) and those due to live load (m

My, = My Mg \10)
[f the mR vector is expressed in terms of a single load parameter (),
To = Tdo + EOA (11)

where r, is the vector of live load particular solution bending moments per unit
value of the load parameter (A).

Substituting from (11) into (4), the equilibrium equations become

mo= My *t o +Ep (12)

and the statical admissibility conditions are obtained by substituting from (12)
into the yield conditions (7).

Aly - ¢+t =0 (13)
where
e I N Y T T
BT N P

and t are non-negative slack variables.

The plastic collapse deformation rates (Q) for a single-degree-of-freedom mode
are fixed only up to a single parameter whose magnitude remains arbitrary. It
will therefore be necessary to introduce some form of scaling so that the
problem will have a finite kinematic solution. A conventent scaling is

T

To N X = ! (14)
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The compatibility relations (6) and the flow rule (8) lead to
Bl N x = 0 (15)

The kinematic admissibility conditions are obtained from equations (14) and (15)

rT 1

~0 o~

el g ey 5 — S
B N 0

or, more compactly,

A x = b (16)
Thus, the full set of fundamental structural relations in mesh form becomes
Statical Admissibility Al y-c+t=0
Kinematical Admissibility A x=0b

T (17)

Parity X t= 0
Sense restrictions x>0 t> 0
6. LINEAR PROGRAMS
The relations (17) constitute a linear complementarity problem (LCP). If they

are regarded as Kuhn-Tucker conditions [10 then, from Kuhn-Tucker equivalence,
their solution is also the solution of the following mesh primal-dual LPs of
the YLM

Min z = cT X Max w = bT y
Ax=0>b AT ysec (18) (19)
x>0
Mesh Primal LP Mesh Dual LP
7. SOLUTION BOUNDS

From the duality theory [11] of LP, it follows that the optimal values of the
two objective functions coincide and are equal to the collapse load (A.) for
the YLM-FE model,

z, = w, = A ‘ (20)

Since the necessary compatibility requirements are satisfied, the plastic
collapse load parameter (A.) for the YLM-FE model is an upper bound to the
collapse load parameter (AS) for the continuous model.

Ao 2 A‘C‘ (21)
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Clearly, if the FE boundaries contain the yield lines of the true collapse mode
of the continuous model, then the strict equality applies in relation (21).

The upper bound nature of the YLM-FE modeil also applies when_a nodal description
[7) is adopted. However, it has been shown elsewhere [9][12][13] that an FE
formulation using approximating field functions can be devised such that the
collapse load parameter is a lower bound on that of the continuous model.

8. COMPUTATIONAL EFFORT

If n. is the number of constraints and n, is the number of variables in the
standard form of an LP, then the_computational effort involved in a simplex-
based computer code varies as (né nvg. It can be shown that the primal (unsafe)
LP always involves less computation than the dual (safe) LP, irrespective of the
description (nodal or mesh) used. The choice therefore lies between the nodal
primal LP and the mesh primal LP -for a YLM-FE model. The comparison between
these two programs with respect to computational effort depends, to some extent,
on the boudnary conditions. However, as the number of FEs increases and the FE
network tends to an infinitely fine one, then the influence of boundary conditions
becomes less important and the nodal primal LP tends to require 450% of the
computational effort of the corresponding mesh LP.

Another important consideration is the complexity of data preparaticn and
organisation prior to entering the simplex~based code. Here the position with
regard to the mesh description is, as yet, less satisfactory, However, this

was also considered to be a disadvantage with respect to the mesh LPs for frames,
but recent developments have largely overcome the problems and further research
should improve the position with regard to slabs,

9. CONCLUSIONS

The mesh description, which has proved to be particularly convenient with
respect to frames, can readily be adapted to a YLM~FE model of a reinforced
concrete slab. The mesh primal-dual LPs for the slab problem have the same
algebraic form as those for frames. Whilst the data preparation may require
more attention, the computational effort required for the solution of the mesh
primal LP is generally considerably less than that for the corresponding nodal
primal LP.
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