Shape and length of the first tarsomere in Trichoceridae (Diptera, Nematocera)

Autor(en): Krzemiska, Ewa
Objekttyp: Article
Zeitschrift: Bulletin de la Société Neuchâteloise des Sciences Naturelles

Band (Jahr): 120 (1997)

PDF erstellt am: 23.07.2024
Persistenter Link: https://doi.org/10.5169/seals-89466

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

SHAPE AND LENGTH OF THE FIRST TARSOMERE IN TRICHOCERIDAE (DIPTERA, NEMATOCERA).

EWA KRZEMIŃSKA
Institute of Systematics \& Evolution of Animals, Polish Academy of Sciences, ul. Sławkowska 17, 31-016 Kraków, Poland.

Key words: Trichoceridae, Trichocera, Nothotrichocera, Paracladura.

Abstract

In three genera of Trichoceridae: Trichocera, Nothotrichocera and Paracladura the length of first tarsal segment (t1) is linked with the flexibility of a joint between this and following tarsomere (t2): in Paracladaura, the genus with extremely short t 1 , the joint is stiff; in Nothotrichocera the flexibility of this joint is greatest in species with relatively long t1; in Trichocera, the genus characterized by long tl, the joint is fully flexible. The flexibility in two first mentioned genera is hindered by the oblique shape of t 1 most distal part. Relative length of third and fourth tarsal segment differs between Trichocera and Nothotrichocera + Paracladura and can be used for purposes of determination, especially in fossil material, where other generic characters are obscured.

INTRODUCTION

Three genera of Trichoceridae: Trichocera Meigen, Nothotrichocera Alexander and Paracladura Brunetti are distinguished, among others, by a relative length of first tarsal segment (t1). In Trichocera (as well as in the fourth genus, Diazosma Bergroth) the first tarsomere is longer than the second, t2 (t2/t1 ranges 1.5-1.7); in Nothotrichocera t1 is slightly to markedly shorter than t 2 (t2/t1 ranges 1.1-1.7; (Krzemińska 1994); while in Paracladura t 1 is extremely short and its length reaches ca. $1 / 10$ of t 2 . Both last mentioned genera belong to exceptions within the Diptera, where generally the first tarsomere is the longest segment of the tarsus. It has been observed that this relative shortness of tl is
accompanied by the oblique shape of $t 1$ ending (Brunetti 1911; Edwards 1928). When studying specimens of these genera, I had observed that their legs are never bent between first and second tarsomere, as if this joint was not capable of bending. More detailed study revealed that in Nothotrichocera antarctica, which has t1 almost as long as t2 (and relatively the longest within the genus), the leg can be slightly bent between these two tarsomeres; here also the shape of $t 1$ ending is less oblique than in other species (fig. 4). Similar effect was observed in N. cranstoni, the species with next longest t 1 within the genus (tabl. 2). It seemed that the shorter the first tarsomere is, the more
oblique its ending, thus hindering the flexibility between tl and t 2 . In other species of Nothotrichocera and in Paracladura the joint remained stiff, even after a soak in alcohol or water.

The present paper has two aims:

1. To check the relations between length of first tarsomere, its shape and flexibility of t1/t2 joint.
2. To check the relative length of more distal tarsomeres, assuming that short first tarsomere influences length of remaining ones. The positive results would help our handling of fossil Trichoceridae (Krzeminski, Krzemińska \& Dahl - in prep.). We have observed that the $\mathrm{t} 1 / \mathrm{t} 2$ joint is often poorly visible in the fossil Trichoceridae, in many cases preventing classification into genera. Since the borders between subsequent tarsomeres are generally well preserved, our study of fossil Trichoceridae would give more reliable results if classification could be based on the relative length of distal tarsomeres.

MATERIAL

249 legs of: Trichocera (Trichocera): annulata Meigen - $30^{\text {T, }}$ 2Q; major Edwards - $40^{7}, 4$; regelationis (Linne) - $40^{7}, 39$; hiemalis (DeGeer) - 30', 3Q; parva Meigen - 20', 2中; Trichocera (Metatrichocera): forcipula Nilssen - 40', 4 Q ; arctica Lundström - $10^{\prime \prime}, 1$ (collections from Poland and Netherlands; last species from north Siberia). Nothotrichocera Alexander: cingulata Alexander - 30', 2\%; terebrella Alexander - 60^{7}, 3Q; cranstoni Krzemiñska - 50', 9 (P (CSIRO); antarctica Edwards $30^{7}, 3$ (3 (Bishop Museum, Honolulu). Paracladura Brunetti - 30', 59 (unidentified species) (CSIRO). Diazosma subsinuatum Alexander - 20' (USA; Smithsonian Institution).

METHODS

Legs were measured under the microscope with a scale; sections a and b (fig. 1) at magnifications of ca. 60x. Measurements of the first tarsomere of Nothotrichocera and Paracladura were taken excluding the oblique section.

RESULTS

1. The obliqueness of the end of the first tarsomere was expressed by an obliqueness index: $O I=a / b$, where a is the longest section of an ending from the point where the obliqueness begins and b is the width of the leg at this point (mode of measuring is shown in fig. 1).

Since the dipteran leg is bent twofold between femur and the tibia (fig. 2), all subsequent segments from the beginning of the tibia to the end of the leg are aligned more or less along the same direction and support each other. Thus the shortness of t 1 is linked with the position of $\mathrm{t} 1 / \mathrm{t} 2$ joint along this entire section. The shorter t 1 is, the closer $\mathrm{t} 1 / \mathrm{t} 2$ joint to the femur/tibia joint. For this reason $O I$ was checked in relation to the position of $\mathrm{t} 1 / \mathrm{t} 2$ joint along the leg section from tibia to end of last tarsomere (fig. 2).

The scatterplot of $O I$ against the position of $\mathrm{t} 1 / \mathrm{t} 2$ is shown in fig. 3 ; it shows a linear relation between these two characters, i. e., the higher along the leg is $\mathrm{t} 1 / \mathrm{t} 2$ joint, the more oblique the ending of $t 1$ and the more hindered flexibility of this joint. The latter feature is well evidenced by the anatomy of the joint as seen under microscope with transient light. In figure 4 the lateral cross-section view of $\mathrm{t} 1 / \mathrm{t} 2$ joint in three genera is given, based on microscope photographs. The legs are arrayed according to gradually diminishing mobility of $\mathrm{t} 1 / \mathrm{t} 2$ joint, i.e. Trichocera, Nothotrichocera antarctica, other Nothotrichocera (here: N. cingulata), Paracladura. The better working the joint, the less contact

Figures 1 et 2:
1.Obliqueness index, mode of measurement; t1, t2, first and second tarsomere.
2. Standardized proportions of leg segments in Trichocera (T), Nothotrichocera (N) and Paracladura (P); f, femur; ti, tibia; t1-t5, tarsomeres 1 - 5. Position of joint $\mathrm{t} 1 / \mathrm{t} 2$ arrowed. Further explanation in text.
there is between adjacent parts of t 1 and t 2 . The proximal process of $t 2$ is of distinct shape and moves in a well developed cavity (acetabulum) of $t 1$. The area around process of t 2 which contacts during the movement with t , is recognizable by the absence of setae. Similar features characterize fully flexible, subsequent joints: $\mathrm{t} 2 / \mathrm{t} 3$; $\mathrm{t} 3 / \mathrm{t} 4$ and $\mathrm{t} 4 / \mathrm{t} 5$ and are similar in all genera examined, including Diazosma.

On the other hand, in nothotrichoceran and paracladuran legs the obliqueness of t 1 ending is distinct and prolongated by a strong, single spine, especially large in Paracladura. In this genus also the cavity of t 1 is almost tightly fitting the process of t2, thus hindering any movement. The naked area around the process is non-existent.

Basic statistics of leg measurements is given in Table 2. Nothotrichocera is split into 4 species differing by t1 length and
arrayed according to its gradual diminishing: N. antarctica, N. cranstoni, N. cingulata and N. terebrella. To enable comparison, the data are presented as $\%$ of total leg length.
2. The shortness of $t 1$ is compensated by length of t 2 ; however, also the more distant tarsomeres are longer in Paracladura and Nothotrichocera than in Trichocera (fig. 2; tabl. 2). figs 5-7 present scatterplots of t3 against t 4 (standardized by division by t5) in fore, middle and hind legs in three genera.

The best separation of Trichocera from Nothotrichocera and Paracladura is achieved with fore legs; the worst with the middle ones. By no means, however, can Nothotrichocera be separated from Paracladura, in spite of clearly linear relation between lengths of t 3 and t 4 .

Figure 3: Scatterplot of obliqueness index (OI) against the position of $\mathrm{t} 1 / \mathrm{t} 2$ joint in legs of Trichocera (t); Nothotrichocera (n); Paracladura (p). Equation of linear regression: $0.473 x+0.189=y$.

ACKNOWLEDGEMENTS

This paper was presented at the Second International Symposium of Tipulomorpha: Systematics and Phylogeny, in Aletsch, Switzerland, June 1996.

For the loans of material I would like to
thank Dr Peter Cranston (CSIRO), Dr Wayne Matthis and Dr Holly Williams (Smithsonian Institution), Dr Neal Evenhuis (Bishop Museum, Honolulu) and Dr Ian van Zuijlen (collection of De Brand National Park, Netherlands).

REFERENCES

Brunetti, E. 1911. Oriental Tipulidae. Rec. Ind. Mus. VI: 286-287.
Edwards, F. 1928. Genera Insectorum. 190: 30-37, Bruxelles.
Krzemińska, E. 1994. Nothotrichocera Alexander (Diptera: Trichoceridae): Three New Species from Australia. Invertebr. Taxon., 8: 911-22.

Trichocera	N	Min	Max	Mean	SD
obliqueness index	9	0.643	0.923	0.780	0.097
t1/t2 position	9	25.759	29.455	27.543	1.446
Nothotrichocera	N	Min	Max	Mean	SD
obliqueness index	27	1.125	2.000	1.621	0.258
t1/t2 position	27	33.933	43.979	3.9 .657	2.768
Paracladura	N	Min	Max	Mean	SD
obliqueness index	15	1.636	2.429	2.068	0.234
t1/t2 position	15	50.000	56.104	52.962	1.808

Table 1: Obliqueness index for first tarsomere and position of a joint between first and second tarsomere in Nothotrichocera, Paracladura and Trichocera.

Trichocera $N=96$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	13.853	7.978	3.733	1.871	1.348
Maximum	19.346	10.627	6.276	3.821	2.567
Mean	16.120	9.328	5.194	2.772	1.944
SD	1.142	0.650	0.554	0.361	0.247
Nothotrich. antarctica $N=18$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	11.238	11.095	7.112	3.359	1.592
Maximum	14.302	15.178	8.940	5.298	2.049
Mean	12.334	13.139	7.961	4.522	2.049
SD	0.738	1.109	0.465	0.514	0.256
Nothotrich. cranstoni $N=39$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	7.814	11.749	6.736	3.380	1.341
Maximum	12.053	16.316	8.667	4.412	2.642
Mean	10.233	13.911	7.659	3.863	0.290
SD	0.850	1.129	0.461	0.247	0.290
Nothotrich. cingulata $N=15$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	7.914	14.366	6.881	3.807	1.408
Maximum	10.324	18.413	9.254	4.776	2.158
Mean	8.988	16.373	8.187	4.247	1.747
SD	0.764	1.188	0.601	0.315	0.203
Nothotrich. terebrella $N=26$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	7.326	14.063	6.875	3.625	1.253
Maximum	9.880	17.708	9.375	5.208	2.151
Mean	8.629	16.291	8.127	4.192	1.732
SD	0.720	1.149	0.669	0.360	0.239
Paracladura $N=24$	t1 (\%)	t2 (\%)	t3 (\%)	t4 (\%)	t5 (\%)
Minimum	0.823	20.265	8.537	4.090	1.623
Maximum	1.420	23.278	10.323	5.277	2.528
Mean	1.090	22.142	9.539	4.806	2.131
SD	0.148	0.761	0.533	0.270	0.215

Table 2: Statistics of relative length of tarsomeres (in \% of total leg length) in Trichocera, 4 species of Nothotrichocera and Paracladura.

Na

P

Figure 4: Lateral view of t1/t2 joint in Trichocera (T), Nothotrichocera antarctica (Na), N. cingulata (Nc) and Paracladura (P). Below the remaining joints in Trichocera.

hind legs

middle legs

Figures 5-7: Scatterplots of t3 and t4 lengths (standardized at t 5) in fore, middle and hind legs of: Trichocera (t), Metatrichocera (m), Nothotrichocera antarctica (a), remaining Nothotrichocera (n) and Paracladura (p).

