
Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 75 (1997)

Heft: 7

Artikel: A framework for transparent communication

Autor: Zweiacker, Marc

DOI: https://doi.org/10.5169/seals-876951

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 26.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876951
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


STANDARDIZATION

A BRIEF SURVEY OF CORBA

A FRAMEWORK FOR
TRANSPARENT COMMUNICATION

In 1989 the most powerful standardization body for
distributed computing has been founded, the Object

Management Group (OMG). More than 700 companies

worldwide are a member of the OMG, and this figure is

still rising continuously. The OMG has developed a

conceptual model, known as the Core Object Model,
and a reference architecture, called the Object

Management Architecture (OMA), upon which

applications can be constructed. The core of the OMA
is the Object Request Broker (ORB), which is a common
communication bus for objects. The technology
adopted for ORBs is known as the Common Object

Request Broker Architecture (CORBA), which specifies

a framework for transparent communication between

application objects.

In
1989 the Object Management

Group (OMG) was founded by eight
companies as a nonprofit organization
with the aim to adopt interface

MARC ZWEIACKER, BERN

and protocol specificationsthat define
an object management architecture
supporting interoperable applications
based on distributed interoperable
objects. The specifications are to
be based on existing technology that
can be demonstrated to satisfy OMG's
Technical Objectives' [4]. Today, more
than 700 companies are a member of
the OMG, with almost every significant

computer vendor represented.

The OMG has developed a conceptual
model, known as the Core Object
Model, and a reference architecture,
called the Object Management
Architecture (OMA), upon which applications

can be constructed. The core of
the OMA is the Object Request Broker
(ORB), which is a common communication

bus for objects. The technology
adopted for ORBs is known as the
Common Object Request Broker
Architecture (CORBA), which specifies a

framework for transparent communication

between application objects.
CORBA is the first specification
adopted by the OMG.

Figure 1 is a widely used representation

of the OMA, comprising normal
application objects, object services,

common facilities, and the ORB which

enables object interaction. The OMG

Object Services Specifications define a

set of objects which perform
fundamental functions such as naming, life
cycle services, and transactions. Common

facilities have an application
focus and are mostly used by distributed
application developers. Essentially,
services and facilities are components
which ease the creation of distributed
applications; however, they are not
conceptually different from ordinary,
normal application objects. They work
according to the same architecture
and use the same communication
mechanisms.

Interfaces
and language mapping

This section introduces object interfaces

and how they relate to services.
The decoupling of a service specification

from the actual implementation is

realized through the language
mappings. Language mappings are rules
that transform the abstract service
description into the inherent constructs
of a programming language.

Interfaces and IDL

According to the object model, objects
communicate through interfaces with
one another. The interface is a

conceptual element of the architecture
that an object must support in order to
-enable communication with other

objects

- be compliant with the OMA

The OMA promotes the client-server
paradigm in that objects take different

roles during a communication ses-

24 COMTEC 7/1997



STANDARDIZATION

ARCHITECTURE

Application Objects Common Facilities

,— ^^

Object Request Broker

sion. The functionality that an object
offers to its clients (the service) is

expressed using the OMG's Interface
Definition Language (IDL), a metalanguage

specifying data structures and
operations that clients can invoke on
an interface. Figure 2 depicts the
client-server relation and shows a sample

interface description. The server is

a simple banking service that offers
clients the possibility to create and
delete accounts and to deposit or
withdraw money from these accounts.
The account interface defines the
balance attribute, which is used to specify
the amount of money to deposit or
withdraw. makeDeposit and make-
Withdrawal are operation names, the
void keyword specifying that no
return value is associated with these
operations. The bank interface lets users
create new accounts through the
newAccount operation. This operation

returns an account interface on
which financial transactions can be
invoked. It takes a string as the only
parameter to specify the name of the
account holder. Finally, deleteAccount
destroys the account interface passed
as the input parameter.
We are not going into the details of
IDL in this article; the interested reader
is directed to [3] for more information.
However, there is an important thing
to note: An IDL specification does not
reveal the implementation details of a

service, i.e., the banking service could
be realized by competing banking
institutes, each of which has its own
distinct computer center running different

hardware and software. As long as

the IDL specification for the banking
service is respected, clients can use
either server. The implementation is hidden

behind the interface. In all
standardization efforts, the OMG aims at
specifying interfaces, but does not
dictate the implementation. This is one of
the major success factors for CORBA: It
allows service specification without
exposing the implementation, thus
creating a world of agreed services

that leaves enough space for competition

on the market (through the better

quality of a service, for instance).

Language mappings

Using IDL, the service is described
independently of its implementation. To

make such independence possible, IDL

specifications are cross-compiled into
the programming language being

Fig. 1. Object Management

Architecture.

used, transferring the intended
semantics of the IDL specifications into
the language domain. Forthis particular

reason, a number of language
mappings (semantic correspondences
between IDL and the target programming

language) have been adopted by
the OMG for widely used languages,
including C, C++, SmallTalk, COBOL,
and Ada. With these mappings
programmers can use a mixture of
languages to implement application
objects without limiting interoperability,
as the mappings ensure semantically
consistent information crossing the
interfaces between objects. It is therefore

not uncommon, that an object
written in SmallTalk communicates
with another object written in C++.
The differences in the implementation
strategy and language is totally
transparent to the objects, i.e., the
SmallTalk object would in general not
be able to tell that it communicates
with a C++ object. Such implementation

transparency is achieved through
the ORB, which is in charge of the
communication between the objects. Simply

stated, the ORB can be regarded as

a communication relay between
objects. It silently adapts to the operating

system environment and programming

language of an object without
exposing the details of this adaptation
to the outside world (Fig. 3). This is

another major strength of CORBA: It
allows interoperability of objects across

heterogeneous operating systems and
programming languages. Quickly,
these are the important points for
your CORBA comprehension:

Object Services

- CORBA enables transparent interaction

for distributed objects across
heterogeneous operating systems.

-Objects can be written in any
language, provided that there is a mapping

adopted for it by the OMG.

-Objects communicate with one
another through the ORB, no matter
what language has been used to
implement them.

The interested reader is encouraged to
look at [5], which is a more detailed,
excellent introduction to OMA and
CORBA.

Services

This section is devoted to the way
services are defined in CORBA. The Common

Object Services Specifications are
given special attention.

Service classification

The OMA promotes the client-server
paradigm, meaning that the interaction

between any two objects is of an
asymmetric kind as far as communication

behaviour is concerned:

- A server is an application object that
waits for incoming connection
requests from other objects. After a

connection has been established, the
server object would perform some
action requested by the calling
object.

- A client is an object that calls a server.

COMTEC 7/1997 25



STANDARDIZATION

INTERACTION

Service interface
specified in IDL

sample IDL specification:

interface Account {

readonly attribute float balance;
void makeDeposit (in float f ;

void makeWithdrawal in float f) ;

};

interface Bank {

Account newAccount in string name) ;

void deleteAccount (in Account a) ;

};
Fig. 2. Client-server

interaction.

Note that in general server and client
are not labels that you attach to an
object. They are rather roles that specify
the behaviour of the object for a

particular communication session. An
object can take both roles: It acts as a

server when it waits for incoming
requests, and it acts as a client when it
initiates a communication session.
Server and client objects are not
distinguishable by the Core Object
Model; they both obey the architectural

rules. CORBA differentiates
between the following classes of services:

- Object Services, a collection of
services that ease the task of programming

distributed applications. For
example, the Life Cycle Service
defines conventions for creating, deleting,

copying, and moving objects;
however, it does not dictate how the
objects are implemented in the
application. The Object Services are
defined in the CORBAservices suite of
specifications.

- Common Facilities, a set of lower
level object services that many
applications may share but which are not
as fundamental as Object Services.

For instance, the Information
Management Common Facilities comprise

specifications and further
references for Information Modelling,
Storage and Retrieval, Interchange,
and Data Encoding & Representation.

Information about Common
Facilities is contained in the CORBAfa-
cilities documentation.

-Application Services are the services

built for a particular purpose, i.e.,

they are the services that end users
actually want. They need to be engi¬

neered and programmed, possibly
relying - to a certain extent - on
Object Services or Common Facilities or
both.

CORBAservices

The most advanced set of adopted
service standards is the Common Object
Service Specification (COSS),

commonly known as CORBAservices. The

following is an overview of adopted
CORBAservices:

-The Naming Service provides the
ability to bind a name to an object
relative to a naming context. The

naming context contains a set of
name bindings in which each name
is unique. The advantage of having a

Naming Service lies in easier
addressing of objects.

-The Event Service provides basic
capabilities to support asynchronous
events, notification, and - through
appropriate event channel
implementations - reliable event delivery.

-The Life Cycle Service defines
conventions for creating, deleting, moving,

and copying objects. Because
CORBA-based environments support
distributed objects, clients can
perform life cycle operations on objects
in different locations.

-The Persistent Object Service
provides the capabilities to retain and

manage the persistent state of
objects.

-The Transaction Service supports
multiple transaction models, including

the flat (mandatory in the
specification) and nested (optional) models.

ORB

Middleware Layer (ORB)

Operating System

CORBA objects look the same
on every installed computer

le middleware layer shields
the peculiarities of the hosting
hardware and operating system

Hardware

Fig. 3. The ORB hides heterogeneity of

both hardware and operating systems.

26 COMTEC 7/1997



STANDARDIZATION

- The Concurrency Control Service
enables multiple clients to coordinate
their access to shared resources.
Coordinating access to a resource
means that when multiple, concurrent

clients access a single resource,
any conflicting actions by the clients
are reconciled, so that the resource
remains in a consistent state.

- The Relationship Service allows entities

and relationships to be explicitly
represented. The service defines two
new kinds of objects: relationships
and roles. Using these objects, type
and cardinality constraints can be
expressed and checked: Exceptions are
raised, when the constraints are
violated.

-The Externalization Service defines
protocols and conventions for
externalizing and internalizing objects.
Externalizing means to record the
object state in a stream of data (in

memory, on a disk file, across the
network, etc.) and then to internalized
it into a new object in the same or a

different process.
-The Query Service allows users and

objects to invoke queries on a collection

of other objects. The queries
contain declarative statements with
predicates and include the ability to
specify values of attributes to invoke
arbitrary operations and other
Object Services.

- The Licensing Service provides
mechanisms for producers to control the
use of their intellectual property.

-The Property Service provides the
ability to dynamically associate
named values with objects outside
the static IDL-type system.

- The Time Service enables users to
obtain current time together with an

error estimate associated with it. It

can be used further to ascertain the
order in which 'events' occurred, to
generate time-based events, and to
compute the interval between two
events.

- The Security Service comprises
specifications for identification and
authentication of principals (human
users and objects) to verify they are
who they claim to be, for authorization

and access control to decide
whether a principal can access an
object, for auditing to make users
accountable for their security-related
actions, for secure communication
between objects (which is often over
insecure lower layer communications),

and for administration of
security information.

Conclusions

The CORBA standards provide the
flexibility to construct open distributed
applications in a heterogeneous
environment, comprising different hardware

and software, possibly originating
from different vendors. Services

are specified in IDL to make them in¬

dependent of the implementation.
The language mapping maintains
semantic consistency between these
interface specifications and the
programming language used. Besides

defining an architectural model, the
standards define a set of commonly
used services, CORBAfacilities and
CORBAservices, that ease the creation
of distributed applications. 0

References

1 ISO/IEC Draft International Standard 10746-1 / ITU-T Recommendation X.901, Reference

Model of Open Distributed Processing, Part 1: Overview, 1995.

2 ISO/IEC International Standard 10746-3 / ITU-T Recommendation X.903, Reference Model

of Open Distributed Processing, Part 3: Architecture, 1995.

3 The Common Object Request Broker: Architecture and Specification, The Object

Management Group, Revision 2.0, July 1995.

4 Object Management Architecture Guide, The Object Management Group, Revision 2.0,

edited by R. M. Soley, OMG document number 92-11-01,1992.
5 Yang Z., Duddy K., CORBA: A Platform for Distributed Object Computing. ACM Operating

Systems Review, Vol. 30, No. 2, pp 4-31, April 1996.

ZUSAMMENFASSUNG

CORBA

Im Jahre 1989 wurde die wohl mächtigste Standardisierungsorganisation mit dem Namen

Object Management Group (OMG) ins Leben gerufen. Weltweit gehören seitdem über

700 Unternehmen der OMG an, und die Anzahl der Mitglieder ist weiterhin zunehmend.

Die OMG hat ein konzeptuelles Modell, Core Object Model, sowie eine dazugehörige
Architektur, Object Management Architecture (OMA), entwickelt, womit verteilte Applikationen

gebaut werden können. Das Kernstück der Architektur bildet der Object Request
Broker (ORB), ein universeller Kommunikationsbus für Applikationsobjekte. Die Standards,
die für den ORB definiert worden sind, bezeichnet man als Common Object Request Broker

Architecture oder CORBA.

Marc Zweiacker ist nach Abschluss der Studienzeit an der HTL Burgdorf
(Elektrotechnik) und der ETH Zürich (Informatik) im Frühjahr 1991 der Gruppe «Netzte-

werke und Kommunikation» der Direktion Forschung und Entwicklung beigetreten.
Sein Spezialgebiet sind die verteilten Systeme in der Normierung wie auch in der

praktischen Handhabung sowie dem Management. 1993 und 1994 hat er aktiv an

der Definition des ITU-T Standards X.900 «Reference Model for Open Distributed

Processing» mitgewirkt. Seit 1996 befasst sich Marc Zweiacker vornehmlich mit Fragen der
Fehlertoleranz von verteilten Systemen und speziell von auf CORBA basierenden Applikationen.

-

ComTeC 7/1997 27


	A framework for transparent communication

