
Zeitschrift: Comtec : Informations- und Telekommunikationstechnologie =
information and telecommunication technology

Herausgeber: Swisscom

Band: 75 (1997)

Heft: 8

Artikel: Fault-tolerant Cobra : using checkpoint and recovery

Autor: Zweiacker, Marc

DOI: https://doi.org/10.5169/seals-876955

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876955
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


RESEARCH & DEVELOPMENT

FAULT TOLERANCE

FAULT-TOLERANT CORBA, USING
CHECKPOINTING AND RECOVERY

Fault tolerance is an issue of high importance to distributed systems, a fact that
is well identified in the ISO/ITU Reference Model of ODP by the inclusion of failure

transparency. The Persistent Object Group Service (POGS) described in this article

keeps track of the state of a distributed application, as far as global checkpoint

consistency is concerned. Application objects take checkpoints of their own in a

noncoordinated fashion, using the POGS to detect global state inconsistencies.

As a consequence of consulting POGS, objects take additional checkpoints that would

not have occurred otherwise but which are necessary to ensure global state

consistency. The advantage of the POGS approach lies in the fact that global

checkpoint consistency control is separated from the objects that actually do the

checkpointing. This is a necessary step on the way to integrating fault tolerance

mechanisms in a late stage of the software development process. A prototype of
the POGS has been implemented using CORBA as a standard distributed systems

technology.

An approach to work around the
failure of a distributed application

is to use checkpointing and recovery
techniques. Swiss Telecom R&D has

launched a research project to investigate

the applicability of the approach

MARC ZWEIACKER, BERN

to distributed systems that are built
using standard architectures and
platforms like the OMG's Common Object
Request Broker Architecture (CORBA)
[3].
Applying checkpointing to distributed
objects forces to survey the
checkpointing activities of the objects in
order to maintain checkpoint consistency.

Consistency of checkpoints is a

prerequisite to using them for recovery.

Inconsistency among the individual

checkpoints does not affect the
application's progress, but it will
certainly impair the usage of these checkpoints

for recovery. The Persistent
Object Group Service (POGS) keeps
track of the state of a distributed
application, as far as checkpointing is

concerned, and is used by the application

objects to prevent checkpoint
inconsistency. The POGS does not take
responsibility for checkpointing the
objects, but rather acts as a guide to
decide when checkpoints need to be
taken.
Normally, communication in CORBA is

of a RPC style, i.e., with every request
message, there is an associated reply;
however, the fault tolerance approach
presented in this article applies to

messaging systems that do not imply
response messages, as far as the
underlying communication protocol is

concerned. Taking RPC-like interaction
into account is not a trivial task in

checkpointing. The reasons are twofold:

Firstly, applications tend to make
use of threads, a very efficient way of
handling concurrent requests at the
server side. It turns out in practice that
it is very difficult, not to say impossible,

to recover an object from a checkpoint

that incorporates threads. A
second difficulty is the taking of a checkpoint

in the presence of open communication

connections. In practice, an
object communicating with another
uses some run-time library module to
enable networking. It is not sensibleto
incorporate the state of a run-time
library for checkpointing, as the library

20 COMTEC 8/1997



RESEARCH & DEVELOPMENT

CHECKPOINTING AND
RECOVERY

Fig. 1. Checkpointing and recovery of an

object.

would certainly not recover the way
we wanted: Time-outs would lead to
the breakdown of pending communication

links; thus, channel identifiers
stored in a checkpoint would most
probably be invalid upon recovery of
the object. For these reasons, the
scope of applications has been
narrowed to those that use messaging as

the communication paradigm. In a

CORBA context, this is equivalent to
having one-way operations in the
application interfaces (operations with a

void return type).

Distributed checkpointing

Fault tolerance through persistence

The idea behind checkpointing and

recovery is to regularly store an
object's state on stable storage, i.e. on a

device that is considered safe from
durable data loss. The state information

is called the object's local checkpoint

or simply checkpoint, whereas
the process of bringing it to stable

storage is termed the taking of a

checkpoint. In case the object fails, a

new object is created and then initialized

with the latest state of the object
found on stable storage. This procedure

is called recovery. The new object
replaces the failed one and resumes its

execution, as it was put back in time
when the original object took the
checkpoint (Fig. 1).

As a checkpoint represents the object's
state, it also preserves the object's
history; hence, it is the only work lost is

the activity that took place after the
last checkpoint had been taken and
after the moment when the object
failed. All previous activities are
reflected in the object's state, and only
those that happened after the latest
checkpoint will need to be repeated in
order to make the new object a

replacement for the failed one. As an
example, consider a word processor with
the auto-save option turned on (the
program will automatically save the
edited document in predefined intervals).

Should anything serious happen
to the computer, like a system crash,
there is at least a large portion of the
document stored, if not all of it.

Consistency criteria for distributed
checkpoints

In a distributed application, all objects
need to take checkpoints in order to
form a global checkpoint, which is a

collection of local checkpoints, one for
each member of a group, of objects.
The global checkpoint represents the
state of the entire object group, if and
only if it is consistent. Consistency
among the local checkpoints means
that, after recovery, the reloaded state
of the entire group is one that could
have occurred in the past. This
introduces the problem of having mutually
inconsistent states stored in the
checkpoints. From the theory we learn that
a global checkpoint is consistent if and
only if all pairs of checkpoints are
mutually consistent [4, 5, 8], Inconsistencies

come as a direct consequence of
the message flow between the
objects. They arise whenever certain
temporal relations between local checkpoints

and message transfers occur.
One can always construct situations
where two objects of a distributed
application form the above-mentioned
temporal relation, making their checkpoints

mutually inconsistent. The only
way to prevent the objects from taking

inconsistent checkpoints is to
introduce a control mechanism whose
responsibility is either the avoidance
or the alarming of a possible inconsistency.

To illustrate how inconsistency
can occur, refer to Figure 2: The
horizontal lines represent the history of an
object concerning checkpointing and
messaging, with time running from
left to right. The crosses mark the

point in time when a checkpoint has

been taken. The arrows running from
one horizontal axis to another denote
a message.
A message is termed missing if the
sending of m is recorded in the
sender's checkpoint Q, while it is not
recognized in the recipient's checkpoint

C2 (Fig. 2, left-hand). This kind of
message is not critical, as far as global
state consistency is concerned. A missing

message can be dealt with by
introducing a logging mechanism with
the objects. The objects Oi and 02 are
rolled back to checkpoints Ci and C2,

respectively. The consistency is

preserved by forcing 02 to read from its

log all messages that it had received
after the checkpoint and that are
marked as sent by Oi, including m in

our case.
An orphan message is not recorded as

sent in the sender's checkpoint, but its

acceptance is well recognized in the
recipient's checkpoint (Fig. 2, right-
hand). As almost every distributed
application is of an nondeterministic
nature, we are very uncertain about the
resending of message m'. In particular,
we cannot tell whether the content of
m'will be the same in a second run and
if it would be resent, after all. We
conclude that orphan messages make two
checkpoints useless in their combination;

therefore, they are termed
inconsistent. Using checkpointing and
recovery for fault tolerance in a
distributed system means not to allow
orphan messages to be stored with the
checkpoints. Note that orphan (and
lost) messages have to do with the
problem of consistent checkpointing
alone. A message cannot be classified
missing or orphan by its content or by
some other property but the relations
shown in Figure 2.

If we allowed orphan messages to
occur in the checkpoints, the recovery
procedure would have to find a set of
local checkpoints with no orphan
messages in either pair. This would lead to
a backwards propagating search with
some probability of never finding a

suitable set of checkpoints. This
phenomenon is called the domino effect
[4, 8], As the purpose of distributed
checkpointing and recovery is to save
as much as possible of the application's
history, a coordinator must be
introduced that avoids the domino effect
by preventing messages from becoming

long-term orphans. The solution
lies in the introduction of extra checkpoints

that avoid the production of or-

COMTEC 8/1997 21



RESEARCH & DEVELOPMENT

phans. These would have to be
injected by the coordinator that detects
or anticipates a (potential) orphan
relationship. The coordinator must have
a global view on the distributed
system in orderto take appropriate measures,

like checkpoint injection. There
are basically two approaches to realize
the coordinator:
- Let it take full control over the

application's execution and coordinate
checkpointing as a global event. No

orphan message will ever occur, as

the checkpoints are taken concurrently,

with no system-related
messages passing between the objects
meanwhile.

- Let the coordinator trace the message

flow between the objects.
When an inconsistent situation is

about to be produced, the coordinator

would instruct the affected
objects to take extra checkpoints in
order to keep the global checkpoint
consistent.

In the first approach, checkpoint
instructions can occur at any time, and
the produced set of checkpoints is

guaranteed to be consistent; however,
there is a serious drawback with
coordinated checkpointing, as the entire
distributed application needs to be

stopped during checkpointing, a
situation which is deemed unacceptable in

many cases. The second solution
allows interrupt-free operation of the
application, but is more complex to
realize: Each object requires a logging
mechanism, and the message flow has

to be traced. Yet, it is our preferred
approach to realize the Persistent Object
Group Service (POGS). The POGS

allows the objects to take checkpoints at
their own schedule and forces a few
additional ones in order to avoid
inconsistency.

Fig. 2. Missing and

orphan message.

There exist algorithms that solve
consistency for distributed checkpointing.
They ensure that none of the
checkpoints, those taken on the object's
own schedule as well as those explicitly

introduced by the POGS, will be
inconsistent in the long run. In [5], the
authors present an entire theoretical
framework to describe consistency for
distributed checkpointing. Based on
this framework, Baldoni et al. provide
an algorithm to prevent the forming
of so-called rewinding paths, a

message flow pattern in a distributed
system that is equivalent to having
orphan messages. Rewinding paths are
made impossible by the introduction
of additional checkpoints by the
algorithm. We have used this algorithm to
implement a prototype of the POGS in

our R&D laboratories.

The Persistent Object
Group Service

Message tracing and checkpoint
reporting

We can learn from distributed
checkpointing theory that orphan messages
are detectable, if the relationship
between existing checkpoints and system
messages is known. Thus, the POGS

must be given the opportunity to trace
the entire message flow between the
application objects. More precisely, it
must know the identity of the sending
and the receiving object of a message
and indicate to the receiving object
that it needs to take a checkpoint prior
to processing the message which - if
no checkpoint were taken - would
introduce inconsistency. It is the receiving

object's responsibility to inform
the POGS each time a new message ar¬

rives. It would provide the sender's
identification (object A in Fig. 3) as

well as its own (object B) and ask for
advice about checkpointing (the
request). Based on this information, the
POGS updates state knowledge, while
forecasting an orphan, and
correspondingly replies to the object that it
must or must not take a checkpoint
prior to processing the message (using
the I reply).
Apart from reporting the receipt of a

message, the objects need to notify
the POGS each time they take an
unforced checkpoint, i.e., a checkpoint
that was taken as a result of the
application's progress or any other decision
that does not regard the POGS. This
information is necessary for the POGS to
keep track of the checkpoints stored
by the objects. As the POGS ensures
checkpoint consistency, the application

objects are in theory allowed to
only take checkpoints that were
forced by it; however, programmers
would normally include their own,
orthogonal checkpointing schedule for
the objects in order to save the
application's achievements (after a period
of heavy computing, for instance). But
they may as well do without it. It is

important to mention that the POGS'
coordination task may easily lead to a

situation where a certain object is never
requested to take a checkpoint, simply
because it would not introduce
inconsistency. If only based on the POGS,

such an object might never be check-
pointed. Thus, relying on the POGS

only is a design decision that must be

taken carefully.

Performance degradation

There is no question about the fact
that message tracing leads to a

performance degradation, as every
application message between the objects
induces an extra conversation
between the receiving object and the
POGS. This makes the total number of
system messages twice the number of
application messages (the system being

comprised of application objects
and the POGS). It is the price that we
pay for having consistency control
separated from the objects and to free
programmers from having to implement

the consistency algorithm in the
objects. Note that it is possible to
distribute the checkpointing algorithm
into the objects, hence giving the
POGS the appearance of being obso-

22 COMÏEC 8/1997



RESEARCH & DEVELOPMENT

lete; however, this would mean that
checkpointing is part of the application's

design from the very beginning
and that implementers need to know
about checkpoint consistency
programming. Moreover, recovery coordination

is not covered in checkpoint
consistency algorithms, and a means
to find a (most recent) consistent set of
checkpoints (so-called recovery vector)
would have to be programmed in a

distributed manner. Conversely, the
POGS keeps all relevant information in

one place; therefore, it is able to
orchestrate not only checkpointing but
recovery as well. Furthermore, the
POGS allows programmers to include
fault tolerance measures to applications

even after they have been
designed and programmed. This latter
property was one of the driving forces
when the POGS idea popped up: to
have an independent entity watch
over the consistency of a group of
checkpointed objects and to easily
integrate it as a programming component.

Architecture

The architecture of the POGS is

depicted in Figure 4. Each of the objects
has its own mechanism to log
messages and store checkpoints. The
objects use the POGScheck interface to
notify the arrival of a new message
and to report checkpoints. Another
major task of the POGS is recovery
coordination; thus, it must be able to
issue instructions to the objects to
rollback (using the POGSrecover
interface). The POGSadmin interface is used

to administerthe object group, such as

Fig. 3. Message tracing.

the registration of an object. Having
distinct names for object groups
allows the POGS to control many groups
independently. Regarding the interaction

between the objects and the
POGS, there are a number of responsibilities

that the objects must take:

- indicate membership to a group of
checkpointed objects (registration)

- report every checkpoint taken apart
from those decided by the POGS

- consult and obey the checkpoint
decision each time a message arrives

Checkpointing

Programmers are free to define what
information is relevant to determine
the state of an object without the
functionality of the POGS being
affected. The use of standard storage
mechanisms, like the CORBA Persistent
Object Service (POS), is just one possibility.

As the POGS does not prescribe
the choice of a particular checkpointing

procedure, programmers can create

one that adapts to the application's

needs.
One of the goals of the POGS was to
abstract from the checkpointing of the
individual objects and only serve as the
coordinator of checkpoints. Another
design goal was to specify and implement

a service that would allow
cooperating objects to rely on a third-party
decision about checkpointing and not
care about the algorithm that implements

the decision.

Robustness of the approach

Having a centralized service as the key
component to achieve fault tolerance
raises the obvious question of how
safe the approach is. In the presented
architecture, the POGS appears to be a

single point of failure. Should the
POGS crash, the application objects
would be without guidance of when
to take checkpoints; however, they
would still accomplish the intended
task for which the application was
designed, though without being fault-
tolerant for some period of time. It is

important to note that the inclusion of
the POGS does by no means affect the
normal progress of an application. It is

up to the engineering to include
additional measures that enhance robustness

and availability of the POGS itself
(through local checkpointing of the
POGS or object replication, for in¬

stance). Another option is to enhance
interaction semantics between the
POGS and the application objects, such

that the latter take 'safe' checkpoints
(checkpoints that might be unnecessary

but which are taken to be
completely sure that no inconsistency can
occur) as soon as the POGS is found to
be unavailable, and then report the
checkpointing activities that occurred
during this period of nonguidance to
the POGS, when it has recovered.

Specification

The following is a list of requirements
that has served as a guideline to specify

the POGS:

- Checkpoint coordination. The core
functionality of the POGS is the
coordination of checkpoint and recovery

procedures for a set of objects. It
allows the objects to apply their own
checkpointing schedule.

- Recovery coordination. The POGS
allows any object to initiate the recovery

action. The objects will be giving
guidance in finding the checkpoint
that they need to load for recovery.

- No fault detection. The POGS does

not perform fault detection. The

functionality of the POGS is limited
to checkpointing and recovery
coordination.

- No taking of checkpoints. It is the
responsibility of each application
object to define a suitable checkpointing

procedure.
- Networked service. The POGS must

be specified, using the OMG Interface

Definition Language (IDL).

- User transparency. The existence of
the POGS should be transparent to
the users of a distributed application.

An application user is by no
means involved in the interactions
between the POGS and the objects.
The only observation a user can do is

to notice high availability and
interrupt-free operation of the application.

- Explicit usage. The programmers of a

distributed application use the POGS

explicitly, i.e., they take the responsibility

to include the code into the
objects that integrates the POGS.

In order to describe the interactions at
the boundary between the POGS and
the objects, the POGSadmin, the
POGScheck, and the POGSrecover
interfaces need to be specified.

COMÏEC 8/1997 23



RESEARCH & DEVELOPMENT

ARCHITECTURE

POGSrecover POGSadmin

POGS

POGScheck Fig. 4. POGS

architecture.

interface POGSadmin {

short ContextCreate
(in string context_name);
short ContextDelete
(in string context_name);
short Register (in string
context_name, in string
obj_id,

in string rec_id);
short Deregister
(in string context_name, in
string obj_id);

} ;

The POGSadmin interface supports the
management of object groups called
contexts. A context comprises the
identifiers (or names) of the objects
that belong to a group that is subject
to checkpoint consistency control. The

ContextCreate operation allows to
set up a new context that is then referable

by context_name in all subsequent

communications with the POGS.

Register and Deregister allow an
object to get bound and unbound to a

context, respectively. Being bound to a

context is the precondition for an
object to consult the POGS for checkpoint
decisions. rec_id denotes the
callback interface to be used by the POGS

in case the application has to recover.
It represents the POGSrecover interface

identifier of the object.

interface POGScheck {

short Check (in string
obj_id, in string
sender_id);
void CheckpointNow
(in string obj_id,
in short ckpt_seq_nr);

} ;

The POGScheck interface comprises
the operations Check and
CheckpointNow. Check is used to consult the
POGS upon the arrival of a new message

from another object of the
context. The reply value is interpreted as

the checkpoint decision, which possibly

forces a checkpoint before the
message is processed. Using
CheckpointNow, the object notifies the
POGS of having taken a voluntary
checkpoint, i.e., a checkpoint that has

been taken as a result of the application's

checkpointing schedule.

interface POGSrecover {

short Recover (in short
ckpt_seq_nr);

} ;

POGSrecover is the callback interface
to be used in case the application
needs to rollback. The POGS issues

the checkpoint sequence number
ckpt_seq_nr with the Recover operation

as a parameter to indicate the
appropriate checkpoint to be loaded
for recovery. It is important to note
that this interface has to recover
automatically, if the supporting server
crashed, in order to ensure that
distributed recovery can take place. After
the recovery has completed, it is the
object's responsibility to read from its

message log all missing messages that
correspond to the recovered system
state.

A note on realization

A prototype of the POGS has been
implemented in the laboratories of the
Swiss Telecom R&D, using lona's or-
bix, a CORBA-compliant development

environment available for a

large range of hardware and software
platforms. The implementation of the
prototype has been guided by the
philosophy that the application objects
should as much as possible be isolated
from the checkpointing activity; therefore,

all POGS-related activity is kept
away from the objects by a proxy that
takes care of the communication with
the POGS as well as the message
logging. It is the proxy who controls the
POGSrecover interface. As a

consequence, it must be able to recover the
object, i.e., it needs the appropriate
authorization for the creation and
deletion of the object. The proxy
approach is sketched in Figure 5.

Looking at the implementation, message

logging and caching are no
longer distinct concepts. Each incoming

message is logged. Caching a

message, which is necessary in the course
of consulting the POGS, is equivalent
to logging, but not yet delivering it to
the destination object.

Discussion

The practical problems of applying
checkpointing and recovery
techniques are mostly related to the
requirement that the POGS be a self-contained

open service. It is not sufficient
to regard the POGS as just an oracle

Fig. 5. The proxy
shields the object
from the POGS and

from other objects.

PROXY APPROACH

24 COMTEC 8/1997



RESEARCH & DEVELOPMENT

from which distributed state information

can be obtained: What we want
to do is shield the programmer of a

distributed application from too much
detail that comes from using
checkpointing and recovery as a failure
transparency mechanism.
One option to achieve this ambitious
goal is to provide infrastructure
objects that are used to shield the
application objects from lower level coordination

activities. The proxy approach
has shown to be a promising solution,
but there should be no need for
programmers to implement a proxy on
their own. Rather, the proxy - or
infrastructure object - should be an
integral part of the service (the POGS in

our case). This leads us to the question
whether it is desirable to have a service

that is capable of delivering the
required infrastructure object to the
users of that service. We believe that
Java has already answered that
question with YES. The possibility to
download software components from
the service provider is a valuable
approach to the proxy problem. A
downloadable proxy for the POGS might
then offer the POGSrecover interface
and connect to the application object.
It would coordinate with the POGS

without the object taking notice. We
believe that this is a feasible approach,
and we are willing to investigate
further in this direction.

The relation between the POGS and
existing CORBAservices still needs to
be studied. Certainly, the POS (Persistent

Object Service) is a suitable candidate

to assist checkpointing. The POS

would also support the storage of a

checkpoint on a different location
than the object. The separation of the
checkpoint data from the object
certainly increases the checkpoint's
availability in case of a failure of the object.
Another CORBAservice to consider for
integration with the POGS is External-
ization, which offers the means to
externalize and internalize the state of
an object.

j-y Marc Zweiacker ist nach Ab-

f schluss der Studienzeit an der

v» O* HTL Burgdorf (Elektrotechnik)

ctf- i und der ETH Zürich (Informatik)
im Frühjahr 1991 der Gruppe
«Netzwerke und Kommunikation»

der Direktion Forschung und Entwicklung

beigetreten. Sein Spezialgebiet sind die verteilten

Systeme in der Normierung wie auch in der

praktischen Handhabung sowie im Management.

Von 1993 bis 1994 hat er aktiv an der

Definition des ITU-T-Standards X900 «Reference

Model for Open Distributed Prosessing» mitgewirkt.

Seit 1996 befasst sich Marc Zweiacker

vornehmlich mit Fragen der Fehlertoleranz von
verteilten Systemen und speziell von CORBA-ba-

sierten Applikationen.

References

[1] ISO/IEC Draft International Standard 10746-1 / ITU-T Recommendation X.901,

Reference Model of Open Distributed Processing, Part 1: Overview, 1995.

[2] ISO/IEC International Standard 10746-3 / ITU-T Recommendation X.903,

Reference Model of Open Distributed Processing, Part 3: Architecture, 1995.

[3] The Common Object Request Broker: Architecture and Specification, The Object

Management Group, Revision 2.0, July 1995.

[4] Baldoni R„ Helary J. M., Mostefaoui A., Raynal M„ On Modeling Consistent Checkpoints

and the Domino Effect in Distributed Systems. IRISA Publication interne No. 933,

Institut National de Recherche en Informatique, May 1995.

[5] Baldoni R., Helary J. M„ Mostefaoui A., Raynal M„ Consistent Checkpointing in

Message Passing Distributed Systems. IRISA Publication interne No. 925, Institut
National de Recherche en Informatique, May 1995.

[6] Chandi K. M„ Lamport L„ Distributed snapshots: determining global states of
distributed systems. ACM TOCS, 3 (1):63-75, July 1985.

[7] Johnson D. B„ Zwaenepoel W„ Recovery in Distributed Systems using Optimistic

Message Logging and Checkpointing. In Proceedings of seventh ACM Symposium on

Principles of Distributed Computing, ACM, August 1988.

[8] Koo R„ Toueg S., Checkpointing and Rollback-Recovery for Distributed Systems.

IEEE Transactions on Software Eng., Vol. SE-13, No. 1, January 1987.

The message logging approach for
consistent distributed checkpointing
somewhat contradicts the rules given
in the checkpointing and recovery
function of the RM-ODP. In the ODP
standards, coordinated checkpointing
has been implicitly regarded as the
only way to achieve consistent global
states [2]. We believe that the experiences

with the POGS will lead to a

deeper understanding of the
checkpointing and recovery function. In fact
we are convinced that, through this
project, the RM-ODP standards text on
the checkpointing and recovery function

can be improved. S

Zusammenfassung

Fehlertoleranz
mittels Checkpointing
und Recovery

Fehlertoleranz ist ein wichtiger Aspekt im

Zusammenhang mit verteilten Diensten

und Anwendungen. Diese Tatsache

kommt unter anderem im ISO/ITU-Refe-

renzmodell für ODP zum Ausdruck, wo
die sogenannte Fehlertransparenz
definiert worden ist. Der hier vorgestellte
Persistent Object Group Service (POGS)

unterstützt die Fehlertoleranz mittels

Checkpointing und Recovery, indem er

die Konsistenz von Checkpoints in einem

verteilten System sicherstellt. Die

Objekte einer Applikation benutzen diesen

Dienst, um auf mögliche Inkonsistenzen

aufmerksam zu werden und die daraus

notwendige Konsequenz zu ziehen, das

heisst, um einen zusätzlichen, durch die

Applikation nicht unbedingt vorgegebenen

Checkpoint durchzuführen. Dieser

Ansatz birgt den Vorteil, dass die

Konsistenzsicherung für verteilte Checkpoints

von den Applikationsobjekten losgelöst
wird. Damit wird erreicht, dass Fehlertoleranz

als modularer Dienst zu einem

späten Zeitpunkt der Applikationsentwicklung

integriert werden kann. Ein

POGS-Prototyp wurde mittels CORBA

realisiert.

COMTEC 8/1997 25


	Fault-tolerant Cobra : using checkpoint and recovery

