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On a class of conformai metrics, with application to
differential geometry in the large

by Robert Finn

To Charles Loewner, on the occasion of his seventieth birthday,
and in token of my esteem.

1. Introductory Remarks

One of the most striking justifications for the concept of a complète, open
two-dimensional surface, as introduced by Hopf and Rinow [1], is the theorem of
Cohn-Vossen [2], that if S is such a surface, and if the Gaussian curvature K
is absolutely integrable over S, then

C<2tzX (1)

where C is the curvatura intégra, or total curvature of S, and % is the Euler
Characteristic1'2). The theorem is best illustrated by some simple examples:

i) S is an infinité cylinder. Then C 0, % 0, so that equality is attained.
ii) S is a semi-infinite cylinder, closed at one end by a spherical cap. Then

C 2tz, x 1. Again equality is attained.
iii) S is a circular cône of vertex half-angle oc. Then C 2tt(1 —sina),

X 1. Strict inequality prevails.
In the last example, the loss of equality is not caused by the singularity at the

vertex, as C and % remain unchanged if S is smoothed near its vertex. In fact,
a little reflection shows that equality occurs only under spécial conditions, while
in gênerai there is a wide divergence between the two sides of Cohn-Vossen's
inequality.

One of the objects of this paper is to characterize, in terms of elementary
intrinsic geometrical quantities on S, the différence between the two sides of
(1). To fix the ideas, consider example iii) above. Let fi (h) be the length of a
circular section at distance h from the vertex along the axis, and let tyL(H ; h)
be the surface area on (3 bounded between two such sections, H <h. One

computes fi (h) 2nh tan oc, % (H ; h) n (h2 — H2) sec oct&noc.

x) A surface (5 is complète in the sensé of Hopf-Rinow if every divergent path on S has infinité
length. A path on S is said to be divergent if it is the topological image p p (t) of a half-open
interval 0 < t < 1, and if p J) lies outside any given compact set on S for ail t suffieiently close
to 1.

2) Cohn-Vossbn's theorem was later improved and clarified in important ways by Htjber [3].
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Thus, A <|r/L, ,v sin<% + o(l), asfe->oo. Hence,settingv lim

we obtain C 2tz(1 — sin a), # 1, v sin oc, so that

in this case.
Another example is obtained by rotating about an axis a circular arc of

radius 1 whose center lies at distance 2 from the axis. If the arc is allowed to
turn through the angles ocl9 <x2 on each side of a perpendicular to the axis from
the center, and is then continued indefinitely by straight Unes, the total
curvature of the resulting surface of révolution is easily computed. If r
dénotes distance to the axis and # is the angle through which the arc has

turned, then d% 2nr dû, K — -^ï- Kd% — 2tz cos & d&, hence

C —2jr(sin&:1 + sin#2). Computing the limits vl9 v2 on each side, we
hâve as before, vx sin ocl9 v2 sin oc2. Hère % 0, hence we find the relation

Zvi). (2)

In § 2 I shall show that a relation of the form (2) holds for any abstract
surface of finite connectivity on which the metric has a property of rotational
symmetry near each idéal boundary component, and for which C exists

(finite or infinité) in the sensé of a principal value. I had hoped, by suitably
defining the {^}, to obtain (2) without a symmetry requirement, for the
surfaces treated by Cohn-Vossen and Huber in their studies leading to
(1). I am at présent able to do so only under the presumably superfluous
hypothesis that the région K > 0 has compact support on S. There is,

however, an interesting intermediate case which contains many of the essential

features of the problem. This is the case of normal metrics, which are conformai
metrics ds eu{z) \dz\, such that when u (z) is represented as the potential of a

mass distribution, the additive harmonie function assumes a particular
degenerate form. Normal metrics are defined in § 3. Their significance for the

problem at hand is illustrated in § 4, in which the theory is worked out comple-

tely in the greatly simplified case for which the measure has compact support.
In § 5 inequalities from below for length and area are derived, which hold for

an arbitrary conformai metric over a plane région. They are very simple and

are based on known techniques, but - so far as I could détermine - they are not
available in the literature. Some of this material is essential for subséquent

sections, in which normal metrics are studied under the single assumption that
the absolute variation of the measure is finite. It is necessary to extend the
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définition of the {^} to the case of such a metric defined in a neighborhood of
an isolated boundary point p. This is done by enclosing p in concentric circum-
ferences F, y. £ (y) is then taken to be the length, in the metric, of y, and
SH(F;y) the area, in the metric, of the enclosed annular région. With this
définition, asymptotic formulas for Q(y), ^(F; y) are derived, and the relation
(2) is then obtained for this case in the full generality in which (1) was derived
in the papers of Cohn-Vossen and of Huber (Theorem 12).

When ^ 1, (2) exhibits a suggestive formai similarity with an isoperi-
metric inequality, due to Hfber [4], This is discussed in § 6, foliowing the
statement of Theorem 12.

There is also a connection with the theory of minimal surfaces. R. Osserman
has shown [7, p. 358] that if S is a complète minimal surface of total curvature

k
C and Euler Characteristic #, then3) C 2tz\x—^{^i—1)L where rjj

i
is the order of the pôle of a certain analytic differential œ at the conformai
image pt (necessarily a point) of a boundary component, and k is the number
of such components. By proving that rjf > 2, Osserman obtained the relation
C < 27t (x — k). The results of the présent paper yield the géométrie inter-

£(v)
pretation, ^ 1 + lim wi-p.—r > f°r tne quantities {r},) of Osserman.

General estimâtes on length and stretching ratio near the {p^} are given under
varying assumptions. They will be found in §§ 6, 7 and 8. A particular
conséquence is the démonstration that, in a certain loose sensé, the {y^} are approxi-
mate géodésie circles in the metric. This resuit permits an a posteriori
interprétation of (2) in terms of the explicitly given geometry. It seems, however,
remarkable that the {y,}, which evidently play a distinguished rôle in the
metric theory of complète surfaces, are themselves completely characterized
by the conformai geometry, in the détermination of which the metric properties
are of subsidiary importance.

The estimâtes of §§ 6, 7, 8 show also that for complète metrics of the type
considered, the asymptotic growth of the length ratio is - at least in an average
sensé - characterized completely by the quantities {v^ (Theorem 11). Under a
hypothesis on the rate of decay of curvature at a boundary component, this
characterization can be made considerably more précise (Theorem 14), and
under assumptions on the asymptotic sign of the curvature, pointwise bounds
from either side can be obtained (Theorem 16). However, local estimâtes both
above and below cannot in gênerai be expected under assumptions of this sort,
as is pointed out in § 8.

3) To avoid confusion in notation, I hâve replaced Osserman's symbol Vj by tj3-.
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In § 9 I apply the method to gênerai abstract surfaces of fînite connectivity,
which are complète and hâve finite curvatura intégra. The définition and essen-
tial properties of such surfaces are only briefly indicated; for a more extended
discussion, cf. [3] and the références cited in that work. For purposes ofgrasping
the essential content of the resuit, it suffices to envisage a surface embedded in
3-space, which is of finite connectivity and whdch may hâve a number of
branches extending to infinity. I reduce the study of such surfaces to previous
considérations by showing that a neighborhood of infinity on each branch can
be mapped conformally to a plane domain so as to yield a normal metric at the
image of the idéal boundary. I am unfortunately able to do this only under an
additional supposition, as indicated above, and in this sensé my resuit cannot
yet be considered to be established in its natural context.

As corollaries of the method, independent démonstrations are obtained, in the
cases considered hère, of certain of Htjber's results, notably his Theorems 1

and 15 in [3]. Htjber's results hold, however, also in a more gênerai situation.
It seems likely that the quantities {vs} are extremal in the sensé that the

corresponding inferior limit taken for any other System of curves surrounding
fpi would be not less than *>,.. I hâve, however, not proved this. There are also

evidently connections with extremal length, which should be investigated.
In this paper I hâve deliberately avoided dwelling on questions of local

regularity, and I hâve chosen to assume at each step that ail functions which
enter hâve the smoothness properties indicated in the context. AU results hold,
however, under the conditions assumed by Huber [3, p. 16], and an inspection
of the text will convince the reader that there is no danger in applying the
results to certain more gênerai situations, e.g., to polyhedral surfaces. Appar-
ently this does not begin to exhaust the possibilities, as is indicated by the
récent profound investigations of Resetnjak (see, e.g., [5]) on the existence

of isothermal parameters in a gênerai case.

My thanks are due many of my colleagues for informai conversations which
hâve contributed much to my understanding in a subject with which I was

initially unfamiliar. I am indebted especially to Professor P. Malliavin for
a suggestion which has led to a significant improvement of some of my original
results.

2. Rotationally Symmetric Metrics

Any function u(x,y) defined over a région © in the (x, y) plane détermines

a conformai metric
d d* d \d\K (3)

If © is of finite connectivity, one may always suppose that © lies interior to a
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circumference Eo about the origin (which might consist of the single point at
infinity) and that © is bounded by Eo and by n other circumferenees (or points)
Ex, En. The metric (3) will be said to be rotationally symmetric if there is a
neighborhood A$ of each Ej such that in a System of polar coordinates q # with
origin at the center of Ejy u(x, y) is independent of $ in Ajt

For points near the E^, it is easy to compute the various geometrical quan-
tities associated with a rotationally symmetric metric. For the curvatura intégra
of the annulus bounded by circular arcs Fo, y0 of radii r, q, which lie in Ao
and are concentric with 27O, one has

Q Q

C(r0, y0) — 2tï $ Au • Qdq —2n J (QUe)Qdg — 2n(QUQ(Q) — ruQ(r))
r r

Let us suppose that C(F0, y0) remains bounded from below as q tends to the
radius q0 of 27O. Thus, there holds lim quq &0 =£ + °°- It foliows that if
q0 z£oo9 then u < M <oo near 27O, so that J eudg <oo. A similar dis-

r
cussion applies to each of the other boundary components E,, as one sees by
transforming by inversion with respect to the center of E}. We conclude :

Theorem 1. Let u(x,y) define a rotationally symmetric complète metric (3)
in a région © bounded by a finite number of points or circular arcs {E3}. Let {y}}
be a System of concentric arcs tending to the {27J, and let ©y be the correspondis
subregion determined by the {yj. Suppose that the curvatura intégra 0(©y)

CY> C > — oo as yj->Ej9j O9...9n. Then the metric (3) is conformally
parabolic, so that each E3 is a single point*).

Let us now discard the assumption &0 ^ + oo, and assume instead that
lim quq — 0O exists and that the metric is complète and conformally parabolic.

In particular, Eo as defined above is the point at infinity. One sees immediately
that if 0O= —oo, the metric could not be complète. If &0 ^ dz°°> then
eu Aq®0*0^ some constant A. Hence, completeness of the metric implies
@o > — 1. Repeating this discussion for each boundary point, we find &} > 1

if j ^é 0, and we are led to the Cohn-Vossen relation, C < %n%, where % is the

Eulbr Characteristic of ©.
The length of the circumference y0 in the given metric is fio(^)

The area of the annular région between Fo and y0 is

4) cf. Hubeb [3], Theorem 15, which this resuit overlaps. The essential character of the resuit is
really local, and shows that each boundary component at which the metric is complète must
degenerate to a point.
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We hâve, if <P0 ^ ±00, A £2 4w(1 + <2>o + o(1))

Since -7— % ^ 0, wemay write

(4)

from which follows, since 0O > — 1, that whenever 3ï0->co, in particular
whenever 0O>—1, the limit vo= lim (fio/4:zz9Io) exists, and vo~ (l + 0O).

On the other hand, if 0O — 1 and %)(r] q)-> 51* ^ oo, (4) implies that

hence fi* 0, the limit v0 exists also in this case, and v0 (1 + ^o) — 0.

Similarly one obtains the limit vo &o — 1 for each other boundary point
E3. Referring back to the détermination of the curvatura intégra in terms of the
quantities {0^ and noting that if one of the {03} is infinité, then G —oo,
and we find the following resuit :

Theorem 2. Let u{x,y) define a rotationally symmetric complète metric (3)
in a région © bounded by a finite number of points. Let F^, y3 be circular arcs
centered at the boundary point S3, let%3 be the area of the corresponding annular
région and let fi, be the length of y3 in the given metric Let ©y be the subregion
defined by the {y3} and C(©y) the corresponding curvatura intégra. Suppose

fi2
C((5y)-> C (finite or infinité) as each y,-> Ei. Then v3 lim L. exists for

n i^each j, and C 2n(%—Svf) in the sensé that 2Vj=oo whenever C=—oo.
oo

Remark. The signifieance of the hypothesis C((&y) -> C is made évident by
considering a surface obtained by revolving a curve x x(z) about the z~

axis in (x, y, z) space. By introducing small irregularities in the function x(z),
the area of any part of the surface can be made arbitrarily large, without
appreciably changing the circumference of any section. In this way, any such

surface can be modified so that vj 0, each j, while C(©y) will remain
bounded without approaching a limit.

In the above resuit, the assumed completeness and parabolicity of the metric

were used only to show that 0O > — 1 and 0j > l, j ^éz 0, from which
followed the formulae for the {v3}. It is possible by the same methods to give an

analogous resuit under much more gênerai conditions.
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Theorem 3. Let u(x, y), ©, {%}, {£,}, ®y, Gy be as in Theorem 1. Suppose
1 dfi2

CV->C (finite or infinité) as ail y -> Z*. Then rj, —— lim J exists for

each j, and C 2n(x —Zrjj)-
o

Hère there is no restriction on the sign or finiteness of C or of the {rj^. It
should be noted, however, that rj3 > 0 whenever %3 ->oo.

It is instructive to compute the géodésie curvatureiofthe radial and circumfer-
ential lines in a complète rotationally symmetric metric for which Cy-> C ^ oo as

ail yy -> £j. Evidently, Je 0 on each radial Une fî const., near Z3. From the
relation

k =e

where ke is the Euclidean curvature in the z-plane (see, e.g., [3, p. 13]), we find
for the géodésie curvature of y0,

with a similar resuit for each y}. Hence:

Theorem 4. In a rotationally symmetric metric, ail radial lines are geodesics

near the {Z}}. // the metric is complète, and if Cy -> C ^ ^L °° &s y}->Z3y then

near any boundary point for which v3^0, the circumferential lines behave

asymptotically as geodesics.

Remark 1. Whenever C<2ti%, atleastoneofthe {^} must difFer from zéro.

Remark 2. Also in the case v} 0 it is possible to give conditions ensuring
that the {y^} are asymptotically géodésie; however, the requirement v3- ^ 0

cannot simply be eliminated, as one sees from the example of the complète
conformai metric

^ fl)fog(\z\ ' fOT

The applications of the above results to surface theory are immédiate, as any
surface of révolution5) can be mapped conformally to the z-plane so as to yield

5) This example is chosen in the interest of simplicity. It would be possible by thèse methods
to obtain an analogous resuit for any abstract surface which can be realized by a surface having a
finite number of idéal boundary components, near each of which a rotationally symmetric metric
is preseribed (cf. the considérations in § 8).
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a rotationally symmetric metric. Consider such a surface S: r /(£),
r2 £2 -{- rj2, defined in the interval —oo<^41<£<.42<oo, and such
that /(£) ^ 0 in the open interval Ax < Ç < A2. On any such surface one has
either % 1 or % 0. For the curvatura intégra C(£l5 £2) of the part of S
for which Ci < £ < £2» there holds — 2rc < (7 ^ 4jz. Hence, by Theorem 1,

every complète surface of révolution is conformally parabolie.
The hypothesis of completeness is evidently verified in the simply-eonnected

case (x 1) ifA2 00, and in the doubly-eonnected case (% 0) if Ax — 00,

A, +00.
In the mapping to a rotationally symmetric metric, the circles £ const.

correspond to the circles q const. The length of such a circle is £(£)

2^/(£), and the area between £0 and £ is $(£) 2?r J fV\ +f'*\dÇ\. By
Co

Theorem 2, if Q is simply connectée and complète, and if C(£) -» C as £ -> A2,
£2

lim ——^=- exists, and C 2n(l — v). If Q is doubly connected and

complète, and if C(£1? £2)->C as £1? £2->^4lJ^l2? then the corresponding
limits vx, v2 exist, and C — 2n (vx + ^2). jBî/ Theorem 4, i/ v^^O (j 1 or 2),
£Aen ^6 corresponding level curves £ const. are asymptotically géodésie. This
will be the case, in particular, if a cône of non-zero vertex angle can be situated

interior to S.
One may also consider a pièce 6b of S defined by inequalities

At< Bx < £ < B2<A2. If /(£) is smooth, Qb will not be complète, however

dQ2
r}i= lim JCïr will exist at Bx, 2?2, and there will hold C{Qb) — 2n(r]1~{- r\2)

j
(cf. Theorem 3).

It should be emphasized that the essential features of ail the above calcu-
lations are local in character; in particular the asymptotic estimâtes for length
and area (and hence the conséquences of completeness) dépend only on be-

havior of the metric near an isolated boundary component. Thèse local esti-
n

mates are related by the formula C 2n{% —^v§), which requires for its
0

vérification only that the various neighborhoods be joined together smoothly
in the given metric.

3. Normal Metrics

Let © be a région consisting of the (x, y) plane with n + 1 points p0, pn

deleted. It will be convenient to assume that p0 point at infinity. A function
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u(x, y) defined over © détermines a conformai metric ds2 e2u(dx2 -f- dy2) in
©. In what foliows I shall assume that the positive and négative total curvatures
associated with u(x, y) are individually finite, that is,

T $$\Au\dxdy <oo.

In this case, u(x,y) can be represented as the potential of a mass distribution
over © with density Au, plus a harmonie function h(x, y).

In any conformai transformation which carries © onto a domain of the same

type, the law of transformation of u(x, y) will be determined by the requirement
of invariance for ds2, Thus, after a transformation z /(£), the new function
û(i, 7}) is given by the relation u u -f log | /' (£) |, that is, u is changed by
an additive harmonie function. Since the only such transformations which
leave p0 invariant are the linear transformations, it is clear that u can be

changed at most by an additive constant, in any transformation which leaves
invariant the intrinsic geometry and the conformai character of the metric.

A conformai metric defined over © by u(x, y) will be called normal whenever
the harmonie function h(x, y) has the form6)

n

h(x, y) E pi log \z — pj\ const.

This définition is evidently invariant with respect to the transformations
considered. To make it précise, I shall assume given a measure fi{E) defined
over ©, with the property that7) T j$ \d/Li\ <oo. The conformai metric

ds eu | dz | defined over © will be said to be a normal metric whenever

u(z) JJlog
n

+ Zp, log | z — pj | + const. (6)

Hère © consists of the complex 2:-plane with n -f- 1 points p0 oo, pl9 pn
deleted.

n

Except in the particular case ju -f- Zpi — 1, ju measure of ©, it is
î

possible to remove the constant from (6) by an admissible transformation. In
any event, it is of no importance for any of the considérations of this paper, and in
the interest of simplicity I shall neglect it in ail that follows,

8) If none of the deleted points is at infinity, it would be necessary to give a more elaborate
définition. This is because the law of transformation of u(x, y) is based on the metric properties
associated with the manifold described over (5, for which the point at infinity is distinguished.

7) The notation is to be interpreted to mean that the absolute variation of the measure is
finite.
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For any such metric one has for the total curvature, C — 2ti/li ; the Euler
Characteristic of © is % 1 — n.

It will be important to hâve also a local définition for normality. A metric
eu | dz | defined in a neighborhood D of p0 =*= oo will be said to be normal at p0 if, in
D, u(x, y) admits the représentation

z- dfir + /? log | z | + h (z) (7)
C

where h(z) is harmonie in D and at infinity. This définition is clearly invariant
with respect to transformations which leave the point at infinity unchanged
(cf. footnote 6).

A metric is said to be normal at a finite point if, after transforming the point
to oo, the metric is normal at oo. The définition is in this case formally similar
to (7).

For consistency, it is necessary to know that a normal metric over a région ©
of the type described above is normal at each of the points {p}}. This is seen by

transforming thèse points in turn to infinity observing the transformation law

u u + log -jy and noting that the form of the représentation is then

normal at infinity in the new coordinates.
Conversely, if a metric defined over 05 is normal at each of the {p3}, then it is

normal in ©. For, without changing the form of the représentation, it can be

arranged that h(z) has single valued conjugate. Then on transforming each

point in turn to infinity, one sees that h (z) (taken from any given configuration)
is harmonie at each of the {p^}. Hence h(z) is harmonie on the closed Riemann
sphère and therefore constant.

4. Measures with Compact Support

A considérable simplification arises whenever the measure /u (E) has compact
support in ©, that is, whenever ju (E) =0 ina neighborhood of each p}, and I
shall consider this case first, in order to clarify the idea. Let F3, yi, ©?, 2j, %
be as in Theorem 2. We then hâve

Theorem 5. Let u(z) détermine a normal metric ds eu\dz\ in the form (6),

corresponding to a measure jj, (E) having compact support in ©. // the metric is

complète, then fi3 < — 1, ; 1, n, and ju ^ 1 — n %. For each
n

j 0, n, the quantity v3 lim j^/4jr9I, exista, and v0 1 + t* +
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while Vj — (1 + fa) if j =£ 0. There holds in this case

C=2n{%-Zvj) (8)
o

and the curves y3 are asymptotically géodésie in the given metric.
The proof requires little more than formai computation. Near pi, j ^ 0,

there holds eu{z) d^ifii -f- o(qPj), ai ^ 0, so that completeness implies
n ,702

ft < — 1. Similarly, p + I fa > - 1. Also, -^ ±tz (1 + pt) + o (1)

£2
near pi9 so that whenever 91,-> oo there holds lim ^ — (1 -f |8i).

If 31
; -> 51 t^ oo, the above relation shows that £, tends to a finite limit fi.

Sinee

£2
it foliows that fi 0, hence also in this case, lim L, — (1 + fa) 0.

4^<
The point 2?o °° is discussed similarly. The resuit (8) is now immédiate, and
the asymptotic property of the {y^} foliows directly from (5).

Note that under the hypothèses of the theorem, the curves y3 are asymptotically

géodésie without further assumption (cf. the remark under Theorem 4).
Note also that the {fa} are precisely the fluxes at the boundary points,

du dif

5. Inequalities for Length and Area near a Boundary Component

I shall dérive hère estimâtes of length and area from below, which are valid
for an arbitrary conformai metric in a neighborhood ®0 of a boundary component
^o- We may suppose ZQ to be a circumference or a point. It will be convenient
to place 2*0 at infinity, so that ©0 is bounded in part by the interior of a circumference,

or by the point at infinity. Let FQ be a concentric circumference of
radius R, which together with 27O bounds a région lying entirely in ©0, and let
?o be a concentric circumference of radius r > R. Let fio(^) be the length of y0
in the given metric, and dénote by %(R; r) the area corresponding to the
annular région Ao bounded by Fo and y0. Let eu{z) dénote the local length ratio

in the mapping, and set u0 _ <f euis)ds. Set wQ -%— (h -J^ ds (exte-
LTijx £Q Ztz Jr on
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rior directed normal), and let ju(R; r) -^— Jf âudxdy. (Then —2nju(R;r)
is the curvatura intégra over zl0.) °

Lemma 6. Under the above hypothèses, there holds

r

&o(r) ^ 27ien°r exp / -^ * £» «

«o(lZ;r) > 2jre2^Jgexp (2 J ^(i?;^ + ^ jTUg,

Equality holds if and only if u (z) is a function only of r in Ao.

Proof. We hâve

; r) §jAu dxdy (fi^
hence 2^r(/i + Ç'o) r-x— § ud& and letting r vary in this inequality, there
foUows dr ro

J ' 2"'. (9)

§ log euds — u0 <> log-^r— § euds —u0

in conséquence of the inequality between arithmetic and géométrie means.
From this, the first inequality foUows.

The second relation is proved similarly. In fact, we write

p(^T)+yb(|Tsa 1
<fa_

1
<fc_

J x 4jr^ Znq
R

Thus,
Q

^ exp
1 f MR;r) + <p0

^ __\J x J 27tg j 2tzq dq
R

from which the resuit follows on a further intégration.
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Theorem 7. Suppose 27O consisté of the single point pQ—oo. Let C(R;r) be

the total curvature in Ao, and suppose C (R ; r) -> Co ^ + oo as r -> oo. //
0O > — 1, or if 0O — 1 and C(R;r) <; Co for sufficiently large r, then the

area assodated with the metric (3) exterior to y0 will be infinité.

Proof. Observe that a (R ; r) + œ0 —— (J) —— dr-> &0 as r -> cx>. Hence,In ^ on
YO

since C(R;r) — 27i/li(R; r), one has by the hypothèses and by Lemma 6,

^-1^-^oo, Q.E.D.

Remark 1. If the metric is complète at 27O, then i70 is a single point and
$o ^ — 1 • See Huber [3], Theorems 1 and 15. For the cases considered in
this paper, independent démonstrations of thèse results will be given in later
sections.

Remark 2. The hypothesis C(R; r) < Co is satisfied in particular if the
région of négative curvature has compact support near £0. Compare Huber
[3], Theorem 14.

Remark 3. There exist complète metrics with finite area, which satisfy ail
the above hypothèses except the assumption C(R;r) <; Co. An example is the

conformai metric ds „ *—,. rtt over the z-plane.
(|z| + l)log(|z|+2)

6. Normal Metrics; General Case

Consider again a metric ds2 e2u (dx2 + dy2) defined by a relation

1 —
z n

1

where (5 is the (x, y) plane with n + 1 points pl9 pn, p0 oo deleted, and
$$\djiiç\ T < oo. No further assumption will be made, but one may already

conclude that the quantities 0t lim -^— (T) -^— ds (outer directed normal)

Yj
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exist and are finite. Let Q} (r), as above, be the length of y3 in the given metric
and 91, (B ; r) the area of the annular région Ai between y0 and a fixed circum-
ference Fi centered at pi. One may always assume that the {F}}, and hence also
the {y3}, are non-intersecting.

The first results hâve a local character and dépend only on the behavior of
the metric near one of the boundary points, which may be chosen to be p0 oo.
Accordingly I shall assume at first only that the metric is normal at p0, so that
we may write

z
+h(z) (11)

where Do is a neighborhood of infinity, and h (z) is harmonie at infînity. Again

set ^ —— f eu{z)ds, and define C(R;r), /ll(R; r) as above. Let Q(R;r)

— <Po is assumed that7)

Do

Note that Q(R;r) [&0 + o(l)] logr, asr->oo.

Theorem 8. For a conformai metric ds2 e2u\dz\2 determined by (11) and

satisfying (12), there holds as r->oo,

2o(r)

Also, for B, r->oo, there holds

(13)

(14)

Note that if the area is infinité at pQ, it is unnecessary to let B-^oo in (14).

Proof. Let \z\ r and let Dr be the intersection of Do with a disk of
radius r about the origin. Let (£r be the exterior of Dr and set

where
u(z) u1(z) + u2(z)

Dr/2

\z\ + h(z)

z —
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ji 1

log

1

z

z —

f

-14,

¦:

cl

log

<?Mog

z

c

1

— log

1
1

1

yî"/2 —

Z

-1
l

log~
r

md

1

l _ç

where 0 < rj < \. In the last term on the right, the integrand is bounded,
hence for a suitable constant A,

'ilog
1

1 —

If we choose tj r\{r) tending to zéro but such that ^r->oo, we see that

log — | djUç | o 1) as r -> oo. Thus, ux (z) has the form
V/2 1

C

(16)

Also, since h (z) is harmonie at infinity, h(z) h(oo) +
circumference yo(r) about the origin, there holds

-1). Hence, for a

2nr | O(s) — u2(z)]ds

1

(17)

Consider now the intégral Iv (f) =~— f log |« — f I \dz\. If If I > r, then

/yo(f) is the mean value of a function of z which is harmonie in Dr, hence

equals the value of the function at z 0, that is, if |f | > r then iyo(f)
log |f |. If |f | < r, then Iyo (f) is a harmonie function of f in Dr which by

symmetry is constant on any concentric interior circumference. Hence
Iyo ~ const. for |f | < r. But /yo(O) log r, hence this is its value through-

out the interior of y0. We conclude that if | f | > — then

°_^log r — log 2
and hence, in particular,

log ICI

2nr
§ u2{z)ds o(l) as r-+oo (18)

271

Finally, consider J [eW2(2) — l]dê for \z\ r and # argz. Let oc (M)
o

e the measure of the set Em of ê on which | u2 (z) \ > M. Then
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where |/log

i \u2(z)\dê <J H(Ç)\dpc\ (19)
EM «r/a

'-f
For fixed |f| > —and z on iF^ and outside the circle \z — Ç\ £, the

integrand in H(Ç) is uniformly bounded. But for z inside this circle, the inte-
grand increases in magnitude as \z — f| decreases. Hence H(Ç) is maximized
when the part of Em interior to the circle is an interval with its midpoint at
arg f. For this configuration we compute H(Ç) <A(l + I logoc(M)\)oc(M)
for some constant A, and hence from (19), M < (1 + | logoc(M)\)e(r) where

e(r)->0 as r->oo. We conclude oc (M) < Ae~~Mle(r) for a suitable -4. But

/|eMa(2) — l\dê ^ J |eM — l|d«(Jf)+ J |e"M — l|d«(Jf)
0 Jf>0 M>0

from which there follows easily

In

j |eW2(2) —l|d^ o(l) (20)
0

as r->oo.
We are now prepared to estimate 20(r). We hâve by (17) and (18)

log*e
Also, fio(r) §euds fe*—da + §eu-"*(ett* — l)tfo |e"-U!rf5e0(1) by (15),

(16) and (20). Keaœ—^juda log-JL £„(»•) + o(l).
Referring back to (9), we find immediately the stated relation (13).

To prove (14), observe that the method of proof of (20) yields also

Thus, as above,

§uds log-J—§ e^ds + o(l)2nr

from which the resuit follows again from (9) by an intégration.
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Theorem 9. Suppose &0> — 1. Then

(22)

as r->oo.

Proof. By Theorem 7, the area associated with the metrie is infinité at pQ.
Henee by Theorem 8,

for any fixed R. We hâve

where £(^)->0 as £->oo. Again using the fact that the area is infinité at
Po> we find

(23)

and from this the resuit follows.

Theorem 10. Suppose &Q > — 1. Then for any fixed sufficiently large R
there holds

The assertion implies, in particular, that the indicated limit exists.

Proof. If 0O > — 1, the resuit is immédiate from Theorems 8 and 9. If
0O — i and the area is infinité at p0, the resuit may still be obtained from
(23). Suppose Iim9to(l?; r) 7^00. Since the integrand in (23) is positive, the

r->oo r
intégral is increasing in r, henee Km J Qe2QiR;Q)dg exists and is finite. There
holds r -*00 R

—|— f (X —[— s(q)) Qe2Q(R>e)dQ (24)

2 CMH vol. 40
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where e(^)->0 as @->oo. By the above remarks, both intégrais in (24) tend
to finite limits as r->co. We conclude therefore from (24) that r2e2QiR;r)

tends to a finite limit. Hence, by Theorem 8, fio(r)-> fiÔ* ^ oo as r->oo.
Again using Theorem 8, one sees that

Sinee liin$lo(i?; r) <oo, there must hold fi* 0, and from this the resuit
r~+co

follows.

Theorem 11. Let eu{z)\dz\ be a metric (3) wkich is normal at p0 oo

which satisfies (12). TAew /or any à > 0 fere AoZds asymptotically for the length

L(r) of the image of a radial segment of length r from the origin in the z-plane,

ri+*«-a< L^ < ri+tf0-f-8 + const# (25)

Proof. We follow, essentially, the proof of Theorem 8. Using the décomposition

(15), we find again

whence, choosing Do to be the exterior of a circumference Fo (R),

ux(z) fA(R\ r) log r + o (log r). (26)
Thus

^ §u(z)\dz\ fi(B;r) log r + plogr +^ §u2(z)\dz\ + o(logr).

By 18) the intégral on the right is o 1 as r ~> oo. By (9), sinee fi (R', r) + ç?0 ^
00 + 0(1),

—— § u(z)\dz\ =uQ + 0ologr + o(logr).inr yo(r)

Henee, ju(R; r) + /? 0O + o(l), as r-^oo, and we find

u(z) (0O + o(l)) logr + u2{z). (27)

Choose |2| r in the range r0 <: \z\ ^ 2r0. In the given metric, the length
r

L(r) of a radial line is L(r) Jew(2!)|d2|, and for any ô > 0 we hâve, for

large r0,
°
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r0 r0

For any {} we hâve

and for r < 2r0 we may write

'-i]del

eu*{z) dg.

— l]dg

1 dg.

(28)

(29)

(30)
U

Let Em be the set on [r0, r] where \u2(z)\ > M and let oc (M) be its measure.
Then

z
<x(M) M < J \u2(z)\ds< J

EM Œr0/2 EM
log (31)

We may clearly assume that the given radial line is the positive #-axis. Then
for £ to the left of the line |f — 2ro| |£| and outside the circumference
ICI ^oj ^he integrand on the right in (31) will be bounded. For f to the right
of |f — 2ro\ |£| but interior to |f | r < 2r0, the integrand is increased
if C is replaced by a point of the same magnitude, but on the given radial line.
The intégral will then be maximized if that part of Em is replaced by a segment

of length oc (M) and containing f. Setting r

of the modified Em, we find J Jlog T\\dsz<\Ç\$
Ml EM

and letting 2?^ be the image

l —t| I dt and

Thus, oc(M) • M < e(r) • ^(Jf) 1 + log—^~ where e(r)-> 0 as r->oo, from

i
which #(!f) < Cre " ~*^ Hence, for r < 2r0,

r

(32)

Consider now an arbitrary r > r0 and let n be the smallest integer, for
which 2nr0>r. Then r<2nr0<2r, and we find from (32)

M>0 M>0

for some constant C. Hence in this case (30) becomes
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— l]dQ\ < C e(r0) • r£+*[l

2+(+ X
C • « (r0) • f»+"

21+. _ x (33)

Using this inequality, the theorem follows easily from (28) and (29).

Remark 1. The example of the complète conformai metric
ds log (2 -f- \z\) \dz\ spread over the z-plane, shows that the constant à

cannot in gênerai be removed from the exponent in (25). In this case 0O 0

and L(r) r log r + O(r).

Remark 2. A particular conséquence is that if &Q > — 1, the circumference

y0 is essentially a géodésie circle, that is, it is a locus of points approximately
equidistant in the metric from a fixed point.

Corollary 11. Suppose the given metric is complète at p0, that is, every paih
tending to infinity has, in the given metric, infinité length. ThenB) &0 > — 1.

We are now prepared to discuss the situation described at the beginning of
this section, ofa normal metric defined over a région © consisting of the complex
plane with n + \ points deleted. The function u(x,y) is then given by (10),
and it is supposed that (12) holds. The fluxes {@j} are then related to the total
measure fi /*(©) by Gbeen's formula, and one has

0

On the other hand, the curvatura intégra is

C= —

By Corollary 11, if the metric is complète at pQ, then 0O > — 1. Similarly, as

one sees by transforming pi to oo, completeness at pi implies 0f :> 1, j' 1?

n. By Theorem 10, v0 lim ^°;2—r exists, and v0 <PQ + 1. Sim-

ilarly, v$= 0j — 1. Collecting thèse results, we obtain :

8) This resuit is also a conséquence of the more gênerai Theorem 1 of Htjbeb [3].
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Theorem 12. Suppose the metric determined by (10) is complète and that (12)

old
avd
holds. Then for each j, v* lim --—M tJ>—r ^àste and is independent of B,**%{B;r)

Zvi). (34)
0

In the case n 0 there is an évident formai connection of Theorem 12 with
a theorem of A. Htjber [4], who proved that for any simple closed curve y the
inequality

holds for the length fi of y and area % bounded by y in the given metric. Hère
C+ is the curvatura intégra, evaluated over that part of the région bounded by
y, in which the curvature is non-negative. The inequality (35) is in gênerai
not sharp, and it is incorrect if 0+ is replaced by C. However, if y is chosen to
be a large circumference, then by Theorem (12), (35) becomes

1C1
; r) 2n

that is, for the selected curves yo{r) a resuit which is stronger than (35) holds
asymptotically with equality sign.

The following estimate is again local and refers to the behavior of the metric
near an isolated boundary component.

Theorem 13. Under the assumptions of Theorem 11, let a0 be a divergent path
tending to p0 — oo. Let Lr (cr0) be the length of that part of a0 which lies interior to a
circumference yo(r) of radius r about the origin. Then for any ô > 0 there holds

asymptotically Lr(a0) ^ r1+0°~6 as r->oo.
Comparing this resuit with Theorem 11, we see that the images of the radial

Unes behave asymptotically as approximations to geodesics in the given metric.

Proof. Setting | £ | g, we hâve

This inequality will not be weakened if we omit ail arcs of a0 on which values of
Q are repeated; that is, if the maximum value of q attained on a0 for ail arc
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lengths s <sa is oa, ail arcs on aQ for which s > sa, q < qa are to be omitted
in the intégration. In this case the intégration is monotonie in q and the
estimâtes in the proof of Theorem 11 are easily seen to apply, so that for the length
Lr(a0) of that part of a0 for which Q<r we obtain Lr(o0) > r1+a>o~ô by (25)
for any ô > 0, the stated resuit.

7. Â Geometrical Âssumption; Sharpening of the aboyé Estimâtes

The asymptotic estimâtes for length and area derived above can be improved
under a suitable âssumption on the decay of the curvature at the singular
points {pf}. Such an âssumption, if it is to be meaningful, should involve only
quantities which can be determined a priori in terms of the intrinsic geometry
of the surface and should not dépend on properties of the représentation over
the z-plane (although it will still be assumed that the metric is normal). The
simplest hypothesis available to us involves the rate of decay of curvature as

the point of évaluation moves along a divergent path. To make this concept
précise, sélect a fixed point P and define the distance d (Q) from P to Q as the

greatest lower bound of lengths (in the given metric) of paths which join P to
Q. I shall assume in this section9) that there are fixed constants C and ô > 0

such that uniformly for ail Q near pQ oo, there holds \K\ <Cd~2~^y where K
is the Oaussian curvature associated with the metric.

Under this hypothesis we find :

Theorem 14. Under the hypothèses of Theorem 11 and the additional hypothesis

|K | < Cd~2-*, there holds, for any e < min [ô, 1],

L(r) Ar1+0°[l + O(r~e)]

for some positive constant A, whenever &0> — 1.

Remark. The âssumption |jBT| < Cd~2-B cannot be deleted, and even an

âssumption | K | < G (d log d)~2 is not sufficient. This can be seen from the

•) This âssumption assures a sufficient rate of decay so that the curvature is absolutely inte-
grable. An âssumption | K \ < d"2 would not suffice.
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example (which we hâve already considered in another context) of the
conformai metric ds log (2 + \z\) \dz\ spread over the z-plane. For this metric
there holds T <oo, /u 0, K (r log2r)-2 ~ (d log d)~2, L(r) rlogr + 0 (r).

Prooî of Theorem 14. We may clearly assume that P is the origin in the
z-plane. Consider a radial segment from P and let Q be a point on this segment
such that \zQ\ r. Consider a smooth path joining P to Q, whose length
approximates the distance d (Q). Applying Theorem 11 to this path, we obtain,
for given ô > 0 and large r, d(Q) + e > r1+0°~6 for any e > 0. Hence
d(Q) >r1+<p°-d as r->oo.

By assumption, \K(Q)\ < d~*~\ Hence \K{Q)\ < r-2<1+*»>"a (<5 not the
same in ail contexts), as r->oo. In the notation of the proof of Theorem 8,

where (£r is the exterior of the disk Dr, while from the above estimâtes

The circuit intégral on the right equals @-1 Returning to the proof of
Theorem 8, we find from (21) and from (9)

Thus,

J

for some ô > 0. We hâve proved :

JJ |^| jj \K\éuQdqdiï O(r~d) as r->oo. (36)

Consider now the définition (15) of ux{z), the région Do being chosen as the
exterior of To (R). We hâve

JJ log
r/2

log
r/2

(37)
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Set r. Then log log 1 — for g<r. Thus,

setting fJi{R) Mm/^c(J?; r), integrating by parts and using (36),

log <|log(l-f
If/2

-/*(iî;r)) +
\R

for some constant A, provided à < 1. Similarly, we estimate

i>r/2

Tlius, we hâve from (37) ut(z) /j,(R) log |z| +
which led to (27) shows that

log

~s log r). The reasoning

0o. (38)

h(z) 0olog \z\ + u2(z) + 0(r-8)Thus u{z) ux{z) + u2(z)
for some <5 > 0.

An examination of the reasoning which led to (32) shows that the quantity
e(r0) in (32) can be chosen in the form

' 6 V(r0)

where rj (r0) JJ | d/n |. By (36) we hâve in the présent case rj(r) O (r~8).

Hence we will hâve an estimate of the form (33) with /? replaced by /? — ô,

for any ô < ô. Placing this resuit in (29) and using (38) yields

L(r) eAr1+0Q [1 + 0(r~e)]

which was to be proved. Such an estimate holds for any s < min ((5,1), as one

sees by retracing the steps in the dérivation.
Similarly one may prove :

Theorem 15. Under the assumptions of Theorem 14 there holds (cf. Theorem

8 and 9)
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for any e < min [ô, 1].
We omit détails.

8. Âsymptotic Estimâtes for the Length Ratio

I shall dénote the local length ratio by X(z) eu{z).

Theorem 16. For a conformai metric defined by (11) for which (12) is satisfied,

suppose the région in which K > 0 (that is, the région in which ju<0) has

compact support. Then there is a constant A such that X(z) <Ar®° as r->oo. //
the région on which K<0 is compact, then X{z) ;> Ar0° as r->oo, forsome A.

Proof. Let us again use the décomposition (15). Suppose K < 0 outside the
circumference y(r0). By the material leading to (16),

-C

since log

^ j
is bounded when 1 < 2. Integrating by parts yields

—Q—de+J'v~dQ~J
R r0 r0

for any (fixed) r0 in the range R<ro<r.
By assumption, the last intégral on the right is non-positive, hence

ui(z) ^ A + fi(R)\ogr as r->oo. But, repeating the dérivation of (27),
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one sees that jll(E) + /3 0O. Thus, u(z) < A + &0 log r + o(l) from whicli
the first assertion follows. The corresponding inequality, when K > 0 outside
Dro, is proved similarly.

Corollary 16. // in addition <P0> — 1, «Ae?i L(r) < Ar*\ L(r) >Ar*\
respectively, in the two cases considered. If &0= — 1, then L(r) <Alogr,
L(r) > A log r, respectively.

Note that by Corollary 11, &0 > — 1 whenever the metric is complète at p0.

Remark. If the eurvature has compact support, then one obtains
X Jir*<>[l + O(r~x)] (cf. Theorem 16). Estimâtes of this type cannot be

expected, however, in a gênerai case, even under assumptions of the type intro-
duced in § 7. One may imagine, for example, a situation in which the measure
/u is concentrated at a séquence of points tending to infinity. Such a measure
can be constructed such that $$ \d/u\ tends to zéro as rapidly as desired, but X

will nevertheless be singular at each point of the séquence. This situation may
occur, for example, when the measure /ut, arises from the conformai représentation

of a polyhedral surface. In order to obtain asymptotic estimâtes for
X (z) in a gênerai case, it would be necessary to introduce a new postulate on the
local smoothness of the eurvature with respect to the given metric.

9. Applications to Differential Geometry in the Large

The significance of the preceding developments for the gênerai theory of
abstract surfaces consists in the fact that for an important class of such
surfaces, the associated metrics, when represented in terms of conformai para-
meters over a plane domain, turn out to be normal in the sensé of § 3. It seems

likely that this resuit is true for arbitrary complète open surfaces of finite
connectivity, over which the eurvature is absolutely integrable. I am, however,

presently able to prove it only by invoking an additional supposition.

Hypothesis S. The région of positive eurvature has compact support on the

surface.
Under this assumption I shall show first that a neighborhood of each bound-

ary component can be mapped conformally onto the (open) exterior of a disk

in the complex z-plane. This resuit follows alternatively from more gênerai
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résulta of Huber [3] (esp. Theorem 15); however, in the case which I consider
it is possible to provide a somewhat simpler démonstration, and it seems désirable

to do so. Thus it is possible to speak of normal metrics in the sensé of § 3,
and the remainder of this section will then be devoted to proving that under any
such mapping the metric becomes a normal metric at p0 oo in the form (11).
Thus ail results derived in §§ 6-8 will apply.

By an abstract surface S I shall mean a finitely connected, open Riemann
surface on which a conformai metric euiz) \dz\ is defined. Every such surface is

homeomorphic to a closed surface from which a finite number of points
Po> - ' • y Pn bas been deleted (Kerekjarto [6], Chapter 5). A doubly-connected
annular région surrounding pQ can be mapped conformally onto a plane annulus
bounded by inner and outer circumferences F0(R), yo(r), such that yQ(r)

corresponds to p0. In terms of conformai parameters there holds K —e~2uA u,
$$KdA —jjAudxdy, and we may introduce, as before, a measure //
corresponding to u(x, y).

Theorem 17. Suppose Q is complète at p0 and that the curvature is absolutely
integrable over ® in a neighborhood of this point. Assume also Hypothesis S. Then

yQ consists of the single point at infinity.

Proof. Suppose the theorem were false, so that y0 is an entire outer circum-
ference. In the annular région D we hâve

+ h(z) (39)

where h(z) is harmonie in D. We may choose (} so that h(z) has single-valued
conjugate A*(z). Because of Hypothesis S, the intégral over the measure is
bounded above near yQ (cf. the proof ofTheorem 16). Evidently, /? log z is bounded

at y0. We may write, because of the choice of /?,

h(z) ho(z) + h±(z)

where ho(z) is harmonie interior to y0, hx(z) is harmonie exterior to Fo.
Consider the mapping10)

W(Z) J
0

l0) The underlying idea in the ensuing discussion is due to Htjbeb [3, p. 53].
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The function w(z) carries the interior of y0 onto an unbranched Riemann
surface over the w-plane. Let E dénote a disk centered at the origin in the w-plane,
whose radius is the least upper bound of ail values for which E lies interior to a
sheet of the surface. The inverse mapping z (w) is by the monodromy theorem
analytic and single valued in E. Under this mapping the image of E cannot be

compact in the interior of y0, for each point of the boundary image would then
lie interior to a circle of analyticity, and one then could conclude that E could
be enlarged. Hence there is a séquence of points in E, tending to a boundary
point q0, whose inverse images tend to y0.

Consider a radius a0 joining q0 to w 0. If its inverse image were compact
interior to y0, one could conclude that q0 would be interior to a circle of
analyticity, which we hâve just shown cannot happen. Hence the inverse image
of <r0 corresponds to a divergent path on S. We hâve

oo> ;W)

dw
~dz \dz\

ao(z)
\dz\ A f e«<*>

<ro(z)
\dz\=.

by the above estimâtes on the terms in (39). From this contradiction it follows
that the radius of E is infinité, that is, one sheet of the Riemann surface must
cover the entire t#-plane. But the inverse function is 1-valued on this sheet and
achieves only values interior to y0. Hence y0 has infinité radius, which was to be

shown.

Theorem 18. Under the hypothèses (and hence also the conclusion) of Theorem

17, u(z) admits near p0 oo a représentation of the form

1 — +h(z) (40)

where h(z) is harmonie at infinity, that is, the metric defined by u(z) is normal

atp0.

Proof. We need only establish that for suitable choice of /?, h (z) is
harmonie at infinity. We may write h(z) ho(z) + hx(z), where ho(z) is entire
and hx (z) is harmonie at infinity. Because of Hypothesis 8 (cf. again, the proof
of Theorem 16), there is a positive integer N such that, near p0 oo,

1 — )Slogz<;.ZVlog|z|.
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Consider the mapping defined for ail finite z,

w(z) J zNeh°+iho dz. (41)
o

This mapping is unbranched except at the origin, where the simply covered

z-plane is taken to an (N + 1) sheeted surface over the w-plane. As in the proof
of Theorem 17 above, one finds as a conséquence of completeness that there are
no finite boundary points. Hence the (N + 1) sheeted w-plane corresponds
1 — 1 with the simply covered z-plane, and z 0 «-* w 0. Hence w A zN+1,
from which it follows from (41) that hQ(z) const., Q. E. D.

The main results

The material of §§ 6-8 implies the following gênerai properties of abstract
surfaces.

Theorem 19, Let S be an abstract surface which is complète and has finite total
curvature in a doubly-connected neighborhood Sft of one of its idéal boundary
components, and suppose S satisfies Hypothesis S in 31. Then 51 can be mapped
conformally onto a neighborhood D of po oo in the complex z-plane. Let Fo (R),
yo(r) be concentric circumferences of radii R, r > R in D. Let fio(r) dénote the

length on S corresponding to yo(r), let %>(R; r) be the area corresponding to the

annulus between ro,yo. Then relations 13), 14) hold for 20,%), and 20(r) tends to a

limit as r->oo, which is infinité whenever 0Q lim —— / -^— ds > — 1.J °
r^oo 2n J dn

The quantity 0O exists and is finite, and <P0> — 1. // @0 > — 1, then (22)

holds. Also, lim ——Qr° '—r v0 exists, and v0 1 + <P0. The radial Unes
±71V\(U\ r)

through yQ are asymptotically géodésie in the sensé of Theorem 13, and iheir lengths
can be estimated by (25). The curves yo(r) are, in the corresponding sensé, asymptotically

géodésie circles on Q. Under the additional assumption of Theorem 14 at p0,
correspondingly improved estimâtes hold.

Theorem 20, Let S bea complète abstract surface satisfying Hypothesis 8 and

which has finite total curvature C. Then (cf. Theorem 12) v, lim
A

*\;2—r
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exists at each boundary comportent p}, there holds v5 l -\- &}, and

Hypothesis 8 can be deleted for any case in which it is known that the metric
is normal at each boundary component.

This work was supported in part by Air Force eontract AF 49 (638) 135 at Stanford Univer-
sity.
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