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Some results on functions holomorphic in the unit disk

By PETER LAPPAN, Michigan State University

1. Let D and C denote the unit disk and unit circle, respectively, let f denote a
complex-valued function defined in D, and let W denote the extended complex plane.
By a path y in D we mean the image of the interval 0 <x <1 under a continuous func-
tion g. A path y is called an asymptotic path if (1) |g(¢)|—1 as t—1 and (2) there exists
a number we W such that f(g(t))>w as r—1. The number w is called the asymptotic
value for the asymptotic path y. If y is a path, the set Cn7 is called the end of y, and
we say that y ends in Cn7. It is clear that the end of an asymptotic path must be either
a point or an arc of C. A path y is called a point asymptotic path if y is an asymptotic
path which ends in a single point.

The following sets will be considered:

(i) C,(f, ), where { is a point of C and y is a path which ends in {, denotes the set
{we W there exists a sequence of points {z,} in y such that |z,| =1 and f (z,)->w};

(i) JI(f C), where { is a point of C, denotes the intersection (), C,( f; {), where the
intersection is taken over all paths y which end at {;

(iii) [To(/)={¢eC: we](£, O};

(iv) I'(f)={weW: there exists an asymptotic path y for which the corresponding
asymptotic value is w};

(v) A(f)={CeC: there exists an asymptotic path y for which the end contains the
point {};

(vi) Ap(f)={(eC: there exists a point asymptotic path for which the end is {}.

The sets I'(f), A(f), and Ap(f) have been studied by many persons, with two of
the more complete treatments being given by Collingwood and Cartwright [3] and
MacLane [5]. The main focus of this paper will be results concerning [[,(f). We

first prove that if f is a holomorphic function then [],(f)—4(f) is an open subset
of C. Next, it is shown that if f is a continuous function in the extended sense, then
[1o(f) is a measurable subset of C. Finally, it is proved that if £ is a normal holo-
morphic function then [], (f) is nowhere dense in C. We conclude with some un-
solved questions relating to [], (f).

2. We begin by proving a lemma.

LEMMA. Let f be a function holomorphic in D, let B be a subarc of C with endpoints
at {, and {,, and let {1 ¢] ], () and {,¢] ] (f). Then there exists an asymptotic path
Sfor which the end is a subset of P.

Proof. Since {;¢[].(f) and {,¢]].(f), there exist paths y, and y, leading from
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0 to {, and {,, respectively, such that y, ny,={0} and fis bounded on y,uUy,. Let H
be the region bounded by y,uy,UB. If fis bounded on H then, by Fatou’s Theorem
[6, p. 5], f has point asymptotic paths to almost every point of B. If fis unbounded in
H, then there exists a point zoe H such that | f(z,)| is greater than the bound of
| f(2)| on y,Uy,. Let L be the ray described by {w: w=t1f(z,), t=1}. The component
of £~ 1(L) which contains z, is an asymptotic path in H with its end contained in j
(since f ~1(L)n(y,Uy,)=0). Thus the lemma is proved.

THEOREM 1. Let f be a function holomorphic in D. Then [ [ (f)—A(f) is an open
subset of C.

Proof. Let {€]].(f)—A(f). Then there exists a neighborhood N of { such that
NNCnA(f)=0. Suppose that {; and {, are two points of NnC such that {; ¢[ ] (f)
and {,¢[[.(f). If B is the subarc of NnC with {, and {, as endpoints, then
A(f)nB#0 according to the Lemma. But this would violate the condition that
NNCAnA(f)=0. Thus NnC may contain at most one point which is not in] [ (f).
But this means that  is an interior point of [ ], (f), and the theorem is proved.

THEOREM 2. Let f be a function holomorphic in D. Then the complement of
Hw(f)um) in C is a finite (or empty) set.

Proof. Let E be the complement of [],(f )UuA(f) in C. Then C=[]o(Nu
A(f)VE. If { e E, there exists a neighborhood N of { such that NnCnA(f)=0. Sup-
pose there exists a point {'e EANNNC, {'#({. Then by the Lemma we have A(f)n
NN C#9, in violation of the choice of N. Thus { must be an isolated point of E. There-
fore, each point of E must be an isolated point, and E is a finite set.

THEOREM 3. Iffis a holomorphic function in D, then [ |, (f)VA(f) is a dense subset
of C.

Theorem 3 is an immediate consequence of Theorem 2.

We note that Theorem 3 need not be true when f is a meromorphic function in D,
as is illustrated by the Schwarz triangle functions, for which both [],(f) and 4(f)
are empty.

3. We now let f be a continuous complex-valued function in the extended sense.

THEOREM 4. If f is a continuous function in D, then [],(f) is a measurable set.

‘Proof. We will show that C—]],(f) is a measurable set.

If (eC ——I-[w( f), there exists an integer n such that { is an accessible boundary
point of A(n)={zeD: | f(z)| <n}. For each n, 4(n) has a finite or a countable number
of components {A(n,i): i=1,2,3,...}.

Let B(n)={zeD:|f(z)|>n} and let {B(n,j):j=1,2,3,...} be the components of
B(n). Let E(n, i, j) be the set of points of CnB(n,j) which are accessible from within
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A(n,i). Let K(n,j) be the set of all points in C—B(n,j). By a result of Kaczynski
[4, Lemma 1, p. 590], E(n, i, j) contains at most two points, so that E(n)=J, ;E(n,
i, j)is a countable subset of C. But K(n, j) is an open subset of C, and K(n)= ;K (n, j)
is a G4 set. Then E(n)uK(n) is a measurable set. But

€ ~T1a(f) = ULE@) VK (n)]

and thus C—J],(f) is a measurable set, and therefore [, (f) is also a measurable
subset of C.

We have already noted that [],(f) may be empty and thus have measure zero,
where f is a meromorphic function. Likewise, f may be holomorphic and [ [, (f) may
equal C, as in the case of annular functions in the sense of Bagemihl and Erdés [1].

4. We now consider the case where f is a normal holomorphic function.

THEOREM 5. If f is a normal holomorphic function in D, then ||, (f) is nowhere
dense in C.

Proof. Suppose there exists an arc « of C such that ac[],(f). Let f be a subarc
of a with endpoints {; and {, in the interior of a. Let S; and S, be the radii to {; and
{,, respectively, and let H be the sector of D bounded by S, US,UpB. For each n, let
D,={zeHnD: |f(2)|<|f(0)|+n}, and let F, be the component of D, which contains
0. Since fc ][], (f), we must have F,nC=0 for each n. However, H< | J, F,. Foreach
n, the boundary of F, contains a component which meets both S; and S,. Thus for
each n there exists a Jordan arc J, leading from a point on S, to a point on S, such
that | f(z)|>n—1 for zeJ,, and J,c F,. The sequence {J,} forms a Koebe sequence of
arcs relative to § such that f(z)— oo along {J,}. By a result of Bagemihl and Seidel
[2, Theorem 1, p. 10], f must be identically co and hence not holomorphic. Thus the
theorem is proved.

We remark that Theorem 5 remains true when fis a normal meromorphic func-
tion. To prove this, we need only to modify the proof above by choosing S, and S,
which do not contain poles of f, and by showing that the sequence {J,} does not allow
limit points in D. For if {J,} had a limit point in D, then {J,} would have uncountably
many such limit points in D, and f would be identically co.

We further remark that Theorem 5 is valid if fis assumed to be of bounded charac-
teristic, but not necessarily normal. However, an example of MacLane [5, Example 3,
p. 57] shows that Theorem 5 may fail if the assumption that fis normal is removed,
even though A4,(f) may be dense in C.

5. The following questions concerning | [, (f) are still unanswered.

QUESTION 1. If f is a normal holomorphic function in D, can ||, (f) have positive
measure in C?
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QUESTION 2. If f is a holomorphic or meromorphic function in D which is the sum
of two normal functions, must ||, (f) be nowhere dense in C?
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