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Some results on functions holomorphic in the unit disk

By Peter Lappan, Michigan State University

1. Let D and C dénote the unit disk and unit circle, respectively, let f dénote a
complex-valued function defined in £>, and let W dénote the extended complex plane.
By a path y in D we mean the image of the interval Orgx< 1 under a continuous function

g. A path y is called an asymptoticpath if (1) |g(/)|->l as t-+l and (2) there exists

a number we W such that f(g(t))-»w as /-»1. The number w is called the asymptotic
value for the asymptotic path y. If y is a path, the set Cny is called the end of y, and
we say that y ends in Cny. It is clear that the end of an asymptotic path must be either
a point or an arc of C. A path y is called & point asymptotic path if y is an asymptotic
path which ends in a single point.

The following sets will be considered :

(i) Cy(/, C), where C is a point of C and y is a path which ends in Ç, dénotes the set

{we W: there exists a séquence of points {zn} in y such that |zj-*l and/(zrt)->w} ;

(ii) f\(f 0» where C is a point of C, dénotes the intersection f]yCy(f where the
intersection is taken over ail paths y which end at £ ;

(iv) r{f) — {weW\ there exists an asymptotic path y for which the corresponding
asymptotic value is w} ;

(v) A(f) {ÇeC: there exists an asymptotic path y for which the end contains the

point C} ;

(vi) ÂP(f) {ÇeC: there exists a point asymptotic path for which the end is (}.
The sets F(/), A(f), and AP(f) hâve been studied by many persons, with two of

the more complète treatments being given by Collingwood and Cartwright [3] and
MacLane [5]. The main focus of this paper will be results concerning fl<»(/)• We

first prove that if fis a holomorphic function then n°o(/)~^(/) *s an °Pen subset

of C. Next, it is shown that if f is a continuous function in the extended sensé, then

rioo(/) is a measurable subset of C. Finally, it is proved that if/is a normal
holomorphic function then f|oo(/) *s nowhere dense in C. We conclude with some un-
solved questions relating to n°o(/)-

2. We begin by proving a lemma.

Lemma. Letfbe a function holomorphic in D, let p be a subarc of C with endpoints
at Ci and Ç2, and let Ci#Ooo(0 and C2^Iloo(/)- Tnen tnere exists an asymptotic path
for which the end is a subset offi.

Proof Since Ci^Yloo(f) anc* C2^Iloo(/)» thereexist paths yt and y2 leading from
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0 to Ci and C2» respectively, such that 7iny2 {0} and/is bounded on )>iuy2. Let H
be the région bounded by y1uy2uj3. If/is bounded on //then, by Fatou's Theorem
[6, p. 5],/has point asymptotic paths to almost every point of /?. If/is unbounded in
H, then there exists a point zoeH such that |/(zo)| is greater than the bound of
|/(z)| on 7iuy2. Let L be the ray describedby {w: w tf(zo)9 t^l}. The component
of/"1^) which contains z0 is an asymptotic path in H with its end contained in /?

(since f "1(L)n(#y1uy2)=0). Thus the lemma is proved.

Theorem 1. Letfbe a function holomorphic in D. Then Y[oo(f)~"^(f) *s an °Pen
subset of C.

Proof. Let ÇeW^f) — A(f). Then there exists a neighborhood N of C such that

NnCnA(f)=$. Suppose that Ci and C2 are two points of NnC such that Ci^EUC/)
and C2^rioo(/)- If P is t^e subarc of iVnC with Ci and C2 as endpoints, then

A(f)np^0 according to the Lemma. But this would violate the condition that

NnCnA(f) 0. Thus NnC may contain at most one point which is not inj|oo(/).
But this means that C is an interior point of f]«>(/)> an^ the theorem is proved.

Theorem 2. Let f be a fonction holomorphic in D. Then the complément of
* C is afinite (or empty) set.

Proof Let E be the complément of n«>(/)Ui4(/) in c- Then c=
A(f)\jE. lî^eE, there exists a neighborhood TV of C such that NnCnA(f) Q.

Suppose there exists a point Ç'eEnNnC, £'#£• Then by the Lemma we hâve A(f)n
NnC^0, in violation of the choice ofN. Thus C must be an isolated point of E. There-

fore, each point of E must be an isolated point, and E is a finite set.

Theorem 3. Iffis a holomorphicfunction in D, then fj^ (f)uA(f) is a dense subset

ofC.
Theorem 3 is an immédiate conséquence of Theorem 2.

We note that Theorem 3 need not be true when f is a meromorphic function in D,
as is illustrated by the Schwarz triangle fonctions, for which both f]oo(/) and A(f)
are empty.

3. We now let f be a continuous complex-valued function in the extended sensé.

Theorem 4. Iffis a continuous function in D, then floo(/) is a measurable set.

Proof. We will show that C-fJ00(/) is a measurable set.

If CeC—Iloo(/)' there exists an integer n such that C is an accessible boundary

point of A(n) {zeD: \f(z)\ <«}. For each n9 A(n) has a finite or a countable number
of components {A(n, i): /=1, 2, 3,...}.
Let B(n)={zeD: |/(z)|>n} and let {B(nJ):j=l9 2, 3, ...} be the components of

B{n). Let E(n9 ij) be the set of points of CnB(n,j) which are accessible from within
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A(n, i). Let K(n,j) be the set of ail points in C—B(nJ). By a resuit of Kaczynski
[4, Lemma 1, p. 590], E(n, i9j) contains at most two points, so that E{n)=\JitjE(n,
i,j) is a countable subset of C. But K{nJ) is an open subset of C, and K(n)= DjKtyJ)
is a Gô set. Then E(n)uK(n) is a measurable set. But

and thus C—]~[00(/) is a measurable set, and therefore floo(/) is ^° a measurable
subset of C.

We hâve already noted that n^C/) mav be empty and thus hâve measure zéro,
where f is a meromorphic function. Likewise, f may be holomorphic and flooC/) maY
equal C, as in the case of annular functions in the sensé of Bagemihl and Erdôs [1].

4. We now consider the case where f is a normal holomorphic function.

Theorem 5. Iffis a normal holomorphic function in D, then Yl<x>(f) te nowhere
dense in C.

Proof Suppose there exists an arc a of C such that acz[^[00(/). Let jî be a subarc
of a with endpoints £t and £2 m the interior of a. Let S{ and S2 be the radii to Ci and
C2, respectively, and let H be the sector of D bounded by S^uS^u/?. For each n, let
Dn {zeHnD: \f(z)\ <|/(0)| + «}, and let Fn be the component of Dn which contains
0. Since /? c: Jj^ (/), we must hâve Fnn C=0 for each n. However, Ha {Jn Fn. For each

aï, the boundary of Fn contains a component which meets both St and S2- Thus for
each n there exists a Jordan arc Jn leading from a point on Sx to a point on S2 such

that \f(z)\ >n — l for zeJn, and Jn<^Fn. The séquence {Jn} forms a Koebe séquence of
arcs relative to fi such that/(z)->oo along {Jn}. By a resuit of Bagemihl and Seidel

[2, Theorem 1, p. 10],/must be identically 00 and hence not holomorphic. Thus the
theorem is proved.

We remark that Theorem 5 remains true when/is a normal meromorphic function.

To prove this, we need only to modify the proof above by choosing St and S2

which do not contain pôles of/, and by showing that the séquence {Jn} does not allow
limit points in D. For if {Jn} had a limit point in D, then {/„} would hâve uncountably
many such limit points in D, and/would be identically 00.

We further remark that Theorem 5 is valid iffis assumed to be of bounded charac-

teristic, but not necessarily normal. However, an example of MacLane [5, Example 3,

p. 57] shows that Theorem 5 may fail if the assumption that/is normal is removed,
even though AP(f) may be dense in C.

5. The following questions concerning flooC/) are stiH unanswered.

Question 1. Iffis a normal holomorphic function in D, can flooC/) hâve positive
measure in C?
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Question 2. Iff is a holomorphic or meromorphic function in D which is the sum

oftwo normal fonctions, must flooC/) be nowhere dense in C?
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