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Some Remarks Concerning Surfaces in Three-space

In Memoriam For Anja Hopf

by Newton S. Hawley1)
(Stanford University and Università di Pisa)

1. Introduction

In this paper a class of complète surfaces will be defined by means of certain
quantities related to the first and second fundamental forms of the surfaces in
question. It will then be shown that this class is, in fact, just the class of oval
cylinders in three space.

It is advisable, however, to develop first a terminology which is sufficiently
précise for this purpose.

The term surface will always dénote, in this paper, a non-singular complète
surface of class C3. The surface in question will be designated by S, and it will be

assumed that S is a C3 surface in the ordinary euclidean three-space R3. The Gaussian

curvature of S will be designated by the symbol K, the mean curvature by H, etc.,
in the usual classical notation. The universal covering surface of S will be denoted by S.

Although S is an abstract surface, the projection mapping

can be used to carry the first and second fundamental forms of S, as well as H, K,
etc., from S back onto S. Thus Scan be dealt with almost as if it were a surface in R3.

Extensive use will be made of isothermal parameters introduced on S and on S,

and in particular the fundamental forms will be expressed in terms of such
parameters. For example, if z x + iy is an isothermal parameter then the first
fundamental form I is expressed by

l E\dz\2 (since£ G and F 0).

(For ail classical notions and notations see [2].)
For later convenience, in stating some of the results, some non-standard

définitions will be made.

Définition 1 : A surface S will be called anticonvex if K^O everywhere on S.

Définition 2: A surface S will be called antiminimal if there is a constant
such that Hï?l/a2>0 everywhere on S.

x) This work was supportée in part by National Science Foundation grant GP 4069 at Stanford
University.
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Définition 3: A plane curve will be called an oval if it is of class C3, complète,
simple, and if its curvature k^ko>0, i.e. is bounded away from zéro.

(See the remarks in the last section of the paper concerning this rather strange
définition of an oval.)

Important use will be made also of the following statement, which is set forth
as a lemma.

Lemma 1. If a function is defined and subharmonic in the entire plane, and if it is

bounded above then it is a constant.

(The proof of this lemma is an elementary exercise which has no place hère.)
Even though the following statement is simple, and its proof almost immédiate,

it is presented as a lemma because it embodies the central idea of this paper.

Lemma 2. Let S be an anticonvex surface in R3 such that S is of parabolie type
and admits a global isothermal parameter z in terms of which E is bounded; then S is

developable, i.e. ^=0.
Proof Since K^O everywhere on S, the Gauss équation, viz.

A\ogE -2EK
implies that AlogE^O everywhere on S, i.e. logis is subharmonic on S, and therefore

on S as well. Since S is conformally équivalent to the entire plane, logE can be

considered to be subharmonic in the entire plane. But E is bounded, by hypothesis,
hence logis is bounded above. Lemma 1 thus implies that logis is constant, and
another application of the Gauss équation shows that K=0 on S, which proves the
lemma.

It should be remarked also that since S is complète and non singular it can be

neither a tangent developable nor a cône, therefore it must be a cylinder over a plane
curve.

2. The quadratic differcntial Q

A quantity will now be introduced which was first utilized by H. Hopf in order
to show that a compact surface of genus zéro and constant mean curvature must
be a sphère [3].

Let z be an isothermal parameter on S (or on §), then the second fundamental
form II can be written in terms of z and z. Since II is real the expression will be

of the form

where P is real. The coefficient Q is the quantity in which the interest hère is centered.
The transformation properties of Q are immediately évident; for if w is another

isothermal parameter then, in terms of w and w, the expression of II is,
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II Q* dw2 + 2F* dw dw 4- Q* dw2,
which shows that

Qdz2 Q*dw\

i.e. Q transforms like a quadratic differential. It may be useful to point out that,
in the classical notation, Q is given by,

iV-2/M), (1)
and P is given by,

Thus the fîrst and second fondamental forms are related as follows:

Use will be made also of the operators

d ô=—= —
ôz 2\dx

Q
d 1/3 ô\ j _ ô 1/5 5\5=-= t--1'— and ô=—= —+ ï —
^ 2\5 3/ ô 2\d dyj

expressed in terms of the parameter z x+iy.
The quantity F, defined by

clearly transforms like a connection (see [5]), and in terms of this F a covariant
differentiation operator D can be defined by

i.e. if F is a (covariant) vector field on S, its covariant derivative is given by

DV dV + FV VZ + FV.

Let the surface S9 parameterized by z, be given in R3 by the vector équation

then Xz ôX and X^ ÔX are tangent vectors.
The coefficient E, of the fîrst fondamental form, and the unit normal vector 91

are given by
Xz xX-z

It is easily deduced that
(2)
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and

The classical équations of Codazzi and Gauss can be written as,

DP dQ (Codazzi),

Hiïr KP (Gauss),

but it is perhaps more useful hère to write them in the form,

(Codazzi), (3)
and

T-Z^\EK (Gauss).

With this notation established a necessary définition can now be made.

Définition 4. A surface S will be called "g-bounded" if its universal covering
surface S admits a global isothermal parameter z such that the Q, expressed in terms
of this z, is bounded on S.

3. The theorem

The necessary définitions hâve been made, the necessary terminology has been

established and now the principal resuit can be stated.

Theorem. If the surface S is anticonvex, antiminimal, and Q-bounded, it is an oval
cylinder.

(An oval cylinder is, of course, a cylinder over an oval, as defined in Définition 3.)

Proof of theorem. Since S is g-bounded there is a number b such that
From équation (1) it foliows that

Therefore the inequality

It lïiust now be shown that S is parabolic.
If § were not parabolic it would be conformally équivalent to the unit disk @*

in the w-plane, i.e. the set of points w such that \w\ < 1. In this case w also could be

taken to be a global isothermal parameter on S. Let the first fundamental form I,
expressed in terms of w, be denoted by

|2<2I2

implies

E2

b2

H

'{H2

2

^ a

-K).

2
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then it follows that
dz

E* E —
dw

Since z is a global uniformizing parameter on S it defines a conformai mapping
of ^* in the w-plane onto a simply connected domain Q) in the z-plane. (And 3i must
hâve at least two boundary points if it is assumed that S is not parabolic.)

Therefore there exists a point w0, with |wo| l, such that the quantity \dz/dw\
remains bounded near w0. To be more précise, let ^*(w>0, s) dénote the set of points
w such that

|w| < 1, and \w — wo\ < e.

Then there exists a w0 and an e>0 such that \dz/dw\ remains bounded in ^*(w0, s).

(For if not the circle |w| l would be a natural boundary for the holomorphic
function z; therefore z could not give a conformai mapping of @* onto S).) Letting
c be a number such that \dzjdw\^c in @*(w0, e), it follows that

dz\2
< 2 2 2

dw

m@*(wo,e).
Since w is a mapping of S onto £P*, S can be considered as arising from £^* by

the identification of points under the action of some Fuchsian group (see [1] or [4]).
Let So dénote a fundamental domain for S under the action of this group, and let
So be chosen so that w0 is on its boundary. (Where w0 is the point whose existence

was established above.) And let Ao be a half-open circular arc which has w0 as its

missing endpoint and which lies entirely within @*(w0, s)nS0. (Such a Ao exists

since So is bounded by circular arcs.)

If X=pÀ0 is the projection of Ào into S then

r
\dw\ <2nabc.

On the other hand Jy ds diverges since S is complète and A "goes to infinity".
This give a contradiction, therefore S must be parabolic.

Lemma 2 can now be applied to conclude that S is a cylinder over a plane curve.
That this plane curve is an oval follows from the fact that its curvature k^2/a2>0
at each point, which in turn follows from the assumption on H. Thus the theorem
is proved.

It should be remarked that the theorem is sharp, in the sensé that every oval

cylinder satisfies the hypothèses of the theorem. Thus we hâve established the identity
of the class of oval cylinders with the class of anticonvex, antiminimal, g-bounded
surfaces.
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4. A corollary and some concluding remarks

The following questions will naturally arise.

"Why formulate a theorem for <g-bounded surfaces?"

"What does this condition mean?" Unfortunately no fully satisfactory answer will
be found hère. Equation (2) - which was included as a partial answer to thèse

questions - cannot be considered as a sufficient reply. For équation (2), even though
it gives a géométrie interprétation of Q, fails to enable one to détermine effectively
which surfaces are g-bounded.

But the following corollary can be put forward also as partial justification for
the notion of g-boundedness.

Corollary: If S is anticonvex and H^Q is constant on S, then S is a circular
cylinder.

Proof. Since H is a constant, différent from zéro, and K^O, there are no um-
bilical points on S or on S. Therefore curvature coordinates define a global
isothermal parameter on S. And g, which is analytic on S by équation (3), is constant
in thèse coordinates since M= — 2Im{g} is identically zéro in curvature coordinates.
Therefore g is bounded and the theorem applies. The oval is a circle since H is

constant. This establishes the corollary.
Some remarks should be added hère concerning the peculiar définition of an oval

given in the introduction. It is intuitively clear that Définition 3 is équivalent to the
usual définition of an oval as a closed convex, plane curve of class C3 whose curvature
does not vanish; and in fact the two définitions are rigorously équivalent.

However the proof is both long (elementary, but long) and uninteresting, and
since no use is made hère of the usual définition, it was deemed advisable to proceed
as has been done. The formulation of the définition of an oval was made to tie in as

easily as possible with the method of proof of the theorem.

Finally it should be noted that the condition of g-boundedness is stronger than

necessary to prove a theorem like the one above ; and the condition that H be bounded

away from zéro could be relaxed somewhat also. Thèse conditions were used to
establish the boundedness of Is which, in turn, is more than is necessary, since lemma 2

can easily be strengthened. One only needs to know that E grows sufficiently slowly
in order to conclude from its subharmonisity that it is constant.

(Added May 22, 1967)

It has been called to the attention of the author, that a paper: "Complète Surfaces

in E3 with Constant Mean Curvature", by T. Klotz and R. Osserman, Comment.
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Math. Helv. 41 (1966-67), 313-318, has appeared subséquent to the submission of
the présent paper. A theorem in the Klotz-Osserman paper contains the corollary
given above. Not only was their resuit submitted earlier, but the method of proof
is quite différent and therefore should be of interest to any reader of this présent

paper.
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