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Foliations on Open Manifolds, I

by Anthony Phillips (Berkeley)

1. Introduction

Let M be a smooth «-dimensional manifold, with tangent bundle TM. A smooth
section in the bundle of/>-planes of TM is called a p-planefield (also, "/?-dimensional
distribution") on M. A/?-plane field a gives a /?-dimensional subbundle of TM, with
fibre over xeM equal to a(x). This bundle will also be denoted by a. Picking a
Riemannian metric for M associâtes to a a complementary (n —/?)-plane field a1:
aL (x) is the tangent subspace orthogonal to the /?-plane a (x).

The /?-plane field a is called integrable if Af has a smooth foliation & (see § 2 for
this définition) such that at each xeM the p-plane a(x) is tangent to &. This is
équivalent to saying that each xeM has a neighborhood U with coordinates xl,..., xn
such that the tangent vectors ô/ôx^y,..., d/dxp\y span (x(j>) at each j>et/. There is a

classical criterion for integrability of a /?-plane a, namely that a be involutive. This
means that if v and w are vectorfields contained in a, i.e. such that v(x)ea(x)9
w(x)ea(x) at each point x, then their Poisson bracket [y, w] is also contained in a.
It is easy to see that integrable implies involutive. The converse is Frobenius'
Theorem [4, Theorem 5.1].

From the point of view of differential topology it is natural to ask which /?-plane
fields are homotopic to integrable fields (see [1], p. 373). This article présents a partial

answer to that question.

Theorem 1.1. Suppose M is open (i.e. has no compact components). A p-plane field
a on M, whose complementary bundle a1 is trivial, is homotopic to an integrable field.

Theorem 1.2. Suppose M is open, and n-dimensional. Every (n—l)-plane field g

on M is homotopic to an integrable field.

Remark. The hypothesis, that M be open, seems quite restrictive. For instance,
in the case n 3 Theorem 1.2 for compact M and orientable a has been proved by
John Wood, a graduate student at Berkeley. On the other hand, it is easy to check

that ail the foliations constructed in this article are analytic, in the sensé of [1],
p. 368. In this respect, Theorem 1.2 should be compared with the theorem on p. 392

of [1]: if ti1M contains only éléments of finite order, then M can carry an analytic
foliation of co-dimension 1 only if M is open.

Proof of theorem 1.1. By assumption, the bundle oL contains a field £, of («—/?)-

frames. The theorem is an immédiate conséquence of Theorem B of [3] which

implies that, since M is open, t, is homotopic to the gradient (n — /?)-frame ections
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VF=(V/i,..., V/rt_p) of a submersion ir=(/1,...,/n_p) of M in Euclidean space
Rn~p. (A submersion Mn^> Wk is a smooth map of rank k.) Taking orthogonal
compléments at each stage of the homotopy deforms a to a /?-plane field orthogonal to
VF and therefore tangent to the foliation defined by the submanifolds {F= constant}.

Example M=S2xR. Hère every foliation is orientable. The manifold is paral-
lelizable, so homotopy classes of nonzero vectorfields (and of their complementary
2-plane sections) correspond to homotopy classes of maps of M into S2, i.e. to
éléments of n2 S2 Z. A foliation 3Fn which corresponds to the map of degree n can
be obtained, for «^0, by stacking the slices of foliations shown below (for n<0,
reverse orientation), as follows : ^r0 XY9^r1=XA X, &r2 XAB Y, ^3 XA BA X,
etc. It should be clear how to interpolate the missing leaves, and how to fit the slices

together to give coherently oriented foliations of S2 x R. Let us verify that 3Fn

belongs to the correct homotopy class.

Imagine the stacking to be done vertically in R3. There is an X-slice on the bottom,
then a séquence of A- and U-slices, and on top either a 7-slice or an upside-down
X-slice, according as n is even or odd. To calculate the degree of the normal map
associated to ^n9 it is clearly sufficient to calculate the degree of the map it induces

Y

X
B

Fig. 1.1
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on the S2 imbedded as S2 x {0} in S2 x R. This is well known to be equal to the
number of inverse images of a regular value, each one counted plus or minus accord-

ing as the map préserves or reverses orientation there. Choose as value the point
corresponding in Fig. 1.1 to a horizontal arrow pointing to the right. The figure shows

that this value is taken precisely once, and with positive orientation, on each A- or
5-slice, and not at ail on an X- or Y-slice; it follows that ^n has normal degree n,
as claimed.

Outline ofproofof theorem 1.2. If the Une bundle a1 is orientable, this is a spécial
case of the previous theorem. The following sections treat the case where a1 is not
orientable. Let/:Af->Pw be the classifying map for c1, suppose that / intersects
pn-iç-pn transversally, and let the submanifold N be the inverse image of P" ~*. There
is a foliation on Ptt, studied in § 2, of which P"'1 is a leaf. The map/will pull back a

foliation !F of an open tubular neighborhood U of N in M. It will be shown in § 3

that aL is homotopic to a line field t normal to ^ near N. Since/sends M— N into
the contractible set Pn—Pn~x it follows that aL\M—Nis trivial, so that the restriction
of the homotopic field t to M—N contains a vectorfield rj. The theorem is proved by
showing that rj is homotopic through non-zero vectorfields to the gradient of a
submersion g\M—N-*R, by a homotopy leaving n fixed near N. This requires a relative
form of the submersion classification theorem (§4). The foliation defined on M—N
by g matches & near N; the two fit together to give a foliation of M with tangent
field homotopic to a, as required.

Part II of this article will apply thèse methods to foliations of co-dimension 2.

I am grateful to Morris Hirsch for bringing this problem to my attention, and

for several helpful conversations.

2. Définition of Foliation and an Important Example

Consider a smooth manifold M of dimension n. Let TMy represent the tangent
space to M at yeM.

Définition. (See [1] for a gênerai référence on foliations.) A smooth foliation
& ofdimension p on M is given by a covering {L7a} of M andmaps(pa: L7a-^^w~psatis-

fying 1) and 2).
1) cpa is a submersion (i.e. has rank n~p). Then for each xeU, cp~x(ça(x)) is a

smooth /?-dimensional submanifold of U.

2) If xeUan V,, then <p~1 (<pa(x))nUp q>;l (cpp(x))n Ua.

The tangent space T{cpa * ((pa(x)))x (the tangent space to the foliation at x) will be

denoted by T&x ; T& will then represent the /?-dimensional subbundle of TM whose

fibre over xeMïs T1FX. The functions (pa are called the distinguishedfunctions of the

foliation.
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The leaf topology on Ua cornes from considering Ua as the disjoint union of the

/7-dimensional manifolds {q>a constant}. Since thèse topologies coincide on over-
laps they fit together to define the leaf topology on M. A connected component of M
in this topology is called a leaf of the foliation.

Example 1. Let Sn= {(x0,..., xn)eRn + \ J>? 1}. The function pn:Sn-*R, given
by projection on the last coordinate axis, has rank one when restricted to Sn —

(0,..., 0, 1)-(0,..., 0, -1) and defines a foliation of Sn minus the pôles by sheets of
constant latitude. In this case one distinguished function defined the whole foliation.
More generally, a submersion (p:Mn-+Wn~p gives a /?-dimensional foliation of M,
with leaves the connected components of the submanifolds {q> constant}. This is a

spécial case (where !F is the foliation by points) of the next example.

Example 2. Suppose W has a foliation <F of codimension q, with distinguished
functions {q>a: l/a-»i?€}. If M is a smooth manifold and h:M-+ W'\§ transversal to the
leaves of lFy then h pulls back !F to give the foliation /z*^ of M with distinguished
functions {cp^h'.h'1 Ua-+Rq}. In connection with this example there is the following
useful resuit.

Lemma 2.1. Let T&L and r(/ï* J^)1 be the normal q-plane bundles to & and

respectively. Then T(h*&r)1 h*(T#rl), Le. there is a bundle map

Proof Lctp.TW^T^1 be orthogonal projection. Composing/? with the differen-
tial dh gives a map p°dh whose kernel in TMy is T(h^^)y, and thereby induces an

isomorphism TMyIT(h*&r)yczT(h*&')$->T?£iy)9 for each yeM.

Example 3. This is the example referred to in the section heading. It will play an

important rôle in the proof of Theorem 1.2.

Observe that the foliation of Example 1 is preserved by the antipodal map, and

therefore defines a foliation {the standardfoliation) of the punctured projective space
Pn — x9 where Pn is taken as Sn with antipodal points identified, and xePn corresponds

to the pôles. Let n:Sn-+Pn be the projection. Since n is a local diffeomorphism, it
follows that maps of the form pn°n~1\U, for appropriate U, give a family of
distinguished functions for the standard foliation. In particular, notice that n maps the

open upper hémisphère diffeomorphically onto pn-Pn~1 (hère take P""1 c=Pn as the

image of the equatorial S""1); thus the submersion (pn=pn°n~1: Pn—Pn~x—x-*R

détermines the standard foliation on the complément of the leaf Pn~l.
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Lemma 2.2. Let a^>Pn — xbe the tangent Une hundle normal to the standardfoliation,
Then a is équivalent to yl\Pn—x, where yl~>Pn is the canonical Une bundle.

Proof The two bundles are équivalent over P""1, a déformation retract of Pn—x.
In fact, alP11^1 is the normal bundle ofPn~l in Pn, which is easily seen tobeéquivalent
toyj-t-yjl/*"-1.

3. Proof ofTheorem 1.2

The complementary Une bundle oL is équivalent to a bundle over a complex of
dimension <rc~ 1, since M is open (cf. Proposition 4.1), so there exists a bundle map

i I
M-^P\

In fact, one may assume that/misses a point in Pn and, using Lemma 2.2, that there is

a map

Finally, it may be assumed that/intersects Pn 1cPn transversally and, by Lemma 4.2,

proved in § 4, that N=f~iPn~1 is an embeddedmanifold (of dimension w— 1) with no
compact components.

The manifold Pn — x carries the "standard foliation" described in Example 3 of
§ 2. The intersection of/with a leaf sufficiently near Pn~l will also be transversal, so/
pulls back (see Example 2 of § 2) a foliation 3* of an open tubular neighborhood U
of N. Let t-> U be the field transverse to 3r.

Lemma 3.1. The Une field aL\ U is homotopic to x as sections in the bundle oflines of
TU, a bundle with fibre Pn~K

Proof The two sections détermine isomorphic bundles, since they are both mapped
to a by bundle maps covering/|(7. This is true for a1 by définition of/, and follows
from Lemma 2.1 for t.

The obstructions to a homotopy between them lie in Hl(U\ TtiP"'1). Since U is

chosen to hâve N as déformation retract, and N has no compact components, it
follows that U has no cohomology in dimensions n or n — 1 ; so the only possible obstruction

is in #*((/; niPn~1)=H1(U; Z2). It is sufficient to show that the obstruction
cocycle gives zéro when evaluated on any 1-cycle A of U. Suppose that the sections
hâve been deformed to match on the 0-skeleton; then the value of the obstruction
cocycle on a 1-simplex A1 of A is 1 or 0 according as the bundle over S1 formed by
oL\Al on the upper semicircle and xlA1 on the lower is orientable or not; and the
value of the obstruction cocycle on A will be 1 only if aL\A is orientable and x\A is

not, or vice-versa, impossible if oL\A and x\A are isomorphic bundles.
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Let U' be an open neighborhood of N, with closure contained in U. Then the
restriction to V of the homotopy between aL\ U and t may be extended to a homotopy
deforming ail of a1 to a new line field f equal to t on U'. The orthogonal («— 1)-

plane field f1 is clearly homotopic to a.
The next lemma allows one to consider, instead of M—N, a manifold M which is

more convenient for submersion theory.

Lemma 3.2. There is an open manifold-with-boundary iQl and a smooth map \j/:
M-+M which maps lnthî M — dM diffeomorphically onto M—N, and dfà onto N
as a double covering.

Proof. M is constructed by cutting along N, as follows.
The construction may be repeated for each component of N, so suppose that N

is connected. Let v->N be the normal bundle of the embedding, assume M to carry a

Riemannian metric, and let W be an open neighborhood of N in the total space of v

small enough to be mapped diffeomorphically into M by the exponential map exp.
a) If v is trivial, orient v; then let W+ {veW, v^O}, W~ {veW, v^O}, and

define hî to be M—Nu u W+ u u W~ (u u =disjoint union) with the identification
usexpOOfor veW+vW~, v^O.

b) If v is non-orientable, let W-*N be the orientable double cover, and p: W^> W
the projection. Then define Aï to be M—Nkj W+ with the identification v exp(p(v))
for veW+y v>0.

The natural map \j/:]Çï-+M clearly has the required properties. Since N had no
compactcomponentSjneitherdoesdiQ^since Intifà is also an open manifold, it follows
that ifà is an open manifold with boundary. This complètes the proof of Lemma 3.2.

Now let Û^il/'1 U'czjQl, so Û is an open neighborhood of dM in Aï. The line
field f lifts up to a line field f on ifà, which is orientable by construction of JVf (shrink
i\2r into IntAÏ; then î maps to the trivial bundle (x\Pn—P""1 — x). Let rj be a non-zero
vectorfield contained in t. The restriction of î to Û also contains the non-zero gradient
V (<Pn°fo */0> but the two orientations may or may not coincide. To remedy this,
define a new submersion F: Û-+R by F(x)= ±(pn°f°\l/(x)9plus or minus according
as the two orientations do or do not agrée on the connected component of Û con-
taining x.

Corollary 4.4 now applies. It follows that n is homotopic through non-zero vector-
fields to the gradient of a submersion g:Û-*R such that g\V=F\V, for some open
neighborhood V of dû. Moving back down to M, the submersion g° \j/ ~1

: M—N-+R
defines a foliation which clearly agrées with ^ on the overlap il/(V)nM-N. The

proof of Theorem 1.2 is completed by the easy observation that the tangent field of
this foliation is homotopic to x1 and therefore to cr.
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4. Two Lemmas on Open Manifolds

Thèse lemmas both dépend on the following resuit.

Proposition 4.1. Let M be an open (no compact components) manifold with
(possibly empty) boundary dM. Give the pair (M, dM) a smooth triangulation. Then

M has an (n — \)-dimensional subcomplex K containing dM, with the following property.
Given an open tubular neighborhood M' of K, there is a homotopy of embeddings

(pt:M->M such that cp0 is the identity, (pt(M) Mf, and cpt(x) x for x belonging to

some neighborhood V ofK andfor ail te[O, 1].
Proof A combinatorial form of this statement is essentially contained in the

proof of Theorem 3.2 of [5]. The differentiable form can then be derived by the
methods used in [2], Theorem 3.7.

Lemma 4.2. Let M be an open manifold, and let f-.M-^W be a continuons map.
Let NczWbe a submanifold of codimension p. Then f is homotopic to a smooth map
h:M-+ W transversal to N and such that the submanifold h~l N (which has codimension

p) has a complex of codimension ^p +1 (in M) as déformation retract.
Proof. Let K be the subcomplex of Proposition 4.1. The map/is homotopic to g

where g is smooth and transversal to N and such that g\K is transversal to N. The
inverse image g~xN is a smooth submanifold of codimension p which intersects K
along a subcomplex of codimension p in K. Pick an open tubular neighborhood M'
of K small enough so that g~1NnM' has g'^^NnK as déformation retract. Let
<px\M-*M' be the diffeomorphism described above. Then h=go(pt is homotopic to
g, and h" * N=cpî * (g~1Nn M') has a complex of codimension ^p +1 as déformation
retract.

Lemma 4.3. Let M be an open manifold with boundary dM, and let f: U-* W
be a submersion defined on a neighborhood U of dM. Suppose that the differential
df\ TU-+TW extends to a tangent bundle map H:TM-*T W of maximal rank. Then H
is homotopic through tangent bundle mapsofmaximal rank to the differential dg ofa
submersion g\M-*W which is equal to f on some neighborhood of dM. The homotopy
leaves Hfixed near dM.

Proof. This is a relative form of part of [3], Theorem A. The proof is a straight-
forward application of Proposition 4.1 and the techniques of [3].

In [3], Theorem A has the corollary Theorem B treating the case where W=RP.
In precisely the same manner, the following is a conséquence of Lemma 4.3.

Corollary 4.4. Let M be an open manifold with boundary dM, and let f: U-+Rp,

f^ifw'ifp)» t>e a submersion defined on a neighborhood U of dM. Suppose that
the gradient p-frame field (V/i,..., V/p) extends to a p-frame field rj defined on ail of
M. Then r\ is homotopic (as a section in the bundle ofp-frames of TM) to the gradient
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p-frame field of a submersion g:M-+Rp which is equal to f on some neighborhood of
dM. The homotopy leaves r\ fixed near dM.
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