On a Special Class of Hamiltonian Graphs.

Autor(en): Chartrand, Gary / Kronk, Hudson V.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 44 (1969)

PDF erstellt am: 23.07.2024
Persistenter Link: https://doi.org/10.5169/seals-33757

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On a Special Class of Hamiltonian Graphs

Gary Chartrand ${ }^{1}$) and Hudson V. Kronk

One of the most basic questions asked about a graph (finite, undirected, without loops or multiple edges) is whether its structure is such that it can be traversed or traced in a certain manner. Undoubtedly, the two most important classes of graphs dealing with traversability are the eulerian graphs and the hamiltonian graphs. A graph G is eulerian if it has a closed path (called an eulerian path) containing every edge of G exactly once and every vertex of G at least once, while G is hamiltonian if it has a closed path containing every vertex of G exactly once, i.e.. if it has a hamiltonian cycle.

A graph G is said to be randomly eulerian from a vertex v if the following procedure always results in an eulerian path. Begin at the given vertex v and traverse any incident edge. On arriving at a vertex, choose any incident edge which has not yet been traversed. When no new edges are available the procedure terminates. These graphs have also been referred to as arbitrarily traversable from v and arbitrarily traceable from v and have been investigated by Bäbbler [1], Harary [3], and Ore [4].

This suggests the following concept. We define a graph G to be randomly hamiltonian from the vertex v if the following procedure always results in a hamiltonian cycle. Begin at the vertex v and proceed to any adjacent vertex. On arriving at a vertex, select any adjacent vertex not previously encountered. When no new vertices remain, then an edge exists between the final vertex chosen and v, and the procedure terminates. Thus in a graph G which is randomly hamiltonian from a vertex v, any path beginning at v can be extended to a hamiltonian cycle. Graphs which are randomly hamiltonian from every vertex were characterized in [2] and are called simply randomly hamiltonian graphs.

It is the object of this article to present a characterization of graphs which are randomly hamiltonian from a vertex, and thereby provide a classification of all such graphs.

It is convenient to introduce notation for several types of graphs which are encountered throughout the course of this article. The complete graph with p vertices is denoted by K_{p}, while C_{p} represents the cycle with $p \geqslant 3$ vertices. The complete bipartite graph $K(m, n)$ is the graph with $p=m+n$ vertices whose vertex set V can be partitioned as $V_{1} \cup V_{2}$ such that $\left|V_{1}\right|=m,\left|V_{2}\right|=n$, and vertices u and v are adjacent if and only if $u \in V_{i}$ and $v \in V_{j}, i \neq j$. It was shown in [2] that a graph G with $p \geqslant 3$ vertices is randomly hamiltonian if and only if it is one of the graphs K_{p}, C_{p}, and $K(p / 2, p / 2)$.

[^0]We express a graph G as $H+v$ provided v is a vertex of G adjacent to all other vertices of G, where then H is the graph obtained from G by the removal of v and all edges incident with v. For example, the graph $C_{n}+v$ is often referred to as the wheel W_{n}. The graphs $K(3,3)+v$ and $W_{5}=C_{5}+v$ are illustrated in Figure 1. In each case, the graph is randomly hamiltonian from v.

$W_{5}=C_{5}+v$

Figure 1
Two graphs which are randomly hamiltonian from the vertex v

Of course, if a graph G is randomly hamiltonian from a vertex, then G is hamiltonian and therefore has a hamiltonian cycle. Thus whenever we have a graph G with p vertices which is randomly hamiltonian from a vertex we assume the existance of a hamiltonian cycle C whose vertices are labeled cyclically $v_{1}, v_{2}, \ldots v_{p}$. Each edge of G then either belongs to C, and is called a cycle edge of G, or joins two nonconsecutive vertices of C and is called a diagonal.

If G is a graph which is randomly hamiltonian from some vertex (and which contains a hamiltonian cycle C labeled as earlier indicated), then any cycle of G containing exactly one diagonal of G is called an outer cycle of G. An outer n-cycle has length n, and an outer 3 -cycle is also referred to as an outer triangle.

We now present the main result of the paper.
Theorem. A graph G is randomly hamiltonian from a vertex v if and only if G is randomly hamiltonian or $G=H+v$, where H is randomly hamiltonian.

Proof. If G is a randomly hamiltonian graph containing a vertex v or if G is expressible as $H+v$, where H is randomly hamiltonian, then it is easily observed that G is randomly hamiltonian from v.

Conversely, let G be a graph with p vertices which is randomly hamiltonian from the vertex v. Thus G contains a hamiltonian cycle V whose vertices we label cyclically as $v=v_{1}, v_{2}, \ldots, v_{p}$.

Suppose that G is not randomly hamiltonian so that G is none of the graphs $K_{p}, C_{p}, K(p / 2, p / 2)$. In particular, this implies that G contains diagonals so that G necessarily contains outer cycles. Hence the vertex v belongs to one or more outer cycles.

Let n be the length of the smallest outer cycle containing v. We first show that there exists an outer n-cycle containing v but in which v is not the endpoint of the associated diagonal. Suppose that the vertices of an outer n-cycle are $v_{1}, v_{2}, \ldots, v_{n}$. Consider the path which commences at v_{1}, proceeds to v_{n} along the diagonal $v_{1} v_{n}$, and encounters in succession the vertices $v_{n+1}, v_{n+2}, \ldots, v_{p}$. Since G is randomly hamiltonian from $v=v_{1}$ and v belongs to no outer k-cycle, $k<n$, the diagonal $v_{p} v_{n-1}$ must be present in G. Hence v belongs to the outer n-cycle whose vertices are v_{p}, v_{1}, \ldots, v_{n-1}. In a similar way, one can show that if $v_{p-n+2} v_{1}$ is a diagonal of G, then $v_{p-n+3} v_{2}$ is a diagonal of G.

Thus we may assume the existence of an outer n-cycle whose vertices are v_{m}, $v_{m+1}, \ldots, v_{p}, v_{1}, \ldots v_{k-1}$, where $m=p-n+k$ and $3 \leqslant k \leqslant n$. We now show that the diagonals $v_{m-1} v_{k-2}$ and $v_{m+1} v_{k}$ are present in G in addition to $v_{m} v_{k-1}$. We begin a path at $v=v_{1}$ and proceed along C to $v_{p}, v_{p-1}, \ldots, v_{m}$. Following along the diagonal $v_{m} v_{k-1}$ to v_{k-1} and then taking $v_{k}, v_{k+1}, \ldots, v_{m-1}$, we see that $v_{m-1} v_{k-2}$ is a diagonal of G since G is randomly hamiltonian from v and v belongs to no outer t-cycle, $t<n$. Similarly, by applying the preceding arguments to the path $v_{1}, v_{2}, \ldots, v_{k-1}, v_{m}, v_{m-1}$, v_{m-2}, \ldots, v_{k}, we observe that $v_{m+1} v_{k}$ is a diagonal of G.

We now prove that $n<5$, for suppose, to the contrary, that $n \geqslant 5$. We have already seen that exists an outer n-cycle whose vertices are $v_{m}, v_{m+1}, \ldots, v_{p}, v_{1}, \ldots, v_{k-1}$, where $m=p-n+k$ and $3 \leqslant k \leqslant n$, and, in addition, the edges $v_{m-1} v_{k-2}$ and $v_{m+1} v_{k}$ belong to G. Furthermore, since $n \geqslant 5, v_{1}$ is not adjacent to both v_{m} and v_{k-1}. Let us say that v_{1} is not adjacent to v_{k-1}, the other case being handled analogously. We now construct a path which beins at $v=v_{1}$ and takes in succession $v_{p}, v_{p-1}, \ldots, v_{m+1}$. We then proceed to v_{k} via the diagonal $v_{m+1} v_{k}$ and move along C in the order v_{k+1}, v_{k+2}, \ldots, v_{m-1}. On reaching v_{m-1}, we next take v_{k-2} (which is different from v), v_{k-1}, and then v_{m}. Since G is randomly hamiltonian from v, there exists either a vertex not yet encountered which is adjacent to v_{m} or the edge $v_{m} v$ which completes a hamiltonian cycle. In either case, there exists an edge $v_{m} u$, where u is one of the vertices v_{m+2}, v_{m+3}, $\ldots, v_{p}, v_{1}, \ldots, v_{k-3}$, which determines an outer cycle containing v having length less than n, and this is a contradiction.

We now show that $n \neq 4$. To prove this, we assume $n=4$ so that v belongs to an outer 4 -cycle but not an outer triangle. From what we have shown above, we may assume, without loss of generality, that $v_{p}, v_{1}, v_{2}, v_{3}$ are the vertices of an outer 4 -cycle. Since G is randomly hamiltonian from $v=v_{1}$, the path $v_{1}, v_{2}, v_{3}, v_{p}, v_{p-1}$, v_{p-2}, \ldots, v_{4}, which contains all vertices of G, implies that $v_{1} v_{4}$ is an edge of G. The path $v_{1}, v_{4}, v_{3}, v_{p}, v_{p-1}, v_{p-2}, \ldots, v_{5}$ contains all the vertices of G with the exception of v_{2}; hence $v_{2} v_{5}$ is an edge of G. Next the path $v_{1}, v_{2}, v_{5}, v_{4}, v_{3}, v_{p}, v_{p-1}, v_{p-2}, \ldots, v_{6}$ contains all the vertices of G and, as such, implies that $v_{1} v_{6}$ is an edge of G. Continuing inductively, it is now easily verified that all edges of the type $v_{1} v_{2 m}$ belong to G as do all edges of the type $v_{2} v_{2 m+1}$. From this it now follows that every two vertices v_{α}
and v_{β}, where α and β are of opposite parity, are adjacent. To see this, let $v_{2 r}$ and $v_{2 s+1}$ be two non-consecutive vertices of C, where $v_{2 r}$ is different from v_{2} and $v_{2 s+1}$ is not v_{1}. There are two cases to consider according to whether the path $v_{2 r}, v_{2 r+1}$, $\ldots, v_{2 s+1}$ does or does not contain the vertex v. We treat here only the latter case, the former case being handled in a similar manner. We construct a path which begins at v_{1}, proceeds along a diagonal to $v_{2 s}$, then along C to the vertices $v_{2 s-1}, v_{2 s-2}, \ldots$, $v_{2 r+1}$, from where we move to v_{2} by way of the diagonal $v_{2} v_{2 r+1}$. Next we proceed to $v_{2 r-1}$ via the diagonal $v_{2} v_{2 r-1}$ and then take $v_{2 r-2}, v_{2 r-3}, \ldots, v_{3}, v_{p}, v_{p-1}, \ldots, v_{2 s+1}$, which produces a path failing only to contain $v_{2 r}$. Since G is randomly hamiltonian from v, the edge $v_{2 r} v_{2 s+1}$ must be present in G. Finally, we show that if α and β are of the same parity, then v_{α} and v_{β} are not adjacent. We consider here only the case where α and β are odd, the other case following similarly. Assume, to the contrary, that the vertices $v_{2 r+1}$ and $v_{2 s+1}$ are adjacent, where $2 r+1<2 s+1$, say. The path $v_{1}, v_{2 s+2}, v_{2 s+3}, \ldots, v_{p}, v_{3}, v_{4}, \ldots, v_{2 r+1}, v_{2 s+1}, v_{2 s}, \ldots, v_{2 r+2}$ fails only to contain the vertex v_{2}; thus $v_{2} v_{2 r+2}$ is an edge of G. From this we see that the path $v_{1}, v_{p}, v_{p-1}, \ldots$, $v_{2 r+2}, v_{2}, v_{2 r+1}, v_{2 r}, \ldots, v_{3}$, which contains all vertices of G, implies that $v_{1} v_{3}$ is a diagonal of G. However, this contradicts the fact that v_{1} belongs to no outer triangle. Hence, v_{α} and v_{β} are adjacent if and only if α and β are of opposite parity. This implies that p is even since $v_{1} v_{p}$ is an edge of G. Furthermore, be letting $V_{1}=\left\{v_{2 n} \mid n=1\right.$, $2, \ldots, p / 2\}$ and $V_{2}=\left\{v_{2 n-1} \mid n=1,2, \ldots, p / 2\right\}$, we see that G is the graph $K(p / 2, p / 2)$, which, as noted earlier, is randomly hamiltonian. However, this is a contradiction since it is contrary to our assumption that G is not randomly hamiltonian.

We now arrive at the conclusion that the only possible value is $n=3$; thus v belongs to an outer triangle. From methods similar to those we have already employed, it is immediately established that G contains the edges $v_{1} v_{3}, v_{2} v_{p}$, and $v_{1} v_{p-1}$. Thus v_{1} is adjacent to each of the vertices v_{2}, v_{3}, and v_{p}. However, v_{1} is necessarily adjacent to all other vertices of G, for if $v_{1} v_{k}$ is an edge of $G, 3 \leqslant k<p-1$, then so too is $v_{1} v_{k+1}$ an edge of G since the path $v_{1}, v_{k}, v_{k+1}, \ldots, v_{2}, v_{p}, v_{p-1}, \ldots, v_{k+1}$ contains all vertices of G and therefore v_{1} is adjacent to v_{k+1}. The result then follows by induction.

Hence we may express G as $H+v$. The only remaining detail now is to verify that H is randomly hamiltonian. In order to prove this, it is necessary to show that any path $u_{1}, u_{2}, \ldots, u_{k}$ of H can be extended to a hamiltonian cycle of H. Since v is adjacent to $u_{1}: v, u_{1}, u_{2}, \ldots, u_{k}$ is a path of G and can be extended to a hamiltonian cycle $v, u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{p-1}, v$ of G. However, v is also adjacent to u_{2}; thus $v, u_{2}, u_{3}, \ldots, u_{p-1}$ is also a path of G and can be extended to a hamiltonian cycle of G. This implies that $u_{p-1} u_{1}$ is an edge of G so that $u_{1}, u_{2}, \ldots, u_{p-1}, u_{1}$ is a hamiltonian cycle of H. Hence H is randomly hamiltonian, completing the proof.

The preceding theorem now indicates that the only graphs with p vertices which are randomly hamiltonian from some vertex v are $C_{p}, K_{p}, K(p / 2, p / 2), C_{p-1}+v$, and $K((p-1) / 2,(p-1) / 2)+v$. As one final observation, we state the following.

Corollary. The number of vertices in a graph G with p vertices from which G is randomly hamiltonian is either 0,1 , or p.

REFERENCES

[1] F. BÄbler, Über eine spezielle Klasse Euler'scher Graphen, Comment. Math. Helv. 27 (1953), 81-100.
[2] G. Chartrand and H.V. Kronk, Randomly Traceable Graphs, J. Soc. Indust. Appl. Math. (to appear).
[3] F. Harary, On Arbitrarily Traceable Graphs and Directed Graphs, Scripta Math. 23 (1957), 37-41.
[4] O. Ore, A Problem Regarding the Tracing of Graphs, Elem. Math. 6 (1951), 49-53.
Western Michigan University
SUNY at Binghamton

[^0]: ${ }^{1}$) Research supported in part by a Faculty Research Fellowship from Western Michigan University.

