Stable Secondary Cohomology Operations.

Autor(en): Harper, John R.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 44 (1969)

PDF erstellt am: 23.07.2024
Persistenter Link: https://doi.org/10.5169/seals-33778

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Stable Secondary Cohomology Operations

by John R. Harper

Introduction

The purpose of this paper is to investigate for each positive integer n the stable secondary cohomology operations which are defined on every mod 2 cohomology class of dimension n. Such operations correspond to relations in the mod 2 Steenrod algebra A of the form $0=\Sigma a_{i} b_{i}$ with excess b_{i} greater than n. The set of all such operations is a left A-module. Thus we derive a basis for the module of operations. We shall call operations in a basis basic operations and their corresponding relations basic relations.

Let $B(n)$ denote the left A-ideal of the Steenrod algebra which annihilates all $\bmod 2$ cohomology of dimension n or less. In [9] it is shown that the set of admissible monomials of excess greater than n is a basis for $B(n)$ as a Z_{2}-module. In his paper [1], J. F. Adams uses homological algebra to find relations in A. For our problem the generators of $\mathrm{Ext}_{\boldsymbol{A}}^{s, t}\left(B(n), Z_{2}\right)$ for $s=0,1$ as a Z_{2}-module are in one to one correspondence with a minimal set of A-generators and basic relations respectively for $B(n)$. Wall formalizes the connection between generator and relations, and homological algebra [10].

Our main results are the following.
THEOREM A. $\operatorname{Ext}_{A}^{0, t}\left(B(n) Z_{2}\right) \cong Z_{2}$ for pairs (n, t) such that either
(a) $t=2^{i}$ and $0 \leqslant n<t$, or
(b) $t \equiv 2^{i}\left(2^{i+1}\right), t>2^{i}$, and $n=t-r$ for $0<r<2^{i+1}$.

Otherwise the group is 0 . The corresponding generator of $B(n)$ can be chosen as Sq^{t}.
THEOREM B. For $t \leqslant 3 n+4$, $\operatorname{Ext}_{A}^{1, t}\left(B(n), Z_{2}\right) \cong Z_{2}$ for pairs (n, t) satisfying all of the following:
(a) Given t determine all non-negative integers i, j such that $t=m+3 \cdot 2^{j}, m \equiv 2^{i}\left(2^{i+1}\right)$, m may be negative.
(b) $n=m+2^{j}-r \quad 0 \leqslant r<2^{i+1}-1$
(c) $n \not \equiv 2^{j}\left(2^{j+1}\right)$

For any element $\theta \in A$ we define $H(\theta) \in A \otimes A$ as follows. Let $\psi: A \rightarrow A \otimes A$ be the coproduct. Since A is co-commutative, $\psi(\theta)=\Sigma \theta_{i}^{\prime} \otimes \theta_{i}^{\prime \prime}+\eta \otimes \eta+\Sigma \theta_{i}^{\prime \prime} \otimes \theta_{i}^{\prime}$. Let $H(\theta)=$ $=\Sigma \theta_{i}^{\prime} \otimes \theta_{i}^{\prime \prime}$. If x is a cohomology class, we define $H(\theta) x=\Sigma \theta_{i}^{\prime} x \cup \theta_{i}^{\prime \prime} x$.

THEOREM C. Let $0=a \mathrm{Sq}^{n+1}+\Sigma a_{i} \mathrm{Sq}^{i}(i>n+1)$ be a relation in $B(n)$. There exists
a stable secondary operation Φ such that on the fundumental class $i_{n} \in H^{n}\left(Z_{2}, n ; Z_{2}\right)$ we have $\left(H(a) \imath_{n}\right) \subset \Phi\left(\imath_{n}\right)$ and if $\operatorname{dim} x<n,(0) \subset \Phi\left(l_{n}\right)$.

The first two theorems are proved in Section 2. Theorem C is proved in Section 3. There some relations are listed.

This work includes part of my University of Chicago dissertation directed by Professor A. L. Liulevicius. I am grateful to him for suggesting this problem and helping in its development, especially in Section 3. I am also indebted to Professor J. P. May for many helpful comments.

Section 1. Algebraic Preliminaries

In this section we obtain some results on the structure of $B(n)$ and related A-modules. Let A^{*} denote the dual of A. We use the Cartan basis of admissible monomials for A and the Milnor basis of monomials in ξ_{i} for $A^{*}[9]$. We employ the conventious of writing $\operatorname{Sq}(I), \xi(I)$ and $\xi_{1}(i) \xi_{2}(j) \ldots \xi_{p}(k)$, where $I=(i, j, \ldots k)$ is a finite sequence of non-negative integers, to denote $\mathrm{Sq}{ }^{i} \mathrm{Sq}^{j} \ldots \mathrm{Sq}^{k}$ and $\xi_{1}^{i} \xi_{2}^{j} \ldots \xi_{p}^{k}$ in A and A^{*} respectively. We first summarize those results of Milnor [8] which we require.

THEOREM 1.1 (a) As an algebra A^{*} is a graded polynomial algebra over Z_{2} on generators ξ_{i} of grade $2^{i}-1 i \geqslant 1$.
(b) The coproduct $\varphi^{*}: A^{*} \rightarrow A^{*} \otimes A^{*}$ is a homomorphism of algebras given by $\varphi^{*}\left(\xi_{k}\right)=\Sigma_{i+j=k} \xi_{i}\left(2^{j}\right) \otimes \xi_{j}$.
(c) The evaluation $\left\langle\mathrm{Sq}^{k}, \xi_{1}^{k}\right\rangle=1$ and $\left\langle\mathrm{Sq}^{k}, \alpha\right\rangle=0$ for α any other monomial in the ξ_{i}.
(d) Let $\mathrm{Sq}(I)$ with $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be an admissible monomial in A. Form the sequence $I^{\prime}=\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}\right)$ where $i_{k}^{\prime}=i_{k}$ and $i_{j}^{\prime}=i_{j}-2 i_{j+1}$ for $1 \leqslant j \leqslant k-1$. Then grade $\mathrm{Sq}(I)=\operatorname{grade} \xi\left(I^{\prime}\right)$ and $\left\langle\mathrm{Sq}(I), \xi\left(I^{\prime}\right)\right\rangle=1$. We call $\xi\left(I^{\prime}\right)$ the monomial associated with $\mathrm{Sq}(\mathrm{I})$.

We consider $B(n)$ as a graded A-module with the grading and module action that inherited as a submodule. We shall need dual information for $B(n)^{*}$.

DEFINITION. Let $\xi(I)$ for $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be a monomial in A^{*}. The multiplicity of $\xi(I)$, written either as $m \xi(I)$ or $m(I)$, is defined to be Σi_{j}.

PROPOSITION $1.2 B(n)^{*}$ is the quotient of A^{*} by $B(n)^{\dagger}$, the annihilator of $B(n)$, spanned by all monomials of multiplicity less than or equal to $n . B(n)^{\dagger}$ is a sub $A^{*}-$ comodule of A^{*} and $B(n)^{*}$ has the induced comodule structure.

Proof. Since the coproduct φ^{*} in A^{*} has the property that if $\varphi^{*}(\alpha)=\Sigma \alpha^{\prime} \otimes \alpha^{\prime \prime}$, then $m\left(\alpha^{\prime \prime}\right) \leqslant m(\alpha)$, the only non-trivial statement is the description of $B(n)^{\dagger}$. Let α be a monomial in A^{*} with $m(\alpha)>n$. Let $\mathrm{Sq}(J)$ be the admissible monomial in A such that
α is the associated monomial of $\operatorname{Sq}(J)$. Then $\langle\operatorname{Sq}(J), \alpha\rangle=1$ and excess $\operatorname{Sq}(J)=m(\alpha)$. Hence α is not in $B(n)^{\dagger}$. Now let the monomial α have $m(\alpha) \leqslant n$. Let X be an n-fold product of $R P^{\infty}$. Let $u \in H^{n}\left(X ; Z_{2}\right)$ be the element such that $p_{i}^{*}\left(x_{i}\right)=u$ where $p_{i}: X \rightarrow R P^{\infty}$ is the i-th projection and x_{i} generates $H^{1}\left(R P^{\infty} ; Z_{2}\right)$. Consider the formula [9]

$$
\theta(u)=\sum_{m(I) \leqslant n}<\theta, \xi(I)>x(I)
$$

where $\theta \in A, \xi(I) \in A^{*}$ and $x(I)$ are linearly independent elements of $H^{*}\left(X ; Z_{2}\right)$. We can assume θ is admissible. If $\theta \in B(n)$ then $\theta(u)=0$. Hence by the linear independence of the $X(I),\langle\theta, \xi(I)\rangle=0$ for all I with $m(I) \leqslant n$. Thus $B(n)^{\dagger}$ is as described.

We use the basis for $B(n)^{*}$ consisting of all classes [α] of monomials in the Milnor generators for which $m(\alpha) \geqslant n+1$. The next few lemmas concern primitives of the co-action $\varphi^{*}: B(n)^{*} \rightarrow A^{*} \otimes B(n)^{*}$. Primitives are those elements for which $\varphi^{*}[\alpha]=$ $=1 \otimes[\alpha]$. In 1.3-1.6 β always denotes a homogeneous (in grade) sum of monomials in $A^{*}, \beta=\Sigma \alpha_{i}$.

LEMMA 1.3. Suppose $m\left(\alpha_{i}\right)>m$ for all i and $[\beta]$ is primitive in $B(n)^{*}$ for some $n<m$. Then $[\beta]$ is primitive in $B(k)^{*}$ for all k such that $n \leqslant k<p, p=\max _{i}\left(m\left(\alpha_{i}\right)\right)$.

Proof. The hypothesis says that in $A^{*}, \varphi^{*}(\beta)=1 \otimes \beta+\Sigma \alpha_{i}^{\prime} \otimes \alpha_{1}^{\prime \prime}$ with $m\left(\alpha_{i}^{\prime \prime}\right) \leqslant n$, from which the lemma is obvious.

LEMMA 1.4. Suppose $m\left(\alpha_{i}\right)=m$ for all i and $\beta \neq \xi_{1}^{m}$. Then $[\beta]$ is not primitive in $B(m-1)^{*}$.

Proof. Write each $\alpha_{i}=\xi\left(n_{i, 1}, n_{i, 2}, \ldots, n_{i k}\right)$ with k large enough to be independent of i (some $n_{i, k}$ may be zero). Define a lexicographic type ordering $\alpha_{i}>\alpha_{j}$ provided there is an integer J (depending on the pair) such that $n_{i, J}>n_{j, J}$ and $n_{i, p}=n_{j, p}$ for all $p>J$. The ordering is well defined because it is transitive. Since the α_{i} are all of the same grade and multiplicity, no two of them can differ only in the ξ_{1} and ξ_{2} factors. Thus any J involved in the determination of order is greater than 2 . Now let J be the integer which determines $\alpha_{1}>\alpha_{2}, \alpha_{1}$ being the first ordered element. The coproduct $\varphi^{*}\left(\xi_{J}\left(n_{1, J}\right)\right)$ contains the summand $\xi_{J-1}\left(2 n_{1, J}\right) \otimes \xi_{1}\left(n_{1, J}\right)$. Since we are interested in those summands $\alpha_{1}^{\prime} \otimes \alpha_{i}^{\prime \prime} \subset \varphi^{*}\left(\alpha_{i}\right)$ for which $\alpha_{i}^{\prime \prime} \neq 1$ and $m\left(\alpha_{i}^{\prime \prime}\right)=m$, the factor $\xi_{p}\left(n_{i, p}\right) \otimes 1$ cannot be involved in forming $\alpha_{i}^{\prime} \otimes \alpha_{i}^{\prime \prime}$. Since J is greater than 2 , the appearance of ξ_{J-1} on the left of \otimes in the coproduct of a monomial means that monomial must have a factor ξ_{p} with $p \geqslant J$. Now $\varphi^{*}\left(\alpha_{1}\right)$ contains the summand

$$
\begin{equation*}
\xi_{J-1}\left(2 n_{1, J}\right) \otimes \xi\left(n_{1,1}+n_{1, J}, n_{1,2}, \ldots, n_{1}, J-1,0, n_{1, J+1}, \ldots, n_{1, k}\right) \tag{1}
\end{equation*}
$$

This term is not cancelled in $\varphi^{*}\left(\alpha_{1}\right)$. Since α_{1} is ordered first, its exponents after the 0
are all respectively greater than or equal to the corresponding exponents of any other α_{i}. There are two cases. Either $n_{1, J}>n_{i, J}$ or $n_{1, p}>n_{i, p}$ for some $p>J$. In the latter case such α_{i} cannot have (1) in their coproducts since they cannot produce the term on the right of \otimes. For the former case the remarks about the appearence of ξ_{J-1} on the left of \otimes indicate that α_{i} has a factor $\xi_{p}\left(n_{i, p}\right)$ for $p \geqslant J$. But $n_{1, p}=n_{i, p}$ for $p \geqslant J+1$ means only the term $1 \otimes \xi_{p}\left(n_{i, p}\right)$ can be used if $\varphi^{*}\left(\alpha_{i}\right)$ can possible contain (1). Thus $p=J$. But $n_{1, J}>n_{i, J}$. In passing to $B(m-1)^{*}$ we note that (1) is a non-zero element of $A^{*} \otimes B(m-1) *$.

The argument is illustrated by $\xi(27,3,6,3,1)>\xi(15,21,0,3,1)>\xi(21,6,12,0,1)$.
LEMMA 1.5. Let grade $\beta=t$ and $[\beta]$ primitive in $B(n)^{*}$. Then one of the $\alpha_{i}=\xi_{1}^{t}$ and $[\beta]$ is the only primitive in $B(n)^{*}$ in this grade.

Proof. By 1.4 not all α_{i} have the same multiplicity. Let $\beta^{\prime}=\Sigma_{m\left(\alpha_{i}\right)>n+1} \alpha_{i}$. Then by 1.3 [β^{\prime}] (non-zero) is a primitive in $B(n+1)^{*}$ and has fewer summands. Inductively we obtain a monomial primitive which is [ξ_{1}^{t}]. If there was another primitive $[\gamma]$ of the same grade, then $[\beta+\gamma]$ would be a primitive in $B(n)^{*}$ not having the summand $\xi_{1}^{t}\left(\right.$ over $\left.Z_{2}\right)$.

LEMMA 1.6. Let $m=\min _{i}\left(m\left(\alpha_{i}\right)\right)$. Suppose for some α_{i} with $m\left(\alpha_{i}\right)=m, \alpha_{i}=\xi\left(n_{1}\right.$, n_{2}, \ldots, n_{k}) with some n_{j} odd. Then $[\beta]$ is not primitive in $B(m-2)^{*}$.

Proof. In A^{*} the coproduct $\varphi^{*}\left(\alpha_{i}\right)$ contains the summand $\xi_{j} \otimes \xi\left(n_{1}, \ldots, n_{j}-1, \ldots, n_{k}\right)$ which is not in the coproduct of any other α in A^{*}.

Some other modules and algebras we shall employ are the following. Let $C(n+1)=$ $=B(n) / B(n+1)$. Let $a^{*}: A^{*} \rightarrow A^{*}$ be the squaring map $a^{*}(\alpha)=\alpha^{2}$. Let $A_{e}^{*}=\operatorname{Im} a^{*}$, $B(n)_{e}^{\dagger}=B(n)^{\dagger} \cap A_{e}^{*}, B(n)_{e}^{*}=A_{e}^{*} / B(n)_{e}^{\dagger}$. Let N be the dual of $A^{*} / A_{e}^{*}, P$ the dual of $A^{*} / / A_{e}^{*}=A^{*} / A_{e}^{*} . I\left(A^{*}\right)$. If we let $a: A \rightarrow A$ be the dual of a^{*}, then it is well known that $P \rightarrow A$ is an inclusion of Hopf algebras, P is normal in A and ker $a=A \cdot I(P)$, [3]. It is easy to see that $\operatorname{Ext}_{P}^{*, *}\left(Z_{2}, Z_{2}\right)=Z_{2}\left[q_{0}, q_{1}, \ldots\right]$ where q_{i} are all generators of bidegree $\left(1,2^{i+1}-1\right)$. We shall call this polynomial algebra W. Recall that an A module is cyclic if it is generated by a single element. The next proposition summarizes the information we shall need about the above structures.

PROPOSITION 1.7. (a) $C(n)^{*}$ is spanned by all classes of monomials $[\alpha]$ for which $m(\alpha)=n$.
(b) $C(n)$ is isomorphic as an A-module to a cyclic module $A / R(n)$ on a single generator (n) of grade n. The generator corresponds to Sq^{n}.
(c) N is a submodule of $R(n)$ and $R(n) / N \cong B(2 n)_{e}$.
(d) Since $B(2 n)_{e}^{*}=0$ in grades $t \leqslant 2 n+1, C(n)^{*}=A_{e}^{*} \cdot(n)$ as A^{*} comodules in this
ranye. This isomorphism is given by $[\alpha] \rightarrow \alpha^{\prime}(n)$ where $\varphi^{*}(\alpha)$ has the summand $\alpha^{\prime} \otimes \xi_{1}^{n}$.
(e) $t \leqslant 3 n+1, \mathrm{Ext}_{A}^{s, t}\left(C(n), Z_{2}\right)$ is a free W module over Z_{2} on a single generator (n) of bidegree $(0, n)$.

Proof. (a) is obvious. To show (b) let $f: A \rightarrow C(n)$ be the A-map defined by $f(1)=\mathrm{Sq}^{n}$. Since f^{*} is adjoint to multiplication by Sq^{n}, an application of 1.1 (c) shows that if $\alpha=\xi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ with $\Sigma n_{i}=n$ then $f^{*}([\alpha])=\left(2 n_{2}, 2 n_{3}, \ldots, 2 n_{k}\right)$. It is immediate that f^{*} is monic. We let $R(n)=\operatorname{ker} f$. We obtain (c) via dualizing. $R(n)^{*}=$ coker $f^{*}=A^{*} / B(2 n)_{e}^{\dagger}$ as A^{*}-comodules. Since $B(2 n)_{e}^{*}=A_{e}^{*} / B(2 n)_{e}^{*}$ we have $R(n)^{*} / B(2 n)_{e}^{*} \cong$ $\cong A^{*} / A_{e}^{*}$. This also gives (d). We obtain (e) for $t \leqslant 2 n+1+n=3 n+1$ from the sequence of isomorphisms,

$$
\begin{aligned}
\operatorname{Ext}_{A}^{s, t}\left(C(n), Z_{2}\right) & \cong \operatorname{Ext}_{A}^{s-1, t-n}\left(N, Z_{2}\right) \\
& \cong \operatorname{Ext}_{A}^{s-1, t-n}\left(\operatorname{ker} a, Z_{2}\right)=\operatorname{Ext}_{A}^{s, t-n}\left(A / A \cdot I(P), Z_{2}\right) \\
& \cong \operatorname{Ext}_{P}^{s, t-n}\left(Z_{2}, Z_{2}\right) \cong W(n)
\end{aligned}
$$

The penultimate isomorphism is an application of Cor 1.5 of [3].
We shall use the following maps.
DEFINITION. The map $s_{0}: B(n)^{*} \rightarrow B(n+1)^{*}$ is given as a map of Z_{2}-modules by $s_{0}[\alpha]=\left[\xi_{1} \alpha\right]$. The map s_{i} is defined as $s_{0}^{2 i}$. In particular $s_{i}[\alpha]=\left[\xi_{1}\left(2^{i}\right) \alpha\right]$. The codomain of s_{i} is $B\left(n+2^{i}\right)^{*}$.

The next lemma is an easy exercise with the co-action and its proof is omitted. It accounts for the periodicity in Theorems A and B.

LEMMA 1.8. The map $s_{0}: B(n)_{t}^{*} \rightarrow B(n)_{t+1}^{*}$ is an isomorphism of Z_{2}-modules in a range of grades $t \leqslant 3 n+4$. The map $s_{i}: B(n)_{t}^{*} \rightarrow B\left(n+2^{i}\right)_{t+2^{i}}^{*}$ is an A^{*}-comodule isomorphism in a range of grades $t \leqslant \min \left(n+2^{i}, 3 n+4\right)$.

Section 2. Computations

The main idea of this section is to investigate the spectral sequence obtained from the exact couple $\langle D, E\rangle$ where D, E are triply graded Z_{2}-modules;

$$
\begin{aligned}
E_{p, q, t}= & \operatorname{Ext}_{A}^{p+q, t}\left(C(p), Z_{2}\right) \\
D_{p, q, t}= & \operatorname{Ext}_{A}^{p+q, t}\left(B(p-1), Z_{2}\right), \\
& p \geqslant 0, p+q \geqslant 0 .
\end{aligned}
$$

With maps induced from

$$
0 \rightarrow B(p) \xrightarrow{i} B(p-1) \xrightarrow{j} C(p) \rightarrow 0 .
$$

We observe that if $x \in E_{p, q, t}$, then x is a non-bounding r-1 cycle if and only if x pulls back via $r-1$ iterates of i^{*} to a non-zero class in $\operatorname{Ext}_{A}^{p q, t}\left(B(p-r), Z_{2}\right)$.

The computations are facilitated by employing 1.7 to introduce products in the exact (compare [7]) in a certain range of t. We show that the various differentials are derivations. We shall obtain a product P,

$$
\begin{aligned}
& P: \operatorname{Ext}_{A}^{s_{i} t}\left(C(p), Z_{2}\right) \otimes \operatorname{Ext}_{A}^{u_{A}, v}\left(C(q), Z_{2}\right) \rightarrow \\
& \quad \operatorname{Ext}_{A}^{s+u, t+v}\left(C(p+q), Z_{2}\right) \text { for } t+v \leqslant 3(p+q)+1 .
\end{aligned}
$$

We employ the method of Mac Lane [6 p. 220]. First let X and Y be A free resolutions of $C(p)$ and $C(q)$ respectively. Using the Hom- \otimes interchange we have an external cohomology product p which commutes with connecting homomorphisms and in this case is an isomorphism

$$
H^{s}\left(\operatorname{Hom}_{A}\left(X, Z_{2}\right)\right) \otimes H^{u}\left(\operatorname{Hom}_{A}\left(Y, Z_{2}\right)\right) \rightarrow H^{s+u}\left(\operatorname{Hom}_{A}\left(X, Z_{2}\right) \otimes \operatorname{Hom}_{A}\left(Y, Z_{2}\right)\right)
$$

Let $\psi: A \rightarrow A \otimes A$ be the coproduct in $A . \psi$ induces a change of rings ψ^{*},

$$
\psi^{\#}: H^{s+u}\left(\operatorname{Hom}_{A \otimes A}\left(X \otimes Y, Z_{2}\right)\right) \rightarrow H^{s+u}\left(\operatorname{Hom}_{A}\left(X \otimes Y, Z_{2}\right)\right) .
$$

Using 1.7 we obtain an A-map $\Delta: C(p+q) \rightarrow C(p) \otimes C(q)$ for grades $t \leqslant 3(p+q)+1$ from $\Delta^{*}: A_{e}^{*}(p) \otimes A_{e}^{*}(q) \rightarrow A_{e}^{*}(p+q)$ by multiplication in $A_{e}^{*}, \Delta^{*}(\alpha(p) \beta(q))=\alpha \beta(p+q)$. Let Δ^{*} also denote the induced map in Ext,

$$
\Delta^{*}: \operatorname{Ext}_{A}^{s+u}\left(C(p) \otimes C(q), Z_{2}\right) \rightarrow \operatorname{Ext}_{A}^{s+u}\left(C(p+q), Z_{2}\right)
$$

Then the product P is defined to be $P=\Delta^{*} \psi^{*} p$. P commutes with connecting homomorphisms because all the factors do.

We next compute P in terms of the information of 1.7 (e). Since p is an isomorphism, we identify $\operatorname{Ext}_{A}^{s}\left(C(p), Z_{2}\right) \otimes \operatorname{Ext}_{A}^{\mu}\left(C(q), Z_{2}\right)$ with $\operatorname{Ext}_{A \otimes A}^{s+\mu}\left(C(p) \otimes C(q), Z_{2}\right)$. We analyze the change of rings directly using the method of [6 p . 91]. We first compute $\operatorname{Ext}_{A}\left(C(p) \otimes C(q), Z_{2}\right)$. By 1.7 we have $N=\operatorname{ker} a$ in the range we are considering. Since $\operatorname{ker} a=A \cdot I(C)$ we have A_{e} a Hopf algebra obtained from A as a quotent of A by a Hopf ideal [9]. Let ${ }_{D}(A \otimes A)$ and ${ }_{L}(A \otimes A)$ denote $A \otimes A$ considered as an A-module via ψ and left action alone respectively. Then there exists a map $h:_{D}(A \otimes A) \rightarrow_{L}(A \otimes A)$ which is an isomorphism of A-modules. h is the composite $(1 \otimes \varphi)_{\circ}(\psi \otimes 1)$, [5]. The remarks about the construction of A_{e} show that h projects to an isomorphism of ${ }_{D}\left(A_{e} \otimes A_{e}\right)$ with ${ }_{L}\left(A_{e} \otimes A_{e}\right)$. We thus obtain

$$
\begin{equation*}
\operatorname{Ext}_{A}\left(C(p) \otimes C(q), Z_{2}\right)=\operatorname{Ext}_{A}\left(C(p+q), Z_{2}\right) \otimes \operatorname{Ext}_{A}\left(\left(_{L}\left(A \otimes A_{e}\right), Z_{2}\right) .\right. \tag{2}
\end{equation*}
$$

From our computations of Ext we can obtain a resolution X of $C(p) \otimes C(q)$ as an $A \otimes A$ module. Pulling back along ψ makes ${ }_{\psi} X$ an A free resolution of ${ }_{\psi}(C(p) \otimes C(q))$.

Let X^{\prime} be a resolution for ${ }_{D}(C(p) \otimes C(q))$ as an A-module obtained from (2). The following commutative diagram

where f is a lifting of the identity, shows that a class in $W(p) \otimes W(q)$ maps to the obvious product class in $W(p+q) \otimes 1$ under the change of rings.

Finally lifting Δ to a map of resolutions we obtain P as

$$
P: W(p) \otimes W(q) \rightarrow W(p+q) ; \quad \alpha(p) \otimes \beta(q) \rightarrow \alpha \beta(p+q)
$$

We next study how the differentials in the spectral sequence behave in the algebra under P.

PROPOSITION 2.1. The differential d^{r} coincides with the connecting homomorphism associated with the short exact sequence

$$
0 \rightarrow B(p-r) / B(p) \rightarrow B(p-r-1) / B(p) \rightarrow C(p-r) \rightarrow 0,
$$

when d^{r} is defined.

Proof. For $r=1$ consider,

The rows are exact and the squares commute, thus we obtain

Thus $\delta^{\prime}=\delta j^{*}=d^{1}$. The proof is completed inductively by giving the same argument on

$$
0 \rightarrow B(p-r) \rightarrow B(p-r-1) \rightarrow C(p-r) \rightarrow 0
$$

Using 2.1 we obtain that each d^{r} is a derivation in the range where P is defined because P commutes with connecting homomorphism and maps i^{*}, j^{*}.

We now carry out the calculations of Theorems A and B. We obtain Theorem A by a direct approach. This information gives us $d^{r}(n)$ which, when used with the algebra structure, gives us Theorem B.

We first interpret 1.5 in the setting of the exact couple. Let ξ_{1}^{p} represent (p) in $\operatorname{Ext}_{A}^{0, p}\left(B(p-1), Z_{2}\right)$. The proposition says that if $[\beta]$ represents a non-zero element in $\mathrm{Ext}_{A}^{0, p}\left(B(p-r), Z_{2}\right)$ then (p) pulls back via $r-1$ iterates of $\left(i^{*}\right)^{-1}$ to $[\beta]$. We also remark that 1.5 along with $1.1(c)$ implies we can choose Sq^{p} as the representative generator in $B(p-r)$.

PROPOSITION 2.2. (3• $\cdot 2^{i}$) pulls back exactly to $\operatorname{Ext}_{A}^{0,3 \cdot 2^{i}}\left(B\left(2^{i}+1\right), Z_{2}\right)$.
Proof. We show that there are elements (not monomials in general) $p_{i} \in A^{*}$ of grade $3 \cdot 2^{i}(i \geqslant 0)$ such that $\left[p_{i}\right]$ is primitive in $B\left(2^{i}+1\right)^{*}$ (and hence in $B(n)^{*}$ for $2^{i}+1 \leqslant n<3 \cdot 2^{i}$) but not primitive in $B\left(2^{i}\right)^{*}$. Prop 1.5 then gives the result. We obtain the p_{i} inductively, $p_{0}=\xi_{1}^{3}$ and $p_{1}=\xi_{1}^{6}+\xi_{1}^{3} \xi_{2}$. By inspection these elements satisfy the proposition. The inductive hypothesis for $i \geqslant 2$ is that (a) p_{i-1} is constructed, (b) [p_{i-1}] is primitive in $B\left(2^{i-1}+1\right)^{*}$ but not primitive in $B\left(2^{i-1}\right)^{*}$, (c) one of the summands of p_{i-1} is $\xi_{1}\left(2^{i^{-1}}+1\right) \xi_{i}$. Now by squaring, $\left[p_{i-1}^{2}\right]$ is primitive in $B\left(2^{i}+3\right)^{*}$. Consider the exact sequence,

$$
\operatorname{Ext}_{A}^{0, t}\left(B(n), Z_{2}\right) \xrightarrow{i *} \operatorname{Ext}_{A}^{0, t}\left(B(n+1), Z_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A}^{1, t}\left(C(n+1), Z_{2}\right) .
$$

By 1.7 the third term is non-zero for $t \leqslant 3 n+4$ only for $t=n+2^{j}$. Let $n=2^{i}+2$. Since the grading requirements are met and $3 \cdot 2^{i} \neq 2^{i}+2+2^{j}$, we have $\left[p_{i-1}^{2}\right]$ in the image of i^{*}. Now let $n=2^{i}+1$. Again $3.2^{i} \neq 2^{i}+1+2^{j}$ so $\left[p_{i-1}^{2}\right]$ is in the image of $i^{*} \circ i^{*}$. Let p_{i} be a representative in A^{*} such that $i^{*}{ }_{0} i^{*}\left(\left[p_{i}\right]\right)=\left[p_{i-1}^{2}\right]$. By $1.5 p_{i}$ must contain p_{i-1} as a summand, and a fortiori $\xi_{i}\left(2^{i}+2\right) \xi_{i}(2)=S$ as a summand. The coproduct in $B\left(2^{i}+1\right)^{*}$ of S contains the summand $\xi_{i}(2) \otimes\left[\xi_{1}\left(2^{i}+2\right)\right]$. This must be cancelled by some other summand of p_{i} in order for $\left[p_{i}\right]$ to be primitive in $B\left(2^{i}+1\right)^{*}$. The only other monomial in A^{*} which can do this is $\xi_{1}\left(2^{i}+1\right) \xi_{i+1}$. Thus the induction is completed by invoking 1.6 to obtain the whole statement (b). This completes the proof.

2.3. Proof of Theorem A. We show

(a) $d^{r}\left(2^{i}\right)=0$ all r and i
(b) $d^{r}(n)=q_{i}(n-r)$ for $r=2^{i+1}-1 n \equiv 2^{i}\left(2^{i+1}\right), n>2^{i}$.
(a) is immediate since $\xi_{1}\left(2^{i}\right)$ is a primitive in $I\left(A^{*}\right)=B(0)^{*}$. The previous result establishes that $d^{r}(n) \neq 0$ for the lowest value of n in each residue class. But the maps s_{j} of 1.8 are comodule isomorphisms in the grades involved necessary to assert $d^{r}(n) \neq 0$ for all n in the residue class. The values given in (b) are the only ones possible in view of 1.7 (e).
2.4. Proof of Theorem B. In the gradings we are considering, E_{1} of the exact couple consists of all $q_{j}(n)$ such that $n+2^{j+1}-1 \leqslant 3 n+1$ or $2^{j} \leqslant n+1$. Those which are eventually boundaries are by 2.3 all $q_{j}(n-r)$ with $r \equiv 2^{j}\left(2^{j+1}\right), n>2^{j}$ and $r=$ $2^{j+1}-1$. These can be rewritten using P as $q_{j}\left(2^{j}+1\right)(k)$ with $k \equiv 0\left(2^{j+1}\right)$. If we write $q_{j}(n)=q_{j}\left(2^{j}+1\right)(m)$ with $n=2^{j}+1+m, m \not \equiv 0\left(2^{j+1}\right), m \geqslant 0$ we obtain the nonboundaries except those classes which would formally correspond to $m=-2,-1$. But these exceptional cases are such that any class to which they pull back lies outside the gradings of Theorem B. They sit in the line $t=3 n+4$ in table I. Hence in the proof of Theorem B the representation is adequate. In the gradings where we have the product, Theorem A implies the following,

$$
\begin{aligned}
d^{r} q_{j}\left(2^{j}+1\right)(m) & =q_{j}\left(2^{j}+1\right) d^{r}(m) \\
& =q_{j} q_{i}\left(2^{j}+1\right)(m-r), \quad m \equiv 2^{i}\left(2^{i+1}\right) \quad r=2^{i+1}-1
\end{aligned}
$$

or

$$
=0 \quad \text { if } r<2^{i+1}-1
$$

For values of m small with respect to 2^{j} (near $t=3 n+4$ in Table I) the computation is invalid because either the differentials land outside the range where we have P or are not defined in the exact couple. However we can use the isomorphisms of 1.8 to obtain the results for these values of m. The statement of Theorem B is just a restatement in terms of (n, t) of the above.

For convenience, Table I is a graph of Theorem B. It also includes some further information obtained in [2] for $t>3 n+4$.
A dot or x in position (n, t) of Table I represents an additive generator of $\operatorname{Ext}^{1, t}\left(B(n), Z_{2}\right)$. For $t \leqslant 3 n+4$ the information is complete. The classes denoted by x represent generators determined by the rest of E_{1} of the exact couple. They come from $B(2 n)_{e}$ as indicated by Prop. 1.7. However, in this range many differentials are unknown. First, are there classes in the region $t>3 n+4$ which are pull backs of classes in the region $t \leqslant 3 n+4$? The answer is "no" for $t \leqslant 16$ by direct computation. Second, what is the action of differentials where a "?" is placed? In low grades direct computation gives the result indicated.

Section 3. Evaluation of the Operations

We use the method of universal examples as developed in [4] to evaluate the operations. We can assume that a typical relation in $B(n)$ is $0=a_{1} \mathrm{Sq}^{n+1}+\Sigma a_{i} \mathrm{Sq}^{i}$ with $i>n+1$. For each positive integer m let ($E_{m}, B_{m}, F_{m}, p_{m}$) be the fibre space over $B_{m}=K\left(Z_{2}, m\right)$ with fiber F_{m} a cartesian product $K\left(Z_{2}, m+n\right) x X_{i} K\left(Z_{2}, m+i-1\right)$ $i>n+1$, and k-invariants Sq^{n+1} and Sq^{i} from the relation. We let $\boldsymbol{l}_{\boldsymbol{m}}$ and η_{m+n}, η_{i} denote the fundumental classes of the base and factors in the fibre respectively. Let

Crabh of Theorem B in low dimensions, \times represents class in E_{2}, ? refers to unknown differentials on \times classes for $t>3 n+4$.
$\kappa_{m}=p_{m}^{*}\left(l_{m}\right)$. Since F_{m} is $(m+n-1)$-connected, the Serre sequence (coefficients Z_{2})

$$
H^{j}\left(B_{m}\right) \xrightarrow{p^{*}} H^{j}\left(E_{m}\right) \xrightarrow{i *} H^{j}\left(F_{m}\right) \xrightarrow{\tau} H^{j+1}\left(B_{m}\right)
$$

is exact for $j<2 m+n-1$. Let m be large, then

$$
\tau\left(a_{1} \eta_{n+m}+\Sigma a_{i} \eta_{i}\right)=a_{1} \mathrm{Sq}^{n+1} \imath_{m}+\Sigma a_{i} \mathrm{Sq}^{i} l_{m}=0 .
$$

By exactness, there exists a class $e_{m} \in H^{j}\left(E_{m}\right), j=m+k-1$, where k is the grade of the (homogeneous) relation, such that $i^{*}\left(e_{m}\right)=a_{1} \eta_{n+m}+\Sigma a_{i} \eta_{i}$. If we perform the construction of the fibre spaces in such a way that $E_{m}=\Omega E_{m+1}$, we can assume e_{m} is primitive in the Hopf algebra $H^{*}\left(E_{m}\right)$. For small values of m, we can obtain a class e_{m} with the same properties by applying Ω. There is an indeterminacy in the choice of e_{m}. In [1] it is shown that this indeterminacy is the subgroup $\Sigma a_{i} H^{b i}\left(E_{m}\right)(i \geqslant n+1)$ where deg $a_{i}+b_{i}=k-1$. We shall denote the indeterminacy by $Q(r, m), r$ denoting the relation involved. We let Φ_{m} denote the secondary operation defined on κ_{m} with $\Phi\left(\kappa_{m}\right)$ equal to the coset of e_{m} modulo $Q(r, m)$. The collection $\left\{\Phi_{m}\right\}$ is the stable secondary operation associated with r.

In [1], Adams formalizes the procedure for directly connecting a relation with a universal example. The following proposition is an easy consequence of Theorem 3.7.2 [1], and its proof is omitted. We need it because there may be some choice in a relation representing a class in $\mathrm{Ext}_{A}^{1, *}\left(B(n), Z_{2}\right)$.

PROPOSITION 3.1. Let $(C, \varepsilon d)$ and $\left(C, \varepsilon^{\prime}, d^{\prime}\right)$ be two resolutions of $B(n)$. Let f be a chain equivalence of C with C^{\prime}. Let r and r^{\prime} be relations representing the same class in Ext, i.e. $f(r)=r^{\prime}$. Then the secondary operations satisfy

$$
\Phi_{m} \bmod Q(r, m)=\Phi_{m}^{\prime} \bmod Q\left(r^{\prime}, m\right)+c
$$

where c is a primary operation.
3.2. Proof of Theorem C. All coefficients are Z_{2}. We use the universal examples $\left(E_{m}, B_{m}, F_{m}, \kappa_{m}, e_{m}\right)$ with $m=n, n+1$. The spaces are displayed in the commutative diagram below,

in which the rows and columns are fibrations, all spaces are H-spaces, all maps H-maps, the Serre cohomology spectral sequences are sequences of Hopf algebras, all
differentials are Hopf algebra maps and the vertical maps induce maps of spectral sequences which are maps of differential Hopf algebras.

For $m=n$, all k-invariants are 0 and E_{n} is homotopically equivalent to $B_{n} x F_{n}$, however as an H-space it does not split this way. To find the H-space structure of E_{n} it is enough to determine the coproducts of the fundumental classes in the factors of $F_{n}, \eta_{2 n}$ and η_{i}. For $i>n+1$ it is easy to see that η_{i} is in the image of the suspension σ associated with the fibration g. This is because the k-invariants for $i>n+1$ are still zero in the fibration p_{n+1}. Thus these η_{i} are primitive. In the spectral sequence of g, we have $d_{n}\left(\kappa_{n}\right)=\kappa_{n+1}$. Thus $d_{n}\left(\kappa_{n} \otimes \kappa_{n+1}\right)=\kappa_{n+1}^{2}$. But $\kappa_{n+1}^{2}=p^{*}\left(\imath_{n+1}^{2}\right)$ and $t_{n+1}^{2}=$ $=\mathrm{Sq}^{n+1} l_{n+1}$ is the lowest dimensional k-invariant for p_{n+1}. Therefore $\kappa_{n+1}^{2}=0$. Since $P E_{n+1}$ is acyclic we have $\kappa_{n} \otimes \kappa_{n+1}$ in the image of d_{n}. But the elements $\eta_{2 n}$ and κ_{n}^{2} generate $H^{2 n}\left(E_{n}\right)$. Since $d_{n}\left(\kappa_{n}^{2}\right)=0$ the only remaining possibility is $d_{n}\left(\eta_{2 n}\right)=\kappa_{n} \otimes \kappa_{n+1}$. Both κ_{n} and κ_{n+1} are primitive so $\kappa_{n} \otimes \kappa_{n+1}$ is not primitive. Since d_{n} is an H-map, $\eta_{2 n}$ is not primitive. By dimensionality the coproduct of $\eta_{2 n}$ is

$$
1 \otimes \eta_{2 n}+\kappa_{n} \otimes \kappa_{n}+\eta_{2 n} \otimes 1
$$

Since $i^{*}\left(e_{n}\right)=\eta_{2 n}+\Sigma a_{i} \eta_{i}$ and e_{n} is primitive, e_{n} must have the summand $H\left(a_{1}\right) \kappa_{n}$. Projecting into B_{n} gives the result.

We conclude by listing some low dimensional $(t \leqslant n+8)$ relations representing classes of Theorem B. They were obtain from minimal resolutions. We use $i=\left(i^{*}\right)^{-1}$ to represent pull backs.

Table II

Class in Ext	Congruence class of n	Relation
$q_{0}(n+1)$	O(2)	$\mathrm{Sq}^{1} \mathrm{Sq}^{n+1}$
$q_{1}(n+1)$	3(4)	Sq ${ }^{3} \mathbf{S q}^{n+1}+\mathbf{S q}^{1} \mathbf{S q}^{n+3}$
$q_{1}(n+1)$	0(4) $n>0$	$\mathbf{S q}^{3} \mathbf{S q}^{n+1}+\mathrm{Sq}^{2} \mathrm{Sq}^{n+2}$
$q_{1}(\underline{n}+1)$	1(4)	$\mathrm{Sq}^{3} \mathrm{Sq}^{n+1}$
$i q_{1}(n+1)$	3(4)	$\mathrm{Sq}^{3} \mathrm{Sq}^{1} \mathrm{Sq}^{n+1}+\mathrm{Sq}^{2} \mathrm{Sq}^{n+3}$
$i^{2} q_{1}(n+1)$	2(4)	$\mathrm{Sq}^{5} \mathrm{Sq}^{\text {n+1 }}$
$q_{2}(n+1)$	5(8)	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}+\mathrm{Sq}^{5} \mathrm{Sq}^{n+3}+\mathrm{Sq}^{1} \mathrm{Sq}^{n+7}$
$q_{2}(n+1)$	6(8)	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}+\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) \mathrm{Sq}^{n+2}+\mathrm{Sq}^{2} \mathrm{Sq}^{n+6}$
$q_{2}(n+1)$	7(8)	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}+\mathrm{Sq}^{3} \mathrm{Sq}^{n+5}$
$q_{2}(n+1)$	$0(8) \quad n>0$	$\mathbf{S q}{ }^{7} \mathbf{S q}^{n+1}+\mathbf{S q}^{\mathbf{6}} \mathbf{S q}^{n+2}+\mathbf{S q}^{4} \mathbf{S q}^{n+4}$
$q_{2}(n+1)$	1(8) $n>1$	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}+\mathrm{Sq}^{5} \mathrm{Sq}^{n+3}$
$q_{2}(n+1)$	2(8)	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}+\mathrm{Sq}^{6} \mathrm{Sq}^{n+2}$
$q_{2}(n+1)$	3(8)	$\mathrm{Sq}^{7} \mathrm{Sq}^{n+1}$

BIBLIOGRAPHY

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20-104.
[2] J. R. HARPER, Stable secondary cohomology operations, University of Chicago Disseration, Chicago, Illinois (1967).
[3] A. L. Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964), 1-16.
[4] -_, The factorization of cyclic reduced powers by secondary cohomology operations, Memoirs of the Amer. Math. Soc. 42 (1962).
[5] -_, The cohomology of Massey-Peterson algebras, to appear.
[6] S. MacLane, Homology (Academic Press, New York 1963).
[7] W. S. Massey, Products in exact couples, Ann. Math. 59 (1954), 558-569.
[8] J. W. Milnor, The Steenrod algebra and its dual, Ann. Math. 67 (1958), 150-171.
[9] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations (Princeton University Press, 1962).
[10] C. T. C. Wall, Generators and relations for the Steenrod algebra, Ann. Math. 72 (1960), 429-444.

The University of Chicago and
Massachusetts Institute of Technology

Received September 3, 1968

