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The Changes of Sign of Certain Arithmetical Error-Terms

J. Steinig

1. Introduction

X

If n(x) dénotes thenumberof primes not exceedingx, and \ix §(logt)~l dt(x^2),
2

then the prime number theorem states that n(x)~lix, as jt->oo. The error-term in
this asymptotic relation is n (x) — lix, and it was for long conjectured that n (x) — li x < 0

for ail large x. J. E. Littlewood proved this conjecture false by showing [8] that
7r(x)~lix ^±(A:1/2logloglogx/logx). The prime number theorem is équivalent to
the assertion that \j/{x)~x, where \j/ is the well-known Chebyshev function. The
error-term hère is \l/(x) — x, and it changes sign an infinity of times, as shown by
Phragmén [9]. Phragmén's resuit is a corollary of a gênerai theorem of Landau's [7]
on Dirichlet intégrais. Pôlya [11] refined Landau's theorem, and considered, as a

particular case, the problem of estimating the number of changes of sign of \l/(x) — x
in the interval 1 <x^t. If N(t) dénotes that number, then Pôlya's resuit implies that

— N(t)lim—'>0. (1.1)
t-oo lOg t

The original proof of Pôlya's theorem contains a gap, first recognized by Pôlya
himself, which is filled in § 2. Pôlya's theorem can be applied, as we shall show in
§ 2.3, to the error-term associated with the arithmetical function rk(n), which is the
number of représentations of an integer « as a sum of A: squares (k^2). This applica-

00

tion is made possible by the fact that the Dirichlet séries ]T rk{n)-n~s represents the

Epstein zeta-function Çfc(.s), which satisfies Hecke's functional équation, namely

(1.2)

and this équation implies a fundamental identity given by K. Chandrasekharan and
Raghavan Narasimhan [2].

More generally, we consider in § 3 the functional équation of Chandrasekharan
and Narasimhan, which includes (1.2), and study the problem of change of sign of
the "error-term" associated with the coefficients of Dirichlet séries which satisfy
such an équation. Thus, given an équation such as

A (s) q>(s) A (ô - s) cp(Ô - s), (1.3)
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where ô is a real number, A (s) is a product of a finite number of gamma functions,
N oo

say A(s)= f] r(avs+f}v), and £ ank~\ we define for
l

which is the fractional intégral of order q of the summatory fonction A\{x) A(x)=
Y!an- Chandrasekharan and Narasimhan hâve shown [3] that corresponding to

the équation (1.3), there exists a "residual function" Se(x), such that

x)-Se(x)} Q±(xe), (1.4)

JV

where G {Aô + (2A — 1)q—i}/2A, with A= £ av. (A similar resuit holds for the
v=l

imaginary part of Aex(x)-Se(x).) The proof of this gênerai O-theorem rests on the

fact that équation (1.3) implies, for sufficiently large q, the formula

xc{A\{x) - Se(x)} J£ cn-cos(ynxll2A + D) + g(x), (1.5)

OO

where c is a real constant, £ \cn\ < oo, 0<y1 <y2< ••• <yn-+ oo, >4 is as in (1.4), D is

a real constant, and g(x)=o(l), as

Clearly, (1.4) implies that the real part of the "error-term" Aex(x)-Se(x) has an

infinity of changes of sign in the interval 0<x< oo. In this paper, we obtain a lower
bound for the number of changes of sign of Re{AeÀ(x)-Se(x)}, and of lm{Aex(x)-
SQ(x)}, in a given interval (Theorem 4.1). This is achieved by combining asymptotic
formula (1.5) with an argument introduced by Liouville, and later applied by

Pôlya [12] to the study of the changes of sign of certain trigonometrical séries. In the

case £=0, Theorem 4.1 gives a lower bound for the number of changes of sign, in

any interval, of the error-term associated with such arithmetical functions as d(n),

the number of positive divisors of the positive integer n, or rk(n), or Ramanujan's
function %(ri).

It may be remarked that the results obtained by appealing to Pôlya's theorem are

weaker than those obtained in §4 from asymptotic formula (1.5), since Pôlya's
theorem gives only a "lim sup resuit", as in (1.1), for an interval 0<x^t, whereas

Theorem 4.1 gives a lower bound for the number of changes of sign of the error-term
under considération in any given interval.

The problems discussed in this paper were suggested to me by Professor

K. Chandrasekharan; I take pleasure in recording hère my gratitude for his advice

and constant encouragement.
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2. Pôlya's Theorem

2.1. If co is a function of the real variable w, bounded and integrable over every
finite interval l^u^U, and s is a complex number, written s v + it9 where a and t

00

are real, and i2= — 1, then the intégral J œ(u)u~sdu is called a Dirichlet intégral.
î

A theorem of Landau's ([7]; [6], p. 88) states that if œ(u) is real-valued, and is of
00

constant sign for ail sufficiently large u, and if the intégral f(s) J co(u)u~~sdu has a
î

finite abscissa of convergence a cr0, then the real point s a0 of its line of convergence

is a singularity of the function/(s) which it represents.
In order to state this theorem in a more convenient form, we introduce a function

W(x) associated with the sign of co(u). We assume that co(u) is either of constant
sign for w>l, or that there exists a séquence (un), l=uo<u1<u2<'--, with no finite
point of accumulation, such that

(-l)nco(u)>0 for un.t<u<unf (2.1)

and such that œ(u) is not identically zéro in any of the intervais un_x <u<un. If œ(u)
is of constant sign for w>l, then W(x) 0; otherwise we define W(x) n for
un _ x < x < un. Thus W{x) is simply the number of changes of sign of co (u) in the interval

Landau's theorem then takes the following form.
00

Theorem A (Landau). Let J co(u)u~sdu hâve a finite abscissa of convergence gq.
00 1

Let &(s)= J œ(u)u~sdu be regular in the half-plane <j>0, but in no larger half-plane
i

g>6-£ (e>0). If <P(s) is regular at s 0, then lim W(x)= + oo.
x-*oo

Pôlya's extension [11] of Landau's theorem is as foliows.
00

Theorem B (Pôlya). Let the intégral \œ{u)u~sdu hâve a finite abscissa of
convergence (j0. Let 1

00

<P(s)= [ œ{u)u~sdu (2.2)

i
be regular in the half-plane o>9, but in no larger half-plane a>6-e (e>0). Further,
let <P(s) be meromorphic in a^Q — b,for some b>0. Then,

*?&>>-. (2.3)
lg

where y is defined as follows: If<P(s) has pôles on the Une a 9, then s 6 + iy is the

pôle with the smallest non-negative imaginary part ; otherwise, y= + oo.
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2.2. We shall now indicate how the gap in Pôlya's original proof of Theorem B

can be filled. Pôlya's proof applies previous results of his on entire functions of
exponential type [10]. Use is also made of certain properties of plane convex sets.

The argument runs as follows.
If co(u) is of constant sign for u>u0, Theorem A implies that y 0, and then (2.3)

is trivial. We therefore suppose that œ(u) has an infinity of changes of sign. Let (un)
be the points of change of sign of co(u), and let W(x) be the number of its changes of
sign in the interval 1 <u^x, as defîned earlier. Set

and suppose at first that d<oo; then Pôlya shows that the infinité product

is absolutely convergent, and that Fis an entire function of exponential type ([11],

p. 22). He sets
2 *

defines

/ 00 — + -§ + -4 + •••, (2-4)

and shows that séries (2.4) converges (at least) for \z\ > nd ([10], p. 578). Let / be the

convex hull of the singularities of/. Since / is an odd function, and the coefficients

(an) are real, /is symmetric with respect to both real and imaginary axes. Let s k

be the point at which the positive real axis intersects the boundary of /.
Theorem B is established by applying Landau's Theorem A to the function

oo

<Ê*(s)= f co(u)F(logu)u-sdu. (2.5)

î
Because of the définition of F, combined with inequality (2.1), the integrand in (2.5)
satisfies the inequality

œ (m) F (log u) ^ 0 (m > 1). (2.6)

A theorem proved by Pôlya in [10] (Satz V, p. 598) implies that <P*(s) is regular in

the half-plane <t>0 + k ([11], p. 25). The behaviour of <P*(s) for <j^6 + k dépends

on the behaviour of $(s), defined by (2.2), on the Une a 9. Accordingly, Pôlya
distinguishes two cases:

(a) 0 has pôles on cr 0;
(b) # is regular on a=9.
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In Case (a), he shows that if nd<y, then <f>* is regular at s=9 + k, but has a

singularity at another point of the line g 9 + k. But this is impossible, because of
(2.6) and Theorem A. Therefore nd^y.

The gap in Pôlya's proof occurs in Case (b). The argument hère is that if d< oo,
then #* is regular at s 9 + k, but has singularises arbitrarily near the line g 6 + k,
in the half-plane a < 9 + k. Again, this is impossible because of (2.6) and Theorem A.
Hence d— + oo.

In order to establish this part of Theorem B, we require the following resuit on
plane convex sets:

Lemma 2.1. Let %be a closed, bounded, plane convex set, whose boundary consists

only of extrême points1). Let l be a supporting Une2) of% through £e$I. If 93 is a
translate of% such that <^e$ and 33 lies on the same side of l as % then 21 and 2?

coincide.

Proof. Let % be the translation t:2Ï-*23. Since £e23, Çel, and 23 is entirely on
one side of /, / is a supporting line of SB through ^. Since the boundary of 21 consists

only of extrême points, there are exactly two points on the boundary such that the

supporting lines through thèse points are parallel to a given direction3). Now £'

t(£) is a point on the boundary of 23 such that there is a supporting line V of 23

through £' which is parallel to /. Since 93 is on the same side of / as 21, /' must be that
one of the two supporting lines of SB parallel to / which is closest to /. Therefore /=/'
and £, £', so that 21 and 23 coincide.

The problem which must be solved in order to establish Case (b) of Theorem B

may be stated geometrically as follows4).
Let (cv) be a séquence of points in the complex s-plane, with the following proper-

ties:
The points cv lie pairwise symmetric to the real axis. They hâve no

point of accumulation in the finite part of the plane.

Re (cv) < 9 for ail v, and ïîïn Re (cv) 9. (2.8)
v-*oo

*) An extrême point of a closed plane convex set A' is a boundary point which is not an interior
point of any line segment belonging to K (for example, 91 can be a circle, or an ellipse, but not a
rectangle).

2) A supporting line of a closed plane convex set ATisa line which contains at least one point of K,
and such that K lies entirely on one side of this line. A supporting line contains at most two extrême
points. There are exactly two supporting lines parallel to a given direction.

3) This follows from the remarks in Footnote (2): there are two supporting lines of % in each
direction, and since ail boundary points of % are extrême points, each supporting line contains
exactly one boundary point.

4) The (cv) are the pôles of 0(s) in the strip 0— b ^ a ^ 0; /is the convex hull of the singularises
of/Ccf. (2.4)]. With the notation introduced in [11], and according to the Hilfssatz on p. 24 of [11],
C is a singularity of X*(s). Because of Satz V of [10], Ç is a regular point of W* (s). Hence, £ is a
singularity of 0* W* + X* ([11], pp. 24-25).



390 JOHN STEINIG

Further, let / be a bounded, closed, plane convex set, which is symmetric with
respect to both the real and the imaginary axis, and is contained in the dise |*y| < n d.

Let cr=K be the supporting Une of /which is perpendicular to the positive real axis.
Consider the sets cv+/5) (v=l, 2,...). We hâve to prove that for each e>0, there
exists a point £ £(fi), which satisfies the following conditions:

6 + k - s < Re(C) < 9 + k, (2.9)

C is an extrême point ofsome set cn + J, (2.10)
and

Ç$cv + J for vïn. (2.11)

For that purpose, we consider the convex hull § of ail the sets cv + J with Im(cv)>0.
Let h be (one of the extrême point(s) of § on its supporting line parallel to the
real axis; and let H be that part of the boundary of £) which is in the half-plane
a>Rc(h). Then, § and H hâve the following properties:

Each extrême point of $fr belongs to the boundary of one of the sets cv + /. (2.13)

Indeed, suppose, if possible, that/? is an extrême point of § such that p$cy + J, for
ail v. Then, since the sets cv+/ are closed, we can find a circle (£ with p as centre,
such that (£n(cv + /)=0, for ail v. If G is small enough, the set obtained by removing
(En <?> from § is contained in a proper convex subset §* of £), since p is an extrême

point of §6). But since (t£n$)n(cv + J) is empty for ail v, we would hâve §c§*,
which is absurd.

H contains no half-line. (2.13)

Indeed, because of (2.8), H could contain a half-line only if this line were on the

vertical a 6 + K. Now there cannot be a point q (Q + K)+h on the line g 6 + k
such that ail points of H with imaginary part greater than t lie on this line, while
those with imaginary part smaller than t lie to the left of it (Fig. 1). For if this were

the case, q would be an extrême point of § and would therefore, by (2.12), belong

to one of the cv + J. But this is impossible, since Re(cv)<0.

There are extrême points of$fr with arbitrarily large imaginary part. (2.14)

Indeed, let to>O be given. Because of (2.7) and (2.8), we can find a pointp1eHsuch
that Im(p1)'^to. Because of (2.13), pt does not lie on any half-line belonging to H.

Therefore, i{pl is not itself an extrême point of <r>, the supporting line of § through

px contains two extrême points of §. One of thèse, say p2, is such that Im(p2)>

5) By cv + /, we understand the translate of / through the vector cv.

6) For a proof of this property of extrême points, see for instance [10], pp. 577-578.
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Now it follows from the conditions on the (cv) and from the convexity of $> that
if hxeH and 0 + k—e^Re(A1)<^ + K, ail points h2eH for which Im(A2)>Im(//1)
also lie in the strip 6 + k—£^g<Q + k. From this remark, and from (2.8) and

(2.14), it easily follows that there is a point (*, such that

Ç*eH, (2.15)

O + K-e^ Re(Ç*) < 0 + k9 (2.16)

C*lies on the boundary ofa set cn + J with Im(cn) > 2nd. (2.17)

In order to locate a point £ with properties (2.9), (2.10) and (2.11), we shall consider

two cases, according as the boundary of / consists only of extrême points, or not.
A. If the boundary of / consists only of extrême points, we may choose £ £*.

Indeed, £* is an extrême point of cn + J. Since J is contained in the dise |s|^7rrf, it
follows from (2.17) that £*£cv + /if Im(cv)<0. By applying Lemma 2.1 with il cn + J
and £ £*, we see that £*£cv + </if Im(cv)>0 and v^n.

B. If the boundary of / does not consist entirely of extrême points, C* need not
be an extrême point of cn + J. Also, £* may belong to the boundary of some other
translate of /, say of cni + J (Fig. 2). But if (* is not an extrême point of cn + J9 the

Fig. 1. Fig. 2.

supporting line g of cn + J through £* contains two extrême points of cn + J, say C*

and £*. One of thèse has a real part greater than that of £*; suppose that Re(£Î)>
Re(C*). Then, 0 + K~e<Re(CÏ)^Re(cn) + K:<0 + K:, so that Ç[ lies in the strip
0+K-e^G<9 + K. If Cî lies on the boundary of cWl + /(as in Fig. 2), consider its
translate £*; C* lies on g, is an extrême point of cWl+/, andis in the strip 9+k-e^

Should Ç* lie on the boundary of some other translate cn2+J of /, we can find in
the same manner an extrême point C* of cn2+J on g and in the strip
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0 + k. Proceeding in this manner, we must finally obtain a set cWr + «/and an extrême

point (*+1 of this set which is exterior to ail the other sets cv+J, for otherwise the

points cn, cni, cn2,..., which lie on a parallel to g, would hâve a point of accumulation
in the finite part of the plane, in contradiction with condition (2.7). Then, we may
take£ £r*+1.

This concludes the proof of Case (b), and hence of Pôlya's theorem.

2.3. A new application ofPôlya's theorem

Let rk{ri) dénote the number of représentations of the positive integer « as a sum
of k intégral squares (k ^ 2), représentations which differ only in sign, or order, being
counted as distinct.

The generating function of rk(n) is Çk(s), Epstein's zeta-function of order k [5],
which has the représentation

in the half-plane Re(.s)>&/2, and satisfies the functional équation

n~sr(s)çk(s) ns~k/2r(- - sjcJ- - sV (2-18)

Let
1 V nkf2 ¦

the dash meaning that if £ 0 and x is an integer, the last term in the sum must be

multiplied by \. If £ 0, Pk(x) is the error-term in the lattice-point problem for the

sphère in A>dimensional space. Indeed, if we define rk(0)=l, we have

-r, ; (2-19)

if x is not an integer, £' rk (ri) is equal to the number of lattice-points in a sphère of

radius yjx, whose centre is a lattice-point, and (nx)k/2/r(k/2 + l) is the volume of
this sphère.

K. Chandrasekharan and Raghavan Narasimhan hâve shown [2] that
functional équation (2.18) implies the identity

J
rk(n)gn(s), (2.20)

n=l
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where Fg(x) Pj;(2x), Re(^)>0, r is a sufficiently large integer, and

where y o + %k + i, and the ev are constants.

If k is odd, this identity allows the application of Pôlya's theorem to Pfc°(x).

Indeed, if we make the change of variable x-»logx in the intégral on the left-hand
side of (2.20), we obtain an identity which shows that the function of s defined by
the intégral

00

f

is regular in the half-plane a>0, and has singularities on the imaginary axis, at the

points s= ±nriy/ — S (n=l, 2,...).
If k is odd, thèse singularities are pôles. Pôlya's theorem can then be applied to

obtain the following resuit, announced in [13]:

// k is odd, and if Wk(t) dénotes the number of changes of sign of P®{x) in the

interval0<x^t, then

ËS^>2. (2.21)

If k is even, identity (2.20) cannot be used to estimate the number of changes of sign
of Pfc°(jc); in this case, Pôlya's theorem gives information only on the changes of
sign of those P£ (x) for which q =¦£• (mod 1). This is curious, since results on
représentations of an integer as a sum of an odd number of squares are usually more
difficult to obtain than results on représentations as a sum of an even number of
squares.

Identities analogous to (2.20), which involve the error-terms arising from other
solutions of the functional équation F(s) (p(s) r(ô-s) \j/(ô-s), can be deduced
from a gênerai identity given in [2] (Lemma 3, p. 491), of which (2.20) is a particular
case. However, thèse identities permit the application of Pôlya's theorem only when
<5 + £+i is an integer, and this condition often precludes the possibility of obtaining
a resuit in the case #=0.

Identities of this type in the case of functional équations with more than one
gamma factor are not known. In the following sections, we shall apply a différent
method, and obtain a lower bound for the number of changes of sign, in a given
interval, of the error-terms arising from any given instance of functional équation (1.3).
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3. The Functional Equation

3.1. We begin by defining, after Chandrasekharan and Narasimhan [3], the
gênerai functional équation with which we shall be concerned.

Définition 3.1. Let (Àn) and (fin) be two séquences of real numbers such that

0 < Ai < A2 <"' < kn—? 00

0 < fi1 < fi2 < -"< /in ->oo,

and let (an), (bn) be two séquences of complex numbers, not ail zéro. Let ô be a real

number, and s a complex variable with real part a and imaginary part t. Let
N

A (s) Y\ r(ccvs + /?v), (3*1)
v=l

N

where N^ 1, <xv>0 and j8v is complex, and let A= ]T av. We say that the functional
équation v==1

A (s) (p(s) A(ô-s)\l/(à-s) (3.2)

holds, if the functions cp and \j/ are representable by the Dirichlet séries

n=l

each of which is absolutely convergent in some half-plane, and if there is a domain D
in the .s-plane, which is the exterior of a bounded, closed set S, and in which there

exists a holomorphic function x with the properties

lim x(° + it) O,
W-oo

uniformly in every interval —oo<(T1<(r<cr2< + oo, and

X(s) A(s)q>(s), for cr > cx,

-s), for <7<c2,

where Cj and c2 are some constants.
3.2. For g^O, we define

the accent indicating that the last term of the sum is to be multiplied by \ if g=0 and

jc=Ab. We shall restrict our considérations to the case where g is an integer.
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vvhere (p(s)= Y, an K s> as in (3 3), and where %? îs a curve enclosing ail the singu-
n=l

lanties of the integrand
Further, let

A cAo + q 1

cq ~^rr ~8 ' ° < e < t~7 »

2 A 4 A
andlet • ' ns->)A{s)

s+e-Sds> (36)

where ^' îs a curve formed by the lines a ce + it, with |^|>J?, together with three
sides of the rectangle whose vertices are ce-iR, cQ + r-iR, cQ + r + iR and ce + iR.
We assume that

cfl>max(-Re^Y v 1, 2, ,iV,

and choose r and i£ in such a manner that ail the pôles of the integrand m (3.6) are
to the left of «".

It îs shown m [3, §4] that the îdentity
oo

Vx) - Se (x) V A| /, (ft, x) (3 7)

n=l

holds for q S* 2^ p-^ (5 -i, where pis such that £ |ôn| Jun"

n=l
For /c(x) we hâve, as in [3, §4], the asymptotic formula

I9(x) cx«°-1/2)/2A cos(hx1/2A + D) + 0(x(o>-1/2)/2A)5 (3 8)

as x->oo, where c and D are real constants, œ AÔ-\-(2A — 1)q and h=2e~6/2A with

ocvlog(xv—AlogA}9 and (5, <xv and A are as m Définition 3.1. A more
l

précise asymptotic formula for Ie(x) îs given in [4, Lemma 1], but (3.8) îs sufficient
for our purposes.

By combimng (3.7) and (3.8) we obtain, for intégral Q^lAp—Aô-i, the

asymptotic formula
oo

Al(x) - s,(x) c V -î^fo.*)"-1'2"" cos^Gi.*)1'" + D) + 0(x<
Lé Vn

as
"=1
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In order to obtain a lower bound for the number of changes of sign of the real
and imaginary parts of Aex(x) — SQ(x) in a given interval, for a given non-negative
integer q, we shall require, beside (3.9), the following trivial extension of Rolle's
theorem, which we state without proof.

Lemma 3.1. Let f be continuous in the closed interval [a, b] and differentiable in
the open interval (a, b), except perhaps at ce(a, b) at which, however, the left and right
hand derivatives f'~{c) and f/+(c) exist. Let f(a)=f(b). Then, /'", //+ and

i(f'~ + f'+)all change sign at least once in (a, b).

We also state as a lemma some properties of AeÀ(x) and S6(x) which are easily
verified with the définitions (3.4) and (3.5) of thèse functions.

Lemma 3.2. For q^09

Sq(x) ~r Sc+i (*)•

For q>0,

For q=0 and xi=-Xn,

whereas ifx Àn9

since

Ça\{x)= I an and *-A\(x)= £ a..
ax xn^x ax xn<x

4. A Lower Bound for the Change of Sign Function

4.1. We are now in a position to prove the following resuit on the changes of
sign of the real and imaginary parts of Aex(x)—SQ(x).

Theorem 4.1. Suppose that the functional équation

is satisfied as in Définition 3.1. Let q be a non-negative integer, Let W\(t) dénote the

number of changes of sign of the function Re{Aek(x) — SQ(x)} in the interval 0<x4:t.
IfRQ(bn)^0for at least one value ofnt then1)

7) Hère, Kl dénotes the largest integer
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where C is a number independent of t, and h 2e~0f2A, with

• 2JÇ avlogav-^logv4J.

Let Yl(i) dénote the number of changes ofsign oflm{Aex(x) — SQ(x)} in the interval

Iflm(bn)^0for at least one value ofn, then

where C is independent of t.

Proof We shall assume that Re^J^O, as we may. The idea of the proof is to
obtain first a lower bound for the number of changes of sign of Re {AQX+ m(x) — SQ+m (x)}
in 0<x^t, where m is a sufficiently large non-negative integer. This is achieved by
applying relation (3.9). Then, by differentiating m times, and applying Lemmas 3.1

and 3.2, we get (4.1).
Given q^O, we choose an integer m^O which is so large, that

AÔ-i9 (4.2)
and that also

nr lâ }

n 2

where

(4.4)

Then, because of (4.2), (3.9) holds, with Q + m in place of q, and we hâve the relation

(x)-Se+m(x)}= V
Là

(4.5)
where c' is a real constant, S is defined by (4.4), and

g(x) o(l), (4.6)
as x->oo.

Because of (4.3) and (4.6), we can find an X such that

iWi^yp, for x>1. (4.7,

« 2

Now let the séquence x0 <xt <x2 < • • • be such that x0 ^ X, and

/A v 0,l,2,.... (4.8)
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Then, we hâve

sgn Re{^+m(xv) - Se+m(xv)} (- l)v sgn Refo) (4.9)
for v=0,1,2,....

Indeed, on setting x=xv9 the right-hand side of (4.5) becomes

y g(x.) G(xv),

n 2

say, where cn(x)=cos(h(nnx)1/2A+D). We hâve

- |Re(ftn)| < Re(bn)-cn(xv) < |Re(frn)|, (4.10)

and it is easily seen that inequalities (4.7) and (4.10) imply that

^| (4U)

whence (4.9) follows immediately.
Therefore, Re{AeÀ+m(x)-Se+m(x)} changes sign at least once in each of the open

intervais (xv, xv+l), v 0, 1, 2,.... Consequently, its number of changes of sign in the

interval 0<x^t is not less than
I

where A: is a number independent of t. By applying Lemma 3.2 and Rolle's theorem

(or Lemma 3.1, if q=0)9 we conclude that Re{Aex(x)-~SQ(x)} has at least

— K — m

changes of sign, as x varies from 0 to t ; this proves our theorem.

4.2. We hâve actually proved slightly more in the case ^=0. Because of Lemma

3.1, it follows from our proof that besides Re{A°x(x)-~S0(x)}, the functions

Re { E an ~ S0(x)\ and Re £ an - 50(x)j

also change sign at least [h(iitt)1/2Aln]-C times in (0, t\

4.3. It is clear that the method used to prove Theorem 4.1 can be applied to prove

Theorem 4. T. Under the same assumptions as in Theorem 4.1, there exists a

positive constant X such that ifa^X, then Re{AQÀ(x)-SQ(x)} changes sign at least
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[hfil/2A(b1/2A-a1/2A)ln]-C/f times in the interval a^x^b, where C" dépends neither

on a nor on b.

[In fact, Jifis the real number which appears in inequality (4.7), and C" m, the

integer which satisfies inequalities (4.2) and (4.3).]
It may be of interest to remark that a resuit of this sort, for an arbitrary interval

[a, b], does not follow from Pôlya's theorem.

4.4. In the same manner as above, results analogous to Theorems 4.1 and 4.1'

can be proved for the changes of sign of the real and imaginary parts of B*(x) — SQ(x).

4.5. We shall now apply Theorem 4.1 to the error-terms connected with the
arithmetical functions rk(n) and d(n).

The lattice-point function rk(n). As we hâve already seen in §2, the generating
function of rk{n) is the Epstein zeta-function ^k{s). It is regular in the finite part of the

plane, except for a simple pôle with residue nk/2/r(k/2) at s=k/2. It vanishes at
s= — 1, —2,..., and has the value —1 at ,y=0. Functional équation (3.2) is satisfied

by (p(s)=il/(s) n~sÇk(s)9 with an — bn rk(n)9 Xn fin nn and ô k/2. We hâve A l
and h 1. It follows that

xk/2+ô xQ

In the case g 0, if we make the substitution x->nx, and set rk(0) 1, Theorem 4.1

implies that as x varies from 0 to t, the error-term

changes sign at least 2y/J—A1 times, where At is independent of t. This resuit is

obviously stronger than inequality (2.21), which we deduced from Pôlya's theorem,
and which holds only for odd k.

The divisor function d(n). Let d(n) dénote the number of positive divisors of n. Its
generating function is Ç2(s), the square of Riemann's zeta-function, and functional
équation (3.2) is satisfied by (p(s) \l/(s)=n~~sÇ2(s), an bn d(n), An jun 7T«, and
<5 1. We hâve N=2, a1=<x2=h whence A l and A=2. Further,

r(2v-i)r(2v

n
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where y is Euler's constant (see [3], p. 130). If we consider the case £ 0, and make the
substitution x-+nx, it follows from Theorem 4.1 that the error-term

has at least Ayjl — A2 changes of sign in the interval 0<x^t, where A2 is independent
off.
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