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On the Classification Problem for if-Spaces of Rank Two

by P. J. Hilton and J. Roitberg*)

§ 1. Introduction

We shall consider finite //-spaces of rank two. By définition, such a space X is an

//-space of the homotopy type of a finite complex whose (reduced) rational cohomology
H*(X; Q) is generated (as a ring) by two élémentsaeHq(X; Q), beHn(X; Q),q^n.
A classical theorem of Hopf asserts that q and n are odd, and that a and b are primitive
classes. The pair (q, n) is called the type of X.

One aspect of the classification problem is to détermine which pairs (q, n) of odd

integers can be realized as the type of some finite //-space. This problem was con-
sidered and partially solved by Adams [1]. A complète solution in the case that X has

no homological 2-torsion has been given recently by Douglas-Sigrist [6] and Hub-
buck [8], in independent work. The resuit is the following:

1.1 THEOREM. Let X be a finite H-space of rank 2 such that H*(X; Z) has no

2-torsion. Then the type ofX is either (1, 1), (1, 3), (1, 7), (3, 3), (3, 5), (3, 7) or (7, 7).

Moreover, each of thèse pairs does actually occur as a type, as can easily be seen.

In the présent paper, using the above information, we shall consider the problem
of enumerating ail the homotopy types which occur as rank 2 //-spaces. Actually, for
the most part, we restrict our attention to rank 2 //-spaces which hâve torsion-free

intégral homology. For such //-spaces, we give a complète enumeration of homotopy
types, except for a single ambiguity in the case (q, «) (3, 7). For example, we show

that any homologically torsion-free //-space of type (3, 5) is homotopy équivalent to

SU(3). We also point out hère that our results yield the qualitative fact that there

are only a finite number of possible homotopy types for this restricted class of rank

2 //-spaces. In fact, this number is 11 or 13.

The rest of the paper is organized as follows. In § 2, we state and prove our main

results on the homotopy classification of homologically torsion-free rank 2 //-spaces.

It turns out that the only homotopy types occurring are those of manifolds which are

principal sphère bundles over sphères. In § 3, we sharpen the classification of § 2 b>

showing that, within the class of homologically torsion-free rank 2 //-manifolds (with

one possible exception), the concepts of homotopy équivalence and PL-équivalence
coincide, i.è. the Hurewicz conjecture for such manifolds is valid. In § 4, we make some

remarks about gênerai rank 2 //-spaces. In particular, we show how certain results of

*) Partially supportée by NSF Grant GP 12815.
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Browder enable us to reduce the 2-torsion-free, simply-connected case, modulo a
certain hypothesis, to the case considered in § 2. We also discuss the exceptional Lie
group G2 in § 4. Finally, in § 5, we discuss the non-simply-connected case and make
some remarks about projective groups, of a somewhat spéculative nature.

We mention hère that Browder [4] has given a complète homotopy enumeration
of the rank 1 if-spaces: they are simply S1, S3, S1, P3 and P1.

In an appendix we show that the methods used in proving the main results
(Theorems 2.9 and 2.10) actually yield a classification of a much wider class of mani-
folds.

There is an overlap between the results of § 2 and independent unpublished work
by Curtis, Mislin and Thomas, and by Zabrodsky.1)

§ 2. Homologically Torsion-free Rank Two if-spaces

We first dispose of the cases (q, w) (l, 1), (1, 3), (1, 7) by means of the foliowing
theorem whose proof we omit; the observation was made to us by G. Mislin.

2.1. THEOREM. LetXbe an Espace with n1(X)free abelian ofrank k. Then we

hâve afibration X-^X->(Sl)k in which the maps are H-maps, and this fibration has a
cross-section. Thus X~X x (S1)*.

2.2. COROLLARY. IfXis a torsion-free Espace oftype (1, n), then XczS1 x Sn.

Having excluded the cases (q, /i) (l, 1), (1, 3), (1, 7), we hâve to discuss the cases

(q, n) (3, 3), (3, 5), (3, 7), (7, 7). In such a case, X is 1-connected and consequently
we hâve a cellular décomposition for the homotopy type of X,

nupen+q. (2.3)

2.4. THEOREM. Ifq n, thenX^SnxS\
Proof: In this case I^^v^u^2". Now the Whitehead product [i1? i2]

générâtes a cyclic infinité direct summand in n2n-l(Sn v Sn). Since Whitehead products
vanish in n2n-i(X), bu lî\ must be a multiple of J?. This implies that J?= ± [il912],

hX5n5n
It remains to discuss the cases (q, w) (3, 5), (3, 7). We first quote a classical

theorem of homotopy theory.

2.5. LEMMA (James [9] ; cf. also [l]).Letn-\>q>2andletasnn{C^Sq)denote
the characteristic mapfor the n-cell ofCaupen+q Squ0LenKjpen+q (so that a ô (&)).

1) Zabrodsky has announced that the principal S3-bundles 2s2«), E^a> and £ioa> (see § 2 below)
are not Espaces. He has also announced the homotopy classification of simply-connected, torsion-
free rank 2 H-spaces.
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Then a^:nn+q^1(Dn,Sn~i)-^nn+q.l(Ca,Sq)ismonicandnn+q.i(CIXJSq)is isomorphic to
the direct sum ofim <r* and an infinité cyclic group generatedby the (relative) Whitehead

product [cr, ij, iqenq(Sq) the generator. Thus, ifj:Ca-*(Ca9 Sq) dénotes the inclusion,
we havej*p m[a, ij©(xo£, meZ, Qenn+q-i(Dn, Sn~l).

We now combine the information given in Lemma 2.5 with gênerai results on the

homology structure of finite /f-spaces to get a grasp on the behavior of p. We prove

2.6. THEOREM. Let X be an H-space having the form given in (2.3), with

n>q>\. Thenj*P~±[o, ij.
Proof: We use the following two facts. First, by a theorem of Browder [2], X

obeys Poincaré duality. Secondly, by a theorem of Browder-Spanier [5], X is stably
reducible, i.e. ZNp~O where ZN is the 7V-fold iterated suspension, N sufficiently large.

The proofuses the formula for/*j3 givenin Lemma2.5. Let aeHq(X; Z),beHn(X; Z)
and ceHn+q(X;Z) be cohomology generators. Then, by Theorem 3.3 of James [9],

mc9 and by Poincaré duality, a Kjb— ±c.Thusm= ±1 andj*j3= ±[<r, ^©aog,
^^^D", S"-1). Now, ZNp O so that ZN(j*p) O and therefore ZN(aoQ)=0. We

shall show that this latter équation implies that £ 0, thereby completing the proof.
To see this, first note that q=3 in our case. Next, consider the commutative diagram

Then Z{ooq) ZoO*q {Zo)*oZ'q. But, since «^5, Zr and (Zo)* are both isomor-

phisms, the latter by the homotopy excision theorem. Thus, if g^O, we would also

hâve Z(aoQ)^0. Iterating, we see that g=£0 implies Zn(<joq)^Q. This establishes our
contention and complètes the proof of Theorem 2.6.

Of course, this theorem allows us to takey*/?= [a, iq\ since we do not change the

homotopy type of X by replacing P by - p.
Remark. Theorem 2.6 provides an alternate proof of Theorem 3.2 of [7], asfollows.

Even though the space Ea of [7] is not, in gênerai, an //-space, it is nevertheless true
that Ea satisfies Poincaré duality and is stably reducible. (This follows from the fact,

proved as Theorem 4.1 in [7], that Ea is a parallelizable smooth manifold.2)) Thèse are

the only properties of Ea needed to prove the desired resuit.
The proof of Theorem 3.2 of [7] given in [7] relied on the fact that there is a map

p:(Ea, S3)-+(Sn, point) (the bundle projection) inducing an isomorphism /?*:
Tr* (2sa, S3}^>n*(S% i.e. that p is a quasifibration. As we shall note directly below,

the fact that^j8= ± [a, iq~\ implies the converse of this statement.

2) Although it is only proved in [7] that Ea is parallelizable for n ^ 4 (aenn-i(S3)), the result
is also true for n 4. In fact, looking at the décomposition of the stable tangent bundle of E<* giverl

on p. 105 of [7], it is easily seen that p*a{â} is always 0 even though {a} need not be 0 for n 4.
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2.7. COROLLARY. If X is a homologically torsion-free rank 2 H-space, then
there exists a map p:(X, Sq)-+(Sn, point) which is a quasifibration.

Proof: In case the type of X is (1, n) or (/i, n), this follows from Corollary 2.2 and
Theorem 2.4. If Xis as in Theorem 2.6, the resuit follows by combining the conclusion
of Theorem 2.6 and the work of Sasao [11 ; pp. 624-626].

This corollary suggests the conjecture that any homologically torsion-free rank
2 /J-space has the homotopy type of a sphère bundle over a sphère. This is obviously
true for the types covered by Corollary 2.2 and Theorem 2.4 and turns out to be correct
in gênerai, as we shall soon see. We first hâve the following gênerai resuit.

2.8 THEOREM. Let X~Squ0Cenujien+q be an H-space with <x=0, Le. Xc*(Sqv
vSn)ufien+q. Then X~SqxSn.

The proof is exactly as in the case q n.
We now deal systematically with the cases (q, n) (3, 5), (3, 7).

2.9. THEOREM. If X is of type (3, 5), then X~SU(3).
Proof: We hâve X^S3uae5u^e8 with a^O. Indeed, if a 0, then Theorem 2.8

implies XczS3 x S5 and this would mean S5 is an i/-space. Now, by Theorem 2.6 and
the subséquent remark, we may assume, without loss of generality, thatj*/?= [cr, i3]. If
we now write SU(3)c*S3 ua,e5 ure8, we hâve a' a (since 7i4(5'3) Z2) and, as above,

we may assume j*P' [g9 i3]. Thus fi—/Tekery^im /*, i*:n7(S3)-+n7(S3vae5).
The proof will be completed by showing that imf* 0. To this end, recall that
7T7(Sf3) Z2 with generator aoy, y:57->54 the Hopf map. But i*(<Xoy) ioaoy and

plainly, /oa 0. This complètes the proof.
Before stating the next theorem, recall that n6(S3) Zl2 with generator œ, the

Blakers-Massey élément. Thus, if X is of type (3, 7), the map a has the form kœ9

12. Since we are only concerned with homotopy type we may indeed suppose

2.10. THEOREM. If X is of type (3, 7) and a kœ then X^Ek(o, the principal
S3-bundle over S1 with characteristic map kœ.

Remark. If k 0, Ek(O S3 x S7, an #-space;ifk=\9Ehm Sp(2); Hilton-Roitberg
show [7] that E5(O E1(O) is an i/-space; and, more generally, Stasheff [12] has shown

that Ek<a is an //-space if k #2 or 6; the same methods, due to Zabrodsky, show that
E2(a is an //-space iff E6(û is an /f-space. Zabrodsky has announced (unpublished) that
E2(o and E6(O are not Espaces.

Proof of 2.10: As in the proof of Theorem 2.9, we hâve

X Xk « S3 uk(Oe7 Kjpe10 C
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and we will show that /?=+/?'. In fact, as before, we will choose /?, /?' so that /? /?'.

We hâve, by Theorem 2.6 and the subséquent remark, that y^/8 =7*^' [cr, i], Thus,
if k 7^0, 3, 6 we may immediately infer that /?=/?'. For consider the exact séquence

n9 (S3) ± n9 (Q) h n9 (Q, S3). (2.11)

Now 7T9(5r3)=Z3, generated by

It is thus generated by kcooZ3œ, provided 3Jfk. But i#(k(o) 0 so i*(kcùoZ3co) 0 and

j* is monic if 3)(k.
It remains to consider the cases fc=0, 3, 6. The case fc 0 is already disposed of in

Theorem 2.8. We now take k=3. Then E3(O and X3 are both if-spaces. Consider

S) (212)
7t7(S3) X tz7(C3) Â rt7(C3) S3) A ;t6(S3)

Now d{a)=3(o so 3(4(j)=0. Thus there is ren7(C3) such that </*(t)=4(7. For any
such t,j*[t, i] 4[a, i]. Since attaching e10 kills [t, i] in both E3(0 and X3, we hâve

4/?'=4/?=[t, i]. But 7r9(*S'3) Z3 so 3(j8 — /?') O. It follows immediately that /? /?'.

Finally we consider the case k 6. Hère X6 is an //-space but we do not assume

that E6(O is an i/-space.
For convenience we retain the symbols j5, p' to refer to X3, £"3^ and will use fi, fif

to refer to the attaching maps for ei0 in X6, E6(O9 and similarly with â, f. Then by the

same argument as above we know that 2/?= [t, ï] and it will be sufficient to show that

2j5/ [f,i], (2.13)

since we then complète the argument just as in the case k 3. We know that 2/?'

[f, *] + /*A, ÂEn9(S3). We hâve the diagram

II U i* (2.W)

inducing

¦^«9(C3)-»n9(C3.S), (215)

71/!'
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Now ô (â) 6o>, /* (<r) 2a and we may take % =/* (t). It follows that/*[f, ï] [t, i].
We claim that/*(/?') /w/?' for some m. For we hâve the diagram

and the groups on the left of (2.16) are cyclic infinité with their d-images generated
by /?', fi' respectively. Thus, applying/* to the équation 2/5'= [ï, i]+/*A, we get
2m/?' [t, i~] + i*L We know that 4/T= [t, 1]. Thus, applyingj*, we infer that m 2
(which was in any case clear on other grounds). Thus ^=0 so that A=0, whence
(2.13) is proved and, with it, the proof of Theorem 2.10 is complète.

We thus hâve a complète list of homotopy types of torsion-free rank 2 if-spaces,
modulo one ambiguity. The list reads S1xSl; SlxS3; S1 xS1; S3 xS3; SU(3);
S3 x S\ Sp(2), E2a9 £3w, E4(O, E5m9 E6<o; S1 x S1.

The one doubt concerns the bold examples ; both or neither are //-spaces - and,
as we hâve said, Zabrodsky has announced that neither is. This announcement does

not, of course, render the arguments of Theorem 2.10, in the cases k 2, 6, superfluous.

§ 3. Topological Classification

Our purpose in this section is to prove

3.1. THEOREM. Let X be an arbitrary homologically torsion-free rank 2 H-space,
not of the homotopy type of S1 x S3. Then there is a closed PL manifold M, unique up
to PL-équivalence, which is homotopy équivalent to X.

Remark. This theorem is quite analogous to the situation in the case of rank
1 //-spaces. There, the only possible exception is, of course, S3.

Proofof 3.1: Of course, the existence of M (indeed, of a smooth manifold M) was
proved in § 2. For uniqueness, we first consider the case where the type of Xis (1, n).
If n= 1, the resuit is obvious. Since we are excluding « 3, there remains only n 7.

But, as has been observed independently by several people, of M is any PL manifold
homotopy équivalent to S1 xSn,n^5,3) then a theorem of Browder-Levine implies
that M must be PL-equivalent to S1 x Sn.

We turn now to the case where the type of Xis (q, n), q>\. Hère, uniqueness will
be deduced from simply-connected surgery considérations. A convenient way to see

this is to use Sullivan's formulation of the surgery technique [13]. Thus, iîNis another
closed PL manifold homotopy équivalent to X, let h:N-*M be a homotopy équivalence.

According to [13], h is "classified" by a map Ch:M0-+F/PL, Mo denoting M

3) The resuit is actually true for n ^ 4 as is shown in J. Shaneson's thesis.
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with a small open dise removed and F/PL denoting the fibre of BPL-+BF. But
Mc*X^Sqvaenvfie*'¥q so that MoczSq\jaen. Applying the cohomology functor
[ —, F/PL] to the cofibration Sq-+Sqvaen-*Sn yields an exact séquence

nn(FIPL)-+ [Mo, F/PL-]->nq(F/PL) ;

since q and n are odd, nq (F/PL) nn (F/PL)=0 by [13] and hence [Mo, F/PL]=0. In
particular, Ch is nullhomotopic and thus, again by [13], A can be deformed to a PL-
equivalence h':N-+M. This complètes the proof of Theorem 3.1.

Observe finally that Theorem 3.1, while giving a combinatorial classification, also

contains a topological classification. For if M is a closed, topological (not a priori
PL) manifold homotopy équivalent to I, I a homologically torsion-free rank 2 H-

space, then the récent solution of the Triangulation Conjecture by Kirby-Siebenmann
and Lashof-Rothenberg implies that M can be triangulated as a PL-manifold. In fact,
the only possible obstruction to triangulating M lies in H* (M; Z2), and the latter

group is clearly 0 in our situation.

§ 4. General Rank Two //-spaces

We begin by quoting a gênerai theorem of Browder on torsion in /7-spaces. The

main resuit of this section will then follow as an immédiate corollary.

4.1. THEOREM (Browder [3, Th. 6.7 and succeeding remarks]). Let Xbe afinite,
connected H-space (not necessarily ofrank 2) and suppose H*(QX; Z) is torsion-free.
Then

(a) ifH* (X; Z) hasp-torsion, then there exist integers k^ 1 and m, with m=\ mod p,
such that H*(X; Q) has a gênerator of dimension 2m pk—l; and 2m is the smallest

dimension where H*(X; Z) has p-torsion;
(b) if H*(X; Z) has higher p-torsion (i.e. éléments of order pr, r>\), then there

exist integers 1^2 and q, with q=l mod;?, such that H*(X; Q) has a gênerator of
dimension 2qpl — 1; and2q is the smallest dimension where H*(X; Z)has higherp-torsion.

4.2. THEOREM. If X is a connected, rank 2 H-space without 2-torsion, and ij
H*(QX; Z) is torsion-free,4) then X has no p-torsion in its intégral cohomology (or
equivalently, its intégral homology) forp^5, and has no higher 3-torsion in its intégral

cohomology.

If, in addition, X is simply-connected, then X has torsion-free intégral cohomology.

Proof: We consider the simply-connected case, the proof being similar in the

gênerai case. The existence ofp-torsion in H*(X; Z) implies, by Browder's Theorem

4.1, that H*(X;Q) has a generator in dimension 2m />* —1, with both m,k^\>

4) J. Hubbuck has informée us that the restriction on QX can be removed.
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Moreover, we cannot hâve m=\, since otherwise, again by Browder's theorem, we
would hâve H2 (X; Z) possessing/?-torsion, which is impossible. (In fact, H2 (X; Z) 0

since, by another theorem of Browder [2], n2(X) 0 for a finite, simply-connected
//-space.) Thus, since ra= 1 modp, we must hâve m^4, and then 2mpk— 1 ^23. But
this evidently contradicts Theorem 1.1 and complètes the proof of the theorem.

Thus, Theorem 4.2 provides us, in view of the results in § 2, with a solution of the
classification problem in the 2-torsion-free, simply-connected case, modulo the hypoth-
esis on QX.

Concerning this hypothesis, we mention that a well known theorem of Bott asserts

that //* (QX; Z) is torsion-free ifX is a Lie group. Moreover, the only known examples
of finite //-spaces (cf. Hilton-Roitberg [7], Zabrodsky [14], Stasheff [12]) are "locally"
either Lie groups or products of odd-dimensional sphères, i.e. for each prime p, X is

//-équivalent, modp, to such a space. Thus, for ail known finite //-spaces, it is true
that H* (QX; Z) is torsion-free. It is therefore not inconceivable that //* (QX; Z) is

torsion-free for an arbitrary finite //-space X. Nevertheless, it would certainly be

désirable to avoid using this hypothesis on QX in Theorem 4.2 (provided, of course,
the resuit is true in that generality).

We consider next what occurs when we remove the restriction that there be no
2-torsion présent. Then the conclusion of Theorem 1.1 is no longer necessarily valid
and, in fact, the exceptional Lie group G2 provides a spécifie counterexample.

Recall that G2 may be considered as a bundle over S6 with fibre SU(3). This

implies that G2 has a cellular décomposition of the form

G2czS3uae5ue6Kjesve9Kjellve^. (4.3)

Thus G2 has rank 2 and type (3, 11). Moreover, the known homology structure of
G2 tells us that the 6-cell (resp. 9-cell) is attached to the 5-cell (resp. 8-cell) by a map
of degree 2. (This also follows from Theorem 4.1, which implies that ifX is any simply-
connected finite //-space of type (3,11), satisfying the condition on QX, then Zhas
no/7-torsion for/?^3 and no higher 2-torsion.)

In addition to G2, there are three other //-spaces of type (3, 11) which can be

constructed by Zabrodsky's method.

We state this as

4.4. THEOREM. There are four homotopically distinct H-spaces, Xt, X2, X3 and

x* oftype (3, 11), which can be obtained by "mixing" G2 with S3xSn (Xx being G2).

Proof: Following Zabrodsky, we take a décomposition P=P1uP2 of the set of
primes P into disjoint subsets and we mix G2 (Px) with S3 x S11 (P2). (In order that the

resuit be an //-space, we must hâve 2ePt.) The four examples arise by taking (a)

P2=0(yielding G2, of course), (b) P2 {3}, (c) P2 {5}, (<1) P2 {3, 5}. The reason

that thèse examples are homotopically distinct is that G2 and S3xSn are definitely
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not équivalent, either mod3 or mod5. In fact, by a theorem of Bott-Samelson, re-
proved by Kumpel in [10], nlo(G2) 0i whereas niO(S3 xSn) Zl5. Thus the four
examples are distinguished by 7r10 and the theorem is proved.

Remarks. (1) The reason that only the primes 3 and 5 play a rôle in Theorem 4.4

is that, by a theorem of Kumpel [10], G2 and S3 x S1 x
are équivalent modp for ail p ^ 7.

(2) The homotopy types Xt (i 2, 3, 4) ail hâve représentatives which are smooth

manifolds; this follows from the Browder-Novikov Theorem.
(3) Presumably, further examples can be obtained by mixing G2 with (j2, G2 being

G2 with the opposite multiplication. See Stasheff [12], where this opération is carried

out with Sp(2) in place of G2.

§ 5. The Non-Simply-Connected Case

We conclude the paper with several remarks about non-simply-connected rank
2 ff-spaces. For simplicity, we restrict attention to //-spaces whose type is one of
those appearing in the conclusion of Theorem 1.1. (Of course, this is no real restriction

if the space has no 2-torsion.)
First we note that Theorem 4.2 does not rule out the possibility of the existence of

3-torsion or higher 2-torsion in such a space. In fact, 3-torsion does occur: simply
observe that 5(7(3) has center Z3 so that ifPSU(3) dénotes the corresponding projec-
tive group, H2(PSU(3); Z) Z3. Of course, 2-torsion also occurs: for example,

reason as above with PSp (2), the projective symplectic group, With regard to higher

2-torsion, it is easily seen from Theorem 4.1 that if it occurs, it appears already in
H2 (X; Z). This would imply that nx (X) has éléments of order 4 and this seems unlikely.
The known examples certainly hâve no 4-torsion in their fundamental groups.

We would now like to mention the existence of certain spaces which look like very

strong candidates for the rôle of rank 2 //-spaces. Thèse spaces, which we dénote by

PEk(0, are obtained as follows. There is, on the principal 53-bundle Ek(O, a certain

smooth, fixed-point-free involution Tk;PEk(O is the resulting quotient manifold. For

k 1, PEk(a is PSp (2) ; indeed, it turns out that Tt is just multiplication by f J •

It seems quite likely that whenever Ek(0 is an //-space, so is PEk(O. A detailed treatment

of the spaces PEk(0 will be presented elsewhere.

Finally, we mention another possible way of obtaining rank 2 //-spaces with

fundamental group Z2. That is simply by applying Zabrodsky's mixing technique to

the spaces PSp (2% PSp (2), P(S3 x S1). (Zabrodsky works only with simply-connected

spaces, but this appears to be overly restrictive.) Since the principal 5f3-bundles Eki0

od4) are obtained by mixing Sp(2), Sp(2), S3 x S7, it is tempting to conjecture
that the spaces PEk(ù of the preceding paragraph are obtained in a similar way from the

corresponding projectivized spaces. We hope to return to this point on a future occasion.
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§ 6. Appendix

We remarked in § 2 that the conclusion of Theorem 2.6 only requires that X satisfy
Poincaré duality and be stably reducible. This remark enables us to prove the following
theorem.

6.1. THEOREM. IfX is a closedsmooth l-connected torsion-free manifold ofrank
2 and type (q, ri) with q 3 and n — 5orl, then X is homotopy équivalent (and therefore
PL-équivalent) to an orthogonal Sq-bundle over Sn.

Proof. We first show that Zis a 7i-manifold. Since nt (B0) 0, f=3, 5, 7, it follows
immediately that t| (Z-point) is trivial, where te[X, B0~] is the stable tangent bundle.
Thus X is almost parallelizable. If dimX=8, we complète this stage of the argument
by observing that the obstruction to trivializing t vanishes iffp2(X) 0, which is true
by the Hirzebruch Signature Theorem since <r(X) 0. If dimX= 10, we reason by the
classical argument, invoking the injectivity of the /-homomorphism in dimension 10.

Now the argument of Theorem 2.6 allows us to infer, in the notation of § 2, that
j*P= ± [<r, *']> so that X quasi-fibres over S". A close examination of the arguments
proving Theorems 2.9 and 2.10, involving a study of the self-homotopy-equivalences
of Ca Sq uae", then shows that there are precisely 3 such quasifibrations if n 5 and
10 such if n l. However, James and Whitehead, in their classical study of sphere-
bundles over sphères, showed that there are precisely 3 orthogonal S3-bundles over
S5, and Curtis and Mislin, basing themselves on the work of James and Whitehead,
hâve recently shown (as yet unpublished) that there are precisely 10 orthogonal
S3-bundles over S7. Thus each of our quasifibrations is homotopy équivalent to an

orthogonal S3-bundle and the proof of the theorem is complète.
Remark. The same conclusion holds if X is assumed only to be a closed, PL

manifold. Indeed, by carefully applying smoothing theory to X, it can be seen that ail
the obstructions to smoothing X vanish, and we may then apply Theorem 6.1.
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