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Foliations and Compact Lie Group Actions

by J. S. Pasternack1)

§ 1. Introduction

This paper is about smooth foliations and contains as an application of the main
resuit a theorem on the existence of almost free compact Lie group actions.

Let Mbe a smooth (i.e., C00) manifold admitting a smooth foliation. Let T(M) be

the tangent bundle of M, let E be the sub-bundle of T(M) consisting of tangents to the
leaves of the foliation and let v be the normal bundle to the leaves v T(M)/E. The
Bott integrability criterion [5] gives that

Pont(r)(v;JR) 0 for r>2-dim(v) (1.1)

where Pont(l<)(v; R) contained in H* (M; R) is the real Pontryagin ring generated by
the real Pontryagin class of v.

The main resuit of this paper, Theorem I (properly stated in Section 2), is that for
the spécial case when the foliation admits an appropriate Riemannian structure

Pont(r)(v;£) 0 for r>dim(v). (1.2)

Furthermore, in this spécial case if v is an orientable bundle, then

Pon4r)(v;#)=0 for r>dim(v), (1.3)

where Pont*(v; R) is Pont*(v; R) with the real Euler class x(v) adjoined. In other
words, we make an additional differo-geometric assumption on the foliation and

prove a stronger resuit for the normal bundle. It is known that (1.2) is not true for
an arbitrary foliation, but to the best of the author's knowledge it is unknown
whether or not (1.1) is a best possible resuit on the rational characteristic classes of
the normal bundle.

A Lie group acting smoothly on a manifold générâtes a smooth foliation of the
manifold whenever ail of the orbits of the group action are of the same dimension.
The leaves of the foliation are the orbits. In case the Lie group is compact the foliation
generated by the action will be shown to satisfy the hypothesis of Theorem I and in
Section 5 we prove as a Corollary to Theorem I the following resuit on almost-free

compact Lie group actions. (An action is almost free if ail the isotropy groups are
discrète.)

*) The author is a Battelle Seattle Research Center Visiting Fellow. During most of the period
when this paper was prepaied, he received support from NSF Contract GP 7905.
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COROLLARY 1. Let Mbea smooth n-manifold admitting an almostfree action of
a compact k-dimensionalLie group. Then letting T= T(M)

Pont(r)(T;K) 0 for r>n-k.
It is interesting to note that Corollary 1 and also Theorem I are false for

the intégral Pontryagin rings. In Section 6 an example is given of a spécifie 4-

manifold admitting an almost free action of the circle group, but pi(T)^0 where

Pi (T)eH4(M; Z) is the first intégral Pontryagin class.

Corollary 1 can be extended without difficulty following a gênerai idea of Bott [5],
(cf., p. 92 in [12]).

COROLLARY 2. Suppose M is an n-dimensional manifold admitting an action of
a k-dimensional compact Lie group the action being almost free off a singular set I.
Then letting T=T(M)

?ont(r)(T;R)czfr\H(r)(M,M-Z;R)) for r>n-k
wherej(r):H{r)(M, M-I;R)^ H(r) (M; R) is inclusion.

It would be interesting to hâve for each coePont(r)(r), r>n — k, a recipe for
rjeH(r)(M, M—Z; R) satisfying œ=j(r)(fj) in terms of the local invariants of I and
the behavior of the action near I. This program has been carried out in case k \
and M orientable by Bott [4], and, Baum and Cheeger [2]. The gênerai case is an open
problem.

This paper will assume a knowledge of the theory of characteristic classes and of
the Chern-Weil theory although essential results of the latter will be reviewed. The

author wishes to thank Professor Raoul Bott for his help and encouragement in this

research, and Professor André Haefliger for his suggestions which considerably
simplified the définition of an .R-foliation and the proof of Theorem I.

§2. ^-Foliations

The manifolds considered in this paper are smooth finite dimensional paracompact
Hausdorf spaces. On a manifold M an R-foliation2) of codimension q is given by the

following data:
(1) An auxiliary #-dimensional Riemannian manifold B.

(2) An open covering {£/Jiej of M for /some indexing set and for each i a smooth

submersion/- : C/£ -* B.

(3) For xel/fn Uj there is an isometry yxjt from a neighborhood oîft{x) onto a

neighborhood of fj(x) satisfying/j =y*ioft on a neighborhood of jc.

2) jR-foliations hâve previously been studied from a différent point ofview by B. Reinhart [13].
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Notice that if one drops the condition that B îs Riemanman and that the y* are
local isometries then one recovers a définition équivalent to the usual définition of a

foliation (compare [8]) Not every foliation admits a structure as an i*-fohation (cf.

[13] and [12]), for example the Reeb foliation of S3 îs not an i?-fohation
Given an i^-foliation if E îs the sub-bundle of T(M) satisfying Ex==kQr(dfl\x)

for xeUl then E îs tangent to leaves of the foliation and v T(M)/E îs the normal
bundle. The main theorem of this paper îs the following.

THEOREM I. For v the normal bundle to an R-fohatwn ofa mamfold

Pont(r) (v; R) 0 for r> dim (v).

Moreover, ifv is orientable then

Pon4r)(v;£)=0 for r>dim(v)
The proof of this theorem given m Section 4 is based on Chern-Weil construction

of the charactenstic classes from the curvature ofa connection

Remark One can define a pseudo-i?-fohation by requinng m the définition that B
be a pseudo-Riemanman mamfold (î.e., a mamfold with a symmetnc non-degenerate
smooth bilinear form on the tangent bundle). Except for the results on the Euler class

Theorem I is true for pseudo-i?-fohations, the proof being essentially the same as the

proof to be given for Theorem I.

§ 3. Review of Connections and the Chern-Weil Construction

3.1. Connections

Let M be a smooth mamfold with cotangent bundle T* and let F be a smooth
g-dimensional vector bundle over M. Let jT(-) dénote the functor associating to a

vector bundle îts vector space of smooth sections. A smooth connection on V is an

operator D : r V) -> r T*® V) satisfying

(î) D(st + s2) Dst + Ds2 for sus2er(V)
(n) D (fs) df®s + fDs for seT(V), fa smooth

function on M and d the usual extenor denvative
(3.1)

Given U an open set of M and a framing {sl9s29- ,sq} of V over U then a

connection D defines over C/a matnx of 1-forms ||0J| satisfying

The curvature of D, denoted K(D), is the global section ofA2 (r*)®End (V) (End (F)
is the endomorphism bundle of V) which with respect to the framing {su s2,.. sq}
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over C/satisfîes

K(D)\U dOtJ

J.S.PASTERNACK

q
X"1 û A û
£_j v IK * v KJ
k=l

(3.2)

Suppose now that Nis a manifold and/: jV-» Mis a smooth map. The connection
D on F pulls back to a connection /"1 (D) on the pull back bundle /~x (F); locally
over the open set/ ~1 (£/), { / "x (^),...,/ ~* (^)} frames/ ~1 (F) and

/-1(D)(/-1(,i))= I ^(e*)®/"1^) (3.3)
/ti

where/(1) is the induced map on 1-forais.

By naturality of the exterior derivative, (3.2) and (3.3) can be combined to yield

K (/- * (D)) | /"1 (U) /(2) (K (D) | C7), (3.4)

where/(2) is the natural induced map on 2-forms.

3.2. Chern-WeilConstruction
The Chern-Weil theory exploits the fact that the de Rham cohomology of a

manifold is isomorphic to the singular cohomology with real coefficients. The
idea is to construct from the curvature of a connection on a vector bundle closed

differential forms which represent the real characteristic classes of the bundle.
Good références are [6], [7] and [14], hère we briefly describe the results necessary for
our purposes.

Letgl(q, R) be the linear space ofqxq real matrices the Lie algebra of GL(q, R).
Suppose 0 is a symmetric, multilinear real valued map of degreey on gl(q, R),

j times

The map 0 is said to be invariant over GL (q, R) if and only if
1

l9 A2,...9 Aj) (3.5)

whenever x^GL(q, R) and Ategl(q9 R). The symmetric multilinear maps on gl(q, R)
invariant over GL(q, R) form a graded ring called the characteristic ring of gl{q, R)

over GL(q, R). Eléments of this ring are called characteristic maps.
Suppose F is a vector bundle over a manifold M and D is a connection on F with

curvature K(D). The characteristic maps of gl(q, R) can be extended to even dimen-

sional forms with values in the endomorphism bundle and the fundamental fact of the

Chern-Weil theory is the following. For <j> any characteristic map </> (K(D)) is a closed

form where $(K{D))~<}>(K{D\...,K{D)) and for each wePont(r)(F; R) there
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exists a characteristic map (j> of degree r/2 satisfying

(36)

where [•] dénotes cohomology class in H* (M; R). In fact the total real Pontryagin
class P(F) is given

^j^ (3.7)

where det(-) is déterminant. Notice (3.6) implies that the cohomology class of
(j) ((1/2tt) K(D)) is independent of the connection D.

If F is orientable choose D so as to préserve a Riemannian metric on F. Then

K(D) is skew symmetric in local orthonormal framings of F. Let so{q) be the linear

space of q x q skew symmetric matrices the Lie algebra of SO (q) and by analogy with
(4.1) define characteristic maps of so(q) over SO(q). Restricting to orthonormal
frames cohérent with a prescribed orientation of F characteristic maps of so (q) over
SO(q) can be defined on K(D). The Chern-Weil construction gives analogous to
(4.3) that for each H>ePont£°(F; R) there exists a characteristic map of so(q) over
SO (q) of degree r/2 satisfying

Notice from (3.8) that the cohomology class of (j> ((1/2ti) K(D)) is independent of the
Riemannian metric on F.

§4. ProofofTheoremI

Using our previous notation let M be the manifold with a given .R-foliation of
codimension q and let E be the sub-bundle of tangents to the leaves, Ex=kQi(dfi\x).

Let A* be the graded subalgebra of F (A* (T*(B))) consisting of those differential
forais on B which are invariant under local isometries. Since the yxn are local isometries
A* pulls back to a subalgebra Â* of r(A*(T*(M))). Notice that Âir) vanishes for
r>q. The next step in the proof is to define on the normal bundle v a connection for
which the differential forms representing the éléments of the Pontryagin ring are con-
tainedin^l*.

Restricted to any Ut the bundle v is canonically isomorphic to the pull back of
T(B) by/f. For txeT(M)\x with [tx~\ denoting the équivalence class in v\x the ca-
nonical isomorphism is given by
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The unique torsion-free Riemannian connection on T(B) is invariant under local
isometries, in particular under the yïj9 and therefore this connection pulls back to a

connection on v. Let D be the Riemannian connection on T(B) and D its pull back

to v.

Since D is invariant under local isometries for any characteristic map $

<t>(K(D))eA*.

Furthermore, by (3.4) <j> (K(D)) is the pull back of (j> (K(D)) and therefore

<t>(K(D))eÂ*.

By the Chern-Weil construction Pont(r)(v; R)=0 for r>q. Moreover, D préserves
the metric on v pulled back from T(B) and therefore if v is orientable Pont^r) (v ; R) =0

§ 5. Compact Lie Group Actions

A smooth right action of a Lie group G on a manifold Mis given by a smooth map
-* Msatisfying

(i) fi(m,e) — m for ail me M where eeG is the identity. j
(iï) li(n(m,gi),g2)=ti(m9glg2) for ail gl9g2eG and meM.j

On a Riemannian manifold (M, <, >) an action is an isometric action if for every

ge G the map \i •, g) : M-» Mis an isometry.

PROPOSITION 5.1. ^4 Lie group acting by isometries on a Riemannian n-manifold
(M, <, >) having ail orbits of dimension k générâtes an R-foliation of M with codi-

mension n — k.

Proof. The fact that the orbits are ail of the same dimension gives that M has a

foliation with leaves thèse orbits. We may choose a covering of M by coordinate
charts {(Ut; xî,..., x[, yi,...,^-^)}^ with/someindexing set so that the slicedefined

by each fixed value of (y1,..., yln-k) is a connected component of an orbit intersected

with l/f. Since the action is isometric following Reinhart [13, pp. 119-124] we can
choose 1-forais w\9..., wlk defined on Ut which are zéro on ail vectors orthogonal to the

orbits and {w\,..., wlk, dy\,..., dyln-k} frames thecotangent space over Ut with

<,>\ut= Y g,x(x,y)K® x i

Let (Rn~ky hâve Riemannian metric

Z
0
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and let B be the disjoint union of the (Rn~k)\ The covering {l/JieJ with the obvious
surjections into B define an i^-foliation of M. Q.E.D.

Given a Lie group action fi, fi:Gx M-+ M,dii(e9m):T(G)e®T(M)m->T(M)m
and the image of T(G)e@Q under dfi(e9 m) is the subspace of T(M)m consisting of
the tangents to the orbit through m. Let E^ be the collection of ail tangents to the or-
bits of fi; E^ is a vector subbundle of T(M) if and only if ail the orbits are of the same
dimension.

DEFINITION. The action ji is almost free iffor each me M the isotropy group of
m (subgroup ofGfixing m) is a discrète subgroup ofG.

PROPOSITION 5.2. If n is an almost free action then E^ is a trivial sub-bundle of
T{M).

Proof Since fi is almost free, the map from TGex M-^E^ given by (/, m)v-+

\->dfi(e, m) (/) for leTGe is injective for each m because dfi(e, m) (/)=0 would imply
that the group éléments exp(f/) fix m. The above map is certainly surjective and tri-
vializes the bundle E^ Q.E.D.

Proof of Corollary 1. Let jll be the almost free action of a £>dimensional compact
Lie group G on an «-dimensional manifold M. Since G is compact there is a metric
on M with respect to which \i is an isometric action. By Proposition 5.1, Theorem I
canbeapplied:

Ponf {TjE^ R) 0 for r > dim(T/Ej n-k.
Now,

LettingP( • dénote the real total Pontryagin class it follows (cf., Milnor [9])

But by Proposition 5.2, E^ is trivial and therefore

P(Efl) leH°(M;R).
Thus P(T)=P(T/Efl). Q.E.D.

§ 6. Intégral Pontryagin Rings: A Counter-Example

Information on characteristic classes in Theorem I and Corollary 1 has been

deduced exclusively by the Chern-Weil theory and as a resuit, ail of thèse theorems

are about the real Pontryagin ring. In this section an almost free action of S1 is

constructed on a 4-dimensional compact unorientable manifold whose first intégral
Pontryagin class does not vanish. The example shows that Theorem I and Corollary 1

are false for the intégral Pontryagin ring.
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To construct the example we need to use the real blow up. Suppose M îs a real
«-dimensional smooth mamfold. Choose a point p,pe M. There exists a real smooth
mamfold M and a map n, n : &L -* M, satisfymg

(1) n maps M— {n"1 (/?)} diffeomorphically onto M— {p}
(2) n'1 (p) îs a real projective (n — l)-space.
The point p in M îs blown up into a projective space in M by replacing p, by the

set ofdirections through/?.
Topologically the blow-up manifold Û îs the connected sum of M and a real

projective «-space, RPn. Whenever n îs even ifà îs non-orientable. In gênerai, each

Stiefel-Whitney number of T(M) equals the sum of the correspondmg Stiefel-Whitney
numbers ofT(M) and T(RPn). For example, the blow-up of one point in the «-sphère

yields RPn - the Stiefel-Whitney numbers of the «-sphères vanish

Algebraically, the blow-up îs descnbed as follows. Let P(TM) be the bundle of
(n — l)-dimensional projective spaces denved from TM. Choose a coordinate patch
(U;xl9 x2,...,xn) with .*,(/?) =0, i l,2,.. n. Let(j>i5.y2, ,yn) be the dual basis to

d ô d

ôxx
' dx2' ' dxn

viewed as homogeneous coordmates for P (TM) | U.

To define Û and n, ît îs sufficient to define n'1 (U).

n'1(U)cV(TM)\ U

n~1(U) {((xl9x29. ,xH),(yl9y2,. yn))\ xjj *jy>
for each unordered pair i, j, 1 < i, j < n}.

For

((xu *2,..., xn), (.Vi,..., y^eTi"1 (U)
n((xl9x2,. ,xH),(y9 yH)) (xl9 x29. 9xH).

There are n coordinate patches covenng n'1 (U)
K {((xi, x29 xrt), (yl9 y29.. jijjew-1 (17) | yt * 0}

on each Ft there are coordmates v], j 1,...,«. t;j =x, fory / and vj =yJ/yl

Lifting an action of S1 to tâ. The following lemma about the real blow-up îs of
central importance in the construction of the example. Let/? be contained in M and Û
the blow-up manifold for/?; S1 îs the circle group.

LEMMA 6.1. Suppose S1 acts on M and the action is almostfree on M— {/?}, then

the action lifts to an almostfree action on AÏ.

Proof of Lemma, Choose <, > to be a Riemanman metnc on M with respect to
which S1 acts isometncally. Let fi be the smooth map deflning the action, ii'.S1

S1 {el6\0eR}.
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Defined)u(l)by

The vectorfieldd/*(l)is an infinitésimal isometry on (M, <, >).Fors>01et

where #(,) is the Riemannian distance on (M, <, >). Since/? is a fixed point of the

isometric action, UP>B is stable under the action. The proof of the lemma is now com-
pleted by purely local considérations.

Choose 8 small enough so that UPfE is diffeomorphic to an open set about OpeTMp
the diffeomorphism given by the exponential map relatice to the Riemannian
connection.

At the point/?, the infinitésimal generator of the action, dfi(l), vanishes and the

Lie bracket with respect to dn(l) defines a linear map TMp-+TMp. Dénote this

linear by Lp(dfi(l)). In [10], Kobayashi shows that (dim M) is even and there exists

non-zero real numbers al9 a2,..., an/2 and an orthonormal frame for TMpi eu..., en

so that relative to this frame of the matrix oîLp{dpi (1)) is given by

0

0

0

0

0

0

0

a2
0

-a2
0

0

0
0

0 -an/2

(7.1)

Let #!,..., xn be the dual basis of eu..., en on TMp9 restricted to expp l(UPtB) and
viewed as coordinates on UPtB. It is further shown in [10] that the action of jU on UPtE is

given by

0

0

cos anf20 - sin an/29

sinanf26 cos an!20

(7.2)

The skew-eigenvalues aua2,**.,cin/2 are seen t0 ^e integers.
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Dénote by P(TMP) the projective space of TMp. Letting (yi9...,yn) be homo-

geneous coordinates on P(TMp) relative to the basis eu..., en, the matrix in Equation
(7.2) defines an action, //, of S1 on P(TMp). Noting the skew-symmetry in matrix
(7.1), fi' is almost free. The product action fi'xfi is almost free on P(TM)\Upv
Further, n~l (UPtB) is stable under fi' x fi and thereby lifts fi to Û. Q.E.D.

EXAMPLE 7.1. An action of S1 is first defined on complex projective 2-space CP2.

Dénote by [z0, zl9 z2] the équivalence class in CP2 of (z0, zl9 z2)eC3 — {(0, 0, 0)} and
define the action fi by

(eie,lzo,z1,z2]) lzo,ewzuei2%-].

The points [1, 0, 0], [0, 1, 0] [0, 0, 1] are fixed points of the action fi and fi is almost
free on

CP2~ {[1,0,0], [0,1,0], [0,0,1]}.

Blow-up in turn the three fixed points and lift the action, as described in Proposition
7.1, to an almost free action on the resulting blown up manifold. Let Mbe the blown

up manifold; M is the connected sum of CP2 and three copies of real projective

space RP4.
To complète the counter example we now show that p1(T(M))^0 where

p1(T(M))eH4(M; Z) is the first intégral Pontryagin class. Since Mis compact and

non-orientable it follows (cf., p. 90 in [3]) thatpï(T(M)) (w2(T(M)))2. However,
the Stiefel-Whitney numbers of T(M) equal the Stiefel-Whitney numbers of T(CP2)
plus three times the Stiefel-Whitney numbers of T{RP^)> and [11]

and

iw2(T(CP2))f=p2 PeH2(CP2,Z2).
P*0

Thus/?1(r(M))#0.
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