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Pseudo-Hermitian Symmetric Spaces

by R. A. Shapiro

§1. Introduction

In contrast to Riemannian symmetric spaces very little is known about the de-

tailed géométrie structure of non-Riemannian or so called affine symmetric spaces.
In [2] Berger has classified ail the affine symmetric spaces on the Lie algebra level,
but globally little is known. Much of the difficulty arises from the fact that when the
symmetric space is represented as a homogeneous space G/R the isotropy group R
is not compact if G/R is not Riemannian. By restricting ourselves to the generalizations
of Hermitian symmetric spaces the problems become more tractable. In the semi-

simple case the Hermitian symmetric spaces are singled out among ail the others by
the présence of central éléments in the isotropy subgroup. This is the key fact that
carries through to the case of pseudo-Hermitian symmetric spaces.

In section 2 we discuss the relationship between Lie algebra and global descriptions

of pseudo-Hermitian symmetric spaces and show that ail thèse spaces are simply
connected and hence there is a 1-1 correspondence between them and the algebras
they define.

Section 3 deals with an extension of the Borel embedding theorem, which says
that a non-compact Hermitian symmetric space may be holomorphically embedded
in its compact dual. First we define the associated Riemannian symmetric spaces of
non-compact and compact type, A* and A. Hère A and A* are dual Hermitian
symmetric spaces and their définition dépends only upon the complexification (gc, rc).

THEOREM. Let G/R be an irreducible pseudo-Hermitian symmetric space. Then
there exist injections i//:A*-+G/R and\l/l:G/R-+A.

Hère \//1 is the generalized Borel embedding and xjf^xj/ is the ordinary Borel
embedding of A* into A. Hence any pseudo-Hermitian symmetric space is "sand-
wiched" between its associated Riemannian spaces. Alternately, this theorem may be

regarded as a factoring of the standard Borel embedding of A* into A through the

space G/R. We should note that A has a représentation as a complex flag manifold
Gc/B and that the images of \j/ and i//^ are just the orbits through the origin of the

appropriate groups.
In Section 4 we examine Berger's fibering theorem in the spécial case of a pseudo-

Hermitian symmetric space. The fiber is a Hermitian symmetric space of non-compact
type and the base is a Hermitian symmetric space of compact type. Thèse are not to
be confused with the associated spaces of Section 3. We show how a pseudo-Hermitian
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symmetnc space induces a non-trivial fibenng m the associated space of non-compact
type and discuss the relation of thèse fiberings with the generalized Borel embedding
Next we give a generalization of the Cartan-Hansh Chandra reahzation of a Hermi-
tian symmetnc space as a bounded symmetnc domain. An irreducible pseudo-Hermi-
tian symmetnc space îs embedded in a holomorphic vector bundle over a compact
Hermitian symmetnc space and in each fiber the image îs a bounded symmetnc
domain

Now we consider a reducible pseudo-Hermitian symmetnc space Gc/Rc We show

that the fibenng Gc/Rc-+Gc/B îs équivalent to the holomorphic cotangent bundle of
A. The inclusions of A* and G/R into Gc/Rc thus define sections over the orbits

^{^{A) and \I/1(G/R) Thèse sections are then related to the Hansh-Chandra real-

îzations of A* and G/R.
In section 5 we employ a technique of Griffiths and Schmid, [5], [10], to show

that G/R îs k + l complète in the sensé of [1], where k=dimcK/L. Then this implies

Hn(G/R, #)=Qn>k where ^ îs any cohérent analytic sheaf on G/R
I would hke to thank Tom Sherman for many helpful hmts and suggestions and

Jim Lepowski for a great simplification of Proposition (2.4). The proof given îs his

§2. A pseudo-Hermitian symmetnc space M îs an affine globally symmetnc space

supphed with an almost complex structure / and an mdefinite Hermitian structure h

such that the symmetnes are isometries of h The group of isometries I(M) îs a

transitive real Lie group acting on M and we can write M G/R where G îs the

îdentity component of I(M) and R îs the isotropy group at some point of M The

real part of h îs a G-invanant pseudo-Riemanman metric on G/R and so îts metnc

connection defines the symmetnc space structure on M, [9] Theorem 15 6.

(2.1) PROPOSITION. The metnah is Kahler, J is integrable and the symmetnes

are holomorphic.
Proof. Let (A", r) dénote the real part of h (X, Y) Let s be any isometry Wehave

(X, Y)+i(X.JY)=h(X, Y)=h(dsX,ds Y) (dsX9ds Y) + i(ds X,Jds Y) Since/ns

non-degenerate ît follows that ds commutes with /. To prove h Kahler ît suffices to

show that / is invariant under parallel translation. Let px and p2 be any two points

on a géodésie and let s be the symmetry at the point midway between/?! and/?2- Then

—ds is parallel translation from px to p2, [6] p. 164. But smee / commutes with ds ît

must be invariant under parallel translation from px to p2. It follows immediately

that / is integrable, as is shown in [6] p. 302 for example. Q E D

Recall that for any affine symmetnc space the Lie algebra goîG can be décomposée!

as a direct sum g=q +r where r is the Lie algebra ofR and q is an r-module, identifiée

with the tangent space to M at the origin, and [g, q~\czr. That is, G/R is a reductive

homogeneous space with the additional symmetry condition that [#,q\<^r. The
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involutive automorphism 0 defined by this décomposition îs the differential of the

symmetry at the ongin. The Lie algebra g together with such a décomposition îs called

either an involutive Lie algebra or a symmetnc Lie algebra. The subalgebra r is called

a symmetnc subalgebra. R may be identified with the holonomy group of the ca-
nonical symmetnc connection and r with the holonomy algebra. In order to suitably
décompose an affine symmetnc space into irreducible objects we make the standing
assumption that g be semi-simple.

By choosing a basis compatible with the symmetnc décomposition g q+r and

looking at the matnx représentations of adx and ady for xeq and yer ît is easy to
see that q and r are orthogonal under the Killing form. Ifg is semi-simple the Killing
form is thus non-degenerate on both r and q. Since q is completely determmed as the

orthogonal complément to r the involutive Lie algebra (g, 9) may also be denoted by
(g, r It will frequently be convement to do so.

If (g, 9) is a semi-simple involutive Lie algebra it is well known that there exists a

Cartan décomposition t of g such that t and 9 commute From this fact it follows
that r acts completely reducibly on q and that r must be a reductive Lie algebra. An
alternate proof of thèse facts may be obtamed as follows. Since the Killing form is
non-degerate on r, r must be reductive by [4] p 79 Prop. # 5 That the semisimple

part of r acts completely reducibly is well known Now let x be central in r. Then the

semisimple and nilpotent parts of adx are polynomials in adx and so must be central

in r. But any nilpotent central élément of r must be orthogonal to ail of g and so the

center of r must contain only semisimple éléments.

The involutive Lie algebra (g, 9) is called simple if there do not exist any 0-stable

non-trivial ideals. If g=£ g, is a décomposition of g mto simple ideals then either gt
is 0-stable or 9 interchanges two ideals gt and gr Clearly any central élément of the
0-fixed point set oî gl+9(gl) must be central in ail of g, + 0(g,) and so if (g9 9) is the

involutive Lie algebra of a pseudo-Hermitian symmetnc space each gt must be 0-stable.

Indeed, if g=£ (gl9 rt) is a décomposition into simple involutive Lie algebras, the
almost complex structure / must hâve a non-zero projection on the center of each rr
Hence we may limit ourselves to the case where g is simple.

(2 2) PROPOSITION. If gc is simple then rc has at most a one-dimensional

center (over C) which may be spanned by an élément z with eigenvalues ±i on qc.
The eigenspaces q+ and q~ are abehan, isotropic and dually paired under the Killing
form, and irreducible as rc-modules.

Proof. Let qc =£ Va be a simultaneous eigenspace décomposition of qc under the

action of the center of rc Since [Fa, V^\ crc, on applying adz with z central in rc we

conclude 0 (a(z)+jS(z))[Ka, Vfi] and so either <x -jî or [Fa, Vp]=0. In particular
each Fa with a^O is abehan. Pick some Va with a^O. Let V=Va + V-a and FF=£ Vp

where j8^±a. Now V+W=qc and [F, JV]=0 and so V+[V, F] is a non-trivial
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idéal of gc and so must equal gc. Let z and z' be any two central éléments of rc Then
for some complex number c a(z)=ca(z') so a(z-cz')=0 so z-cz' îs central in gc
and so z=cz'. Since V* \z,VÙ we get (Fa, Fa) ([z, Fj, Fa) (z, [Fa, Fa])=0
and similarly for F_a. Now F_a must be non-zero and indeed dually paired with Fa

smce the Killing form îs non-degenerate on qc Letting V±a q±, everything îs proved

except the îrredicubility of q±. Let q+ :=Vi + V2 be a décomposition of q+ mto two

rc submodules. Then we can décompose q~ into two submodules q~ =WX + W2 with
(Vl9 Wt)=0, i^l, 2. We then hâve [F,, ^]=0 since (rc, [Fl5 ^J) ([rc, F,], JFt)c

c (Fl9 Wt) =0 and the Killing form îs non-degenerate on rc Hence Vx + MK2 + [Vu W2~\

îs an idéal in gc so either Fi =0 or Vx =q+ and W2 =q~.

(2.3) COROLLARY. If (g, r) is a simple involutive Lie algebra and r is not semi-

simple then one of thefollowing must be true
1) gcis simple and r has a one dimensional center.

2) g already is a complex simple Lie algebra,

Proof We hâve already noted that g must be simple. If gc is not simple ît is well

known that case 2) holds. So assume that gc is simple and that r has central éléments z

and z' which are linearly independent over the reals. By the eigenvalues of adz and

adz' must appear in positive-négative pairs. But they must also appear in conjugate

pairs so the only possibilités are pure imaginary or real. We may assume that adz

has eigenvalues +1 and adz' has eigenvalues ±1. Let x be an élément of q Then there

are éléments x'eq+ and x"eq~ such that x=x'+x". Then zx=adz'(xr-x/r)=adz'
Sidz(x)eq so q is closed under multiplication by z, and since r [g, q"] ail of g is

Q.E.D
Remark. In case 1) r acts on q irreducibly. For any décomposition of q into r

submodules would lead to a décomposition of q+ which we know is irreducible if gc

is simple. The preceding discussion justifies the foliowmg définitions

DEFINITION. A simple involutive Lie algebra is called a simple irreducible

pseudo-Hermitian Lie algebra if r has a one dimensional center whose adjoint action

on q has pure imaginary eigenvalues. It is called a simple reducible pseudo-Hermitian
Lie algebra in the case where g is complex

DEFINITION. A pseudo-Hermitian Lie algebra (p.h 1 a.) is a fimte direct sum

of irreducible or reducible simple pseudo-Hermitian Lie algebras. If ail the simple

summands are either irreducible or reducible we can begin the définition with the

appropnate adjective.

If (g, r) (glf rx) + • • • + (gn9 rn) (& + •• +gn9 rt + • • +ru) then the isotropy Lie

algebra r has at least an n dimensional center. Let z2 be the élément in the center
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of rj with eigenvalues ±i on qJt Then z=zt-\ \-zn is a central élément of r with
eigenvalues ± / on q, called the canonical central élément of r.

We know that every pseudo-Hermitian symmetric space détermines a p.h.l.a. We

now investigate the converse question and see that there is exactly one pseudo-
Hermitian symmetric space associated to every p.h.l.a. and that it is simply con-
nected.

Given a p.h.l.a. (g, 0) let G be any connected group with Lie algebra g. Let T be

the 1-parameter subgroup {exp te}. If G has finite center then ris a torus. Let GT —

=centralizer of T.

(2.4) PROPOSITION. GT is connected.

Proof. We will first prove this under the assumption that G has a finite center.
Let g=p+k be a Cartan décomposition of g which commutes with the canonical
décomposition. Let K be the connected subgroup of G corresponding to k. Then

TaKand K is compact because G has finite center. Let P=exp/?. It is well known that
G has a unique "polar décomposition" G=P-K and that exp is 1-1 on p. Since zek
it foliows that GT=PTKT where Kr=centralizer of Tin K, etc. It is also well known
that in a compact, connected group the centralizer of a torus is connected so ail we
need to worry about is PT. Let aeT and expA'ePj. Then QxpX=a expAa~1 exp
Ad aX and so (Ad à) X= X since exp is 1 -1 on p. Thus for ail real t we hâve a (exp tX) x
xa~1 exp / Ad aX— exp tX so the whole 1 -parameter subgroup exp tX is in PT hence

PT is path connected.

Now let G hâve an infinité center Z. Let G*=G/Z and T* {exp te} in G*. Then

ZciGT and (GT)*=GT/Z is the centralizer of T* in G*. Since G* has no center
(GT)* is connected and so G/GT^G*/G* is simply connected. It follows that GT must
be connected. Q.E.D.

(2.5) PROPOSITION. G/GT is apseudo-Hermitian symmetric space.

Proof. Let G be conjugation in G by the élément exp;iz. It is easily seen that G
is an involutive automorphism of G whose differential at the origin is 6. GT is the

identity component of the <9-fixed point set and thus is a closed subgroup such that
G/GT is an affine globally symmetric space where the symmetry at the origin s0 is

induced by G. Let J0=adz | q. Since Jo centralizes GT, this defines a G-invariant
almost complex structure / on G/GT by homogeneity. The Killing form is non-
degenerate on q and admits Jo and G as isometries. Since /is G-invariant this may be

G-translated to give the real part of a G-invariant indefinite Hermitian metric on
G/GT. To prove that we hâve a pseudo-Hermitian symmetric space it will suffice by
homogeneity to show that at every point p, /commutes with ds0. Let g be an élément
of G such that p =gGT. We hâve L0(g) G=G*Lg where L dénotes left multiplication
in G. Taking differentials and passing to G/R this becomes dL0{gydso =ds0 dLv Now



534 R A.SHÀPIRO

usmg this formula, the invariance of/and the fact that Jo commutes with s0 we easily
compute that J,oip)dso ds0Jp. Q E D

(2.6) PROPOSITION. Let(g,r)beapseudo-HermitianLiealgebra IfGisagroup
with Lie algebra g and Ris a closed subgroup with Lie algebra r, then G/R has a G-

invanant almost complex structure ifandonly ifR GT

Proof. Assume G/R has a G-invanant almost complex structure / Then / re-
stncted to the tangent space to the ongm of G/R gives an endomorphism Jo of a
such that

a) J02 -l
b) Jo commutes with Ad R restncted to q

Let ^c==Z Qj be a décomposition of qc mto irreducible AdJR modules. Let a} be the

algebra of endomorphisms of q} generated over the complex numbers by the îdentity
component of AdR and consider the commutmg algebras Yiomaj{qp q3).

By Schur's lemma thèse are ail isomorphic to the complex numbers. Now both
adz and Jo are in Homaj(qp q3) so on qâ we must hâve adz=c/J0 where c} îs some

complex number (which indeed must be +1 smce Jq — 1). Since Jo commutes with
AdjR this means adz must and thus so must expf adz=Ad exprz. If aeR then

Ad((exp/z)#(exp — tz)a~l) îs the îdentity on q and since the centralizer of q m

Adi£ îs discrète the curve (expfz)a(exp— tz)a~x must be a single point, which
indeed must be the identity. Hence ae GT. Q E D

COROLLARY (to proof). On a simple pseudo-Hermitian symmetnc space the

almost complex structure is unique up to sign.
Remark. The resuit of the last three propositions is that every pseudo-Hermitian

symmetnc space is simply connected and that there is a 1-1 correspondent between

pseudo-Hermitian Lie algebras and pseudo-Hermitian symmetnc spaces From now

on we shall always dénote GT by R.

§3. Let (g, r) be a pseudo-Hermitian Lie algebra and g=p+k a Cartan
décomposition whose mvolution t commutes with the canonical involution 9. Then we hâve

r (rnp)@ (rnk), q (qnp)®(qnk),
k (qnk)®(rnk)9 p (qnp)® (rnp)

Let «=the compact algebra which is dual to the Cartan décomposition of g

That is, u=ip(Bk=i(qnp)@i(rnp)®(qnk)®(mk). The algebra u contains the

algebra r*=i(rnp)@(rnk) as a compact subalgebra. Let u* be the non-compact

algebra which is dual to (w, r*). u* (qnp)@i(qnk)®i(rnp)®(rnk). Since the

canonical central élément of r, z, is contained in m k ît is clear that z is also the
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canonical central élément ofr* in the algebras u and w*. Hence the involutive Lie al-

gebras (w, r*) and (u*, r*) define Riemannian Hermitian symmetric spaces of the

compact and non-compact type, respectively. By the fact that Hermitian symmetric

spaces are simply connected there is indeed a unique Hermitian symmetric space
associated with each of thèse algebras. Dénote thèse by A and A* respectively.

DEFINITION. Given (g, r), the space A defined above is called the associated

Riemannian space of compact type. The space A* is called the associated Riemannian

space ofnon-compact type.
It is clear that the définitions of A and A* dépend only on the pair of complex Lie

algebras (gc, rc). That is, if (g1? rt) and (g2, r2) are two pseudo-Hermitian Lie
algebras such that (gi)c (g2)c and (fi)c (r2)o then the spaces A and A* will be

the same for (gl9 r±) and (g2, r2). Indeed, we may get them from (gc, rc) as follows:
Let r* be a compact real form of rc and extend this to a compact real form u of gc.
Then since r* is a symmetric subalgebra we may form the dual of u with respect to
r*. Call it «*. Then the spaces associated to (w, r*) and (u*, r*) will give A and A*.

Let (g, r) be a pseudo-Hermitian Lie algebra and (gc, rc) its complexification.
Let Gc be the connected, simply connected real Lie group with Lie algebra gc. Let the

groups G, U, U*, R, R*, Rc and Q~ be the connected subgroups of Gc corresponding
to the subalgebras g, u, w*, r, r*, rc and q~ respectively. It should be noted hère that
U and R* are compact and that exp is a diffeomorphism of q~ with Q~, as follows
from the Iwasawa décomposition for example. G/R is the pseudo-Hermitian
symmetric space associated with (g,r) ancj the spaces A and A* are given by U/R* and

U*/R* respectively.
The Borel embedding of A* into A tells us: 1) B=RCQ~ is a closed parabolic

subgroup such that U/R* is holomorphically diffeomorphic to the complex flag
manifold GJB. 2) U*/R* is holomorphically embedded in GJB as the open U* orbit
of the identity coset. In particular U*nB=R* [6] Theorem 7.13.

(3.1) THEOREM (Generalized Borel embedding). Let G/R be an irreducible

pseudo-Hermitian symmetric space. Then G/R is holomorphically diffeomorphic to the

G-orbit ofthe identity coset in Gc/B. This orbit is open.

Proof. Since RaB the inclusion of G into Gc defines a map \j/ of G/R onto the G

orbit ofthe identity in Gc/B. To show \j/ monomorphic we need GnB=R. This is the

content ofthe next three lemmas.

LEMMA.
Proof. First note that g and q~ are disjoint, for if xegnq~ then -ix [zx] is

in g which contradicts the fact that g is a real form of gc. Hence the group GnQ"
must be discrète. Assume aeGnQ~ with a^l. Then there is an Aeq" such that
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a =cxpA. Conjugate a by the éléments of T (exptz) a(exp - tz) =exp(Ad exptz) A
=exp(exp? adz) A=expeltA. Because z îs in g the left-hand side of this équation
must be in G for ail real t. But expeltA îs in Q~ for ail real t and since exp îs 1-1 on
q~~ this proves that GnQ~ contams the curve expeltA which contradicts îts being
discrète. Q E D

LEMMA.
Proof. Let aeGnB. Then there îs an Aeq~ and xeRc such that a ($xpA)x

Agam conjugate by the éléments of T, remembenng that this group centralizes

Rc:(exptz)a(exp — tz) (expeltA) x for ail real / Therefore (exp—A)a=x
(exp — eltA) (exptz) a(exp — tz) and so (expfz)a(exp — tz) a'1 ~(^xpeltA)

(exp —A)eQ~ for ail real t. But since a îs m G the left-hand side of this équation
must be in G, and so the last lemma implies that each side of this équation îs the îden-

tity. Thus exp A =QxpeltA for ail real t and so A must be zéro since exp îs 1-1 on q~

Hencea=xei?c. Q.ED

LEMMA. RcnG=R.
Proof. RcRcnG and both of thèse groups hâve the same Lie algebra, r They

both centrahze Tand so are connected, hence equal.
Now a dimension count shows that xjj (G/R) îs open. To show \// holomorphic ît

suffices to show that ît îs almost complex, and by homogeneity ît îs enough to show this

at the ongin. The tangent spaces to the ongins of G/R and Gc/B may be respec-

tively identified with q and gc/b where b=rc+q~. Let x be in q and wnte x=x+ +x~
withx+e<7+ and#~e<7~. Then dij/ q-*gc/b îs given by di//(x)=xmodb=x+ modb

and sod\l/(J0x)=dil/(ix+-ix~)=ix+ modb=idij/(x). QED
The remamder of this section will be devoted to proving the foliowing theorem

(3.2) THEOREM. Let \j/1 dénote the generahzed Borel embedding ofG/R into its

associated Riemannian space ofcompact type, U/R*. Let y\i2 dénote the Borel embedding

of the associated Riemannian space of non-compact type U*/R into U/R*. Then

Before giving the proof we will recall some work of G. D. Mostow that will be

used heavily.

DEFINITION. Let g be any Lie algebra and e a subspace ofg such that [x [x, yj\ e e

for ail x, yee. Then e îs called a Lie triple System.

(3.3) THEOREM (Mostow). Let g=p+k be a Cartan décomposition of a semi-

simple Lie algebra. Let e be a Lie triple System contained in p andf= {xep \ (x, e) =0^

be the orthogonal complément to e in p. Let Kbe the connected Lie subgroup correspond
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ing to k. Then G=K- exp (/) • exp (e) is a topological décomposition ofG. The expression

ofg as theproduct k-a-b with keK, aeexp (f)andbeexp (e) is unique.

Proof. See [8]. A proof is also given in [6] p. 218. For the relation between Lie
triple Systems and totally géodésie submanifolds see [6] p. 189.

(3.4) COROLLARY. In the notation already established, we hâve the following
unique topological décompositions :

a) G K-exp(rn/?)-exp(g np) b) G K-exp(q n/?) • exp (r n/?)
c) U* R*'Qxp(i(knq))'exp(pnq) d) U* R*-exp(pnq)-exp(i(kniq)).

Now we can give the proof of (3.2)
Proof. Let kt be the semi-simple part of k. Then (ki9 mk^) is a (Riemannian)

Hermitian pair, since rnkt contains the canonical central élément z of r and z acts

non-singularly on qx — q n kv Let qï be the — / eigenspace of adz in (qx)c. Let Bx be the
connected subgroup corresponding to (rnk1)c@qï9 Kt the subgroup corresponding
to kl9 L the subgroup corresponding to rnkl9 B Q~RC, and K* the subgroup
corresponding to k* / (k± nq) + (k± n r).

If A: has a center, it must be contained in rnk. For r=centralizerg(z), so if zt is

central in k then [zl9 z] =0 so z1 is in r. Hence qnk=qnk1. Now we claim that

(3.5) cxpi(qnk)c=:K'B.

The Borel embedding theorem applied to K*/L tells us that as subspaces of(Kl)c/Bi9
K*/L is contained in KJL, i.e., K^LaK^LB^ Hence K*cK1-L'B1-L. Now by
the Cartan décomposition for a semi-simple group of non-compact type
K*=exp/(qnk±) • L. So we obtain

nfci) c K1LB1L c KB
since La RCGB and B

Finally, U*=Qxp(qnp)expi(qnk)-R* by Corollary (3.4c). So U*B
=sxp(qnp)expi(qnk)-B since R*B=B and by (3.5) this is contained in
Qxp(qnp)-K-B. By (3.4) G=exp(qr\p) exp(rnp)-K. So G-B exp(qnp) exp
(rnp)-K'B. This clearly shows that U*B<^G'B. But \I/2(U*/R*) U*-B/B and

il/i(G/R) G-B/Bso\l/2(U*/R*)c:il/1(GIR). Q.E.D.
We may describe this theorem by the following diagram

G/R

where ^='Aî"1>2> which shows how the Borel embedding of U*/R* into
"factors" through G/R.
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§4. We will begin by stating and proving a theorem of Berger on the fibering of an
affine symmetric space, paying spécial attention to the spécifie features arising in the

case of a pseudo-Heimitian symmetric space [2], [7].
Recall that if His any closed subgroup of G, then G-+G/His a principal G-bundle

with structure group H. ïfFis any manifold on which H acts smoothly, then we may
form the associated bundle with fiber F. This is denoted G®HF-^GjH. It is a fiber
bundle with base G/H, fiber F and structural group H. G®HFis realized as the
quotient of the Cartesian product G x Funder the équivalence relation (g,f)~(g-h, h*f
where A*/denotes the action ofh on/and g-his just group multiplication.

(4.1) THEOREM (Berger fibering). The irreducible pseudo-Hermitian symmetric

space GjR is a C00 fiber bundle. The base is a Hermitian symmetric space of compact

type, the fiber a Hermitian symmetric space of non-compact type and at each point the

symmetry commutes with the projection on the base.

Proof. In view of (2.4) we may work entirely with subgroups of the complex

group Gc. Consider the subalgebrag1=pnq+knr. This is an involutive Lie algebra
which in gênerai need not be semi-simple. However if gl has a center then as in the

proof of (3.2) we see that it must be contained in knr. So with respect to the
symmetric space structure we lose nothing ifwe assume gt semi-simple. Let Gt and L be the

connected Lie subgroups of Gc corresponding to gt and knr respectively. Then

Gî/L=Fis an Hermitian symmetric space of non-compact type. Note that since the

polar décomposition Gi=exp(pnq)*L is unique, Fis diffeomorphic to exp(pnq).
Let K be the connected Lie subgroup of Gc corresponding to k. Then K must be

compact. By the same reasoning as above we may assume that k is semi-simple and

K/L is an Hermitian symmetric space of compact type.
Consider now the principal bundle K->K/L and the associated bundle with fiber F.

This may be written K®Lexp (p n q) where the action of L on exp (p n q) is given by

conjugation. This action makes sensé because rnk normalizes/? n q.
Now we show that this associated bundle is diffeomorphic to G/R. Consider the

mapping

K x exp (pnq)-+ GjR

a b abR

Since (ax, x~1bx)-+axx~1bxR=abxR abR for ail xeL, this map is constant on

équivalence classes and hence yields a map x • K® L exp (pnq)-+ G/R which is an epi-

morphism by (3.4b). We now show that x is a monomorphism. Let (al9 bt) and

(#2* °i) be two représentatives of équivalence classes in K®Lçxp(pnq) and assume

x(au bi)=x(a2, b2). Then a1-bi =a2*b2'C for some ceR. Since R/L is a Riemannian

symmetric space, jR=Z>exp(/?nr), c=x~l-d with x~xeL and deexp(pnr). Hence

a1-b1=a2-b2x~1-d=(a2x~1)(xb2x~"1)-d. Since L c K and exp (pnq) is stable undei
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conjugation by L, the uniqueness of the décomposition (3.4) shows that aï=a2x~1
and bl=xb2x~1 and rf=identity. Hence (aub1) and (a2,b2) represent the same

élément of K®Lcxp (p n q) and so % is indeed a monomorphism.
Finally, let n\G/R^>K/L be the projection of the bundle G/R onto the base

space. Let's prove that n commutes with the symmetry 0. First let us describe n.

If xeG has the unique décomposition x=k-a*b^ aeexp(pnq), beQxp(pnr) given
by (3.4) then n (x, R) —kL. Now I is given by conjugation with the élément s — expnz
and since çxp(pnq) and exp(pnr) are stable under this conjugation, 0(x) sxs=

(sks) (sas) (sbs) is the unique décomposition of I (x) given by

Hence ni (x) =sksL =skL=Zn (x). Q.E.D.

In the gênerai affine symmetric case the fiber need not be a symmetric space. Ail
that is known is that topologically it is Euclidean. Also, in gênerai there is a further
complication because K need not be compact, for we hâve no reason to limit ourselves

to subgroups of the complex group Gc. In this case the non-compact part of K is

factored out and put in with the fiber.

(4.2) THEOREM. Each pseudo-Hermitian symmetric space G/R induces the

structure ofa fiber bundle in the associated Riemannian symmetric space ofnon-compact

type. Both the base andfiber are Hermitian symmetric spaces ofnon-compact type. The

fiber is the same as in (4.1).

Proofi We will show U*/R* is diffeomorphic to the bundle K*®LF-+K*/L the

notation being the same as in (§3). As before, define x*\K*®LF-+U*-+U*IR*
which is onto because of (3.4). The fact that x* is a monomorphism is proved from
the uniqueness of the décomposition (3.4) exactly as was done for x m the last
Theorem. Q.E.D.

Consider the maps K-+G-+G/R and K*->G*->G*IR*. Since LczR and R* they
induce maps a : K/L-+ G/R and P : K*/L-+ U*/R*.

(4.3) PROPOSITION, aandparemonomorphisms.
Proofi Since L, K*nR* and KnR ail hâve the same Lie algebra rnk and L is

connected, it will suffice to show that the latter two groups are connected, but this fol-
lows by (2.4) applied to the Hermitian pairs (K*, L) and (K, L). Q.E.D.

This proposition is no surprise, for a and P are just the injections of the base

spaces K/L and K*/L into the fiber bundles as the zéro sections.

We hâve a map i\K*®LF-+K®LF defined by /=z"Vzi^*®LF-*U*/R*-+
->G/R-+K®LF. When restricted to the fiber over the origin i is just the identity and

when restricted to the base i is just the Borel embedding of K*/L into its dual K/L.
Thus we hâve interpreted the inclusion of Theorem (3.2) in terms of the fiber structure.

We will now give a simple but interesting generalization of Harish-Chandra's
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realization of an Hermitian symmetric space of non-compact type as a bounded
symmetric domain.

(4.4) THEOREM. G/R can be holomorphically embedded in a holomorphic vector
bundle over the compact Hermitian symmetric space K/L. In terms of the fibering given

by (4.1) each fiber is mapped holomorphically into a bounded symmetric domain in

the corresponding fiber of the vector bundle, and on the base K/L the mapping is the

identity.
Proof Consider the fibering K®LF of G/R given by (4.1). Harish-Chandra's

results applied to F=Gi/L may be described as follows. Every élément of Gx can be

uniquely written as an élément of (Gt)c as x~yx+ where x~ eexp(/?n#)~, yeLc and

x+ecxp(pnq)+. Hère, as usual, (pnq)+ dénotes the + *eigenspaceofadzin(/?n#)c
etc. Then X:G1/L->(pnq)~ defined by X(x~yx*X)=log(x~) is the realization of

Gt/L as a bounded symmetric domain in (pnq)~. Also, X is holomorphic [6]. L
acts on (pnq)~ by conjugation and on GJL by left multiplication. It is clear from the

description of X that X commutes with this action so L, and indeed even Z,c, leaves the

image of X in (pnq)~ stable. Now form the complex vector bundle K®L(pnq)~
associated to the principal bundle K-+K/L. Since X commutes with the action L, the

map A:KxF^Kx (pnq)~ defined by A(a, b) (a, X(b)) induces a map A:K®LF-+
->K®L(pr\q)~ which is easily seen to satisfy ail the requirements except the assertion

of holomorphicity. Of course we may regard A as defined on G/R by means of x'1-
We induce a holomorphic structure on our complex vector bundle by means of the

C00 bundle isomorphism

K®L(pnq)~ -»Kc®Bl(pnq)~
l l

K/L > Kc/Bt

where B± is the parabolic subgroup Lc exp(pnq)~. Since exp(pnq)~ acts trivially
on {pr\q)~ it is clear that Bx leaves X (F) stable.

Since X is holomorphic on exp(pnq) and the almost complex structure on pnq
is the restriction of that on q it follows that / and dA commute at ail points yR with

yeexp(pnq). Now ail éléments of K commute with A so dLx-dAy=dAxy-dLx for

xeK. From G=K exp(pnq)-R it follows that / and dA commute at ail points of

G/R and so A is holomorphic. Q.E.D.
Let us now consider the case of a reducible pseudo-Hermitian symmetric space

Gc/Rc. Consider the projection GC/RC-+GC/RCQ~. This is a holomorphic fibering

whose base is the associated Riemannian space of compact type and whose fiber is ô
which is analytically diffeomorphic to the complex Euclidean space q~ under log. We

will examine this fibering in greater détail in the following theorem.
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(4.5) THEOREM. The fibering GcjRc-^GcIRcQ~ is analytically équivalent to
the cotangent bundle ofthe associatedcompactspace GC/RCQ~.

Proof. For convenience of notation let us dénote the semi-direct product RCQ~

by B, and its Lie algebra by b. Now the tangent bundle of Gc/B is the bundle
Gc®b(ScI^) where B acts on gc/b by Ad. This is the same as Gc®Bq+ where the
action of Q~ on q+ is trivial. Then by the duality of q+ and q~ under the Killing form
we may identify Gc®Bq~ with the cotangent bundle, and since exp is an analytic
diffeomorphism of q~ with g" we may identify the cotangent bundle with GC®BQ~
where now B acts on g" by conjugation.

Now GC UB URCQ~. This décomposition is not unique, but if ub=ulb1
then uï1u=bib~ieUnB=R* so for some reR* we hâve w=w1r and b=r~lbir. We

can write b uniquely as x-y with xeRc and yeQ~, so bx can be uniquely written in
this form as bi (r~1xr) (r~1yr). From this discussion it is clear that we get a well
defined map of Gc/Rc into GC®BQ~ by writing a représentative g of a coset as

wx'y with u, x, y as above and sending this to the équivalence class (ux, y). This map
commutes with the projection onto the base space. It is also clear that this map is 1-1.

Indeed if (ux,y)^(ulxl9y1) then for some beB ux—u^^b and so uïlu=x1bx~1eB
so x1bx~1eR* so beRc and uxy=u1x1y1 modi?c. Finally, to show this map is onto
consider a typical représentative (g, w) with geGc and weQ~. Write g=wx-y as

before. Then (g,w) (ux,y, w)~(uxw) so the coset uxw maps onto (g, w) modB.
Q.E.D.

Remark. As C°° bundles the holomorphic cotangent bundle is U®R*q~-*U/R*
which may also be considered the anti-holomorphic tangent bundle. The isomorphism
between U®R*q~ and Gc®Bq~ is realized by mapping a class modiÊ* into the

corresponding class modi?.
The natural embeddings of U*/R* and G/R into Gc/Rc still give monomorphisms

when composed with the projection n to the base space ; namely, the Borel embeddings.
Hence they define sections S± and S2 in the bundle Gc®Bq~ overthe open orbits of
U* and G in Gc/B. Recall that thèse sections may be regarded as q~ valued functions
defined on U*B and GB respectively, which satisfy the relation

(4.6) St(xb) Ad b-'S^x) z l,2
for ail beB. We now relate thèse sections St to the Harish-Chandra embeddings. In
order to do this we will hâve to recall Harish-Chandra's map in more détail than was
done before. The référence for the next few paragraphs is [6], Chap. VIII.

Let h be a Cartan subalgebra of u* contained in r*. Then there exists a set of
strongly orthogonal roots Ao and corresponding root vectors E±a with respect to h,
such that {Ea+E-a \ aeA0} is a maximal abelian subspace a of q*—pnq + i(knq).
By picking {E± J as part of a Weyl basis for gc we may even assume that 6Ea =-E_a
and 0E_a -Ea. Hère 0 is the Cartan involution on U*9 which is the canonical in-



542 R.A.SHAPIRO

volution 9 of G extended to Gc by conjugate linearity and then restricted to U*.
Let Ha [EaE_a~]. Then 0Ha=-Ha so Haeihczrc.

(4.7) LEMMA. The map Q+ xRcx Q~-^Q+RCQ~ is an analytic diffeomorphism
onto an open set ofGc.

Proof. [6] p. 317.

(4.8) LEMMA. exp£i /,(£«,+£-ai)=exp(£ tanh^)exp(^logcosh^)
exp (£ tanh^EL^) where the sums are over the set Ao ofstrongly orthogonal roots,

Proof. [6] p. 316.

Let A=Qxpa. Any élément of U* may be written as x-a-x' with x, x'eR* and

aeA. Then Harish-Chandra's map A sends the coset x-a-R*=xexp £ ti(E0Li +
+E_ai) R* to Ad;cQT tanh^Zs_a) in q~ (#*)". It is clear that we do no harm if we

replace this by the map which sends x-a'R* to Adx(£ tanh2^_a). We will now
mean this stretched out map when we refer to X.

Note that h is also a Cartan subalgebra of U so we can apply the complex Iwasawa

décomposition to write Gc uniquely as U-expih-N~ where N~ =exp«~ and

n" Y, CE^a is the sum of ail the négative root spaces with respect to h + ih and some

ordering of the roots. If the roots are ordered in such a way that a is positive if
a(z)= +/ then n" décomposes into a semi-direct sum n~ =q~ +nr where nr =£Cis_a
where a positive and a(z)=0. Since exp is a diffeomorphism on n~ this implies that
N ~ NR • Q ~ is a semi-direct product, where iVR exp (nr).

Letting N—exp (ih) • A^ we obtain the following

(4.9) LEMMA. There is a subgroup N ofRc such that GC UNQ~ is a unique

décomposition.

Suppose g=tfn*qis2L décomposition of an élément of exp#* according to (4.9).

Then g2=6(g~i) g=6(q~1) 0(n~l) nq is a unique décomposition of g2 with

9(q~1)eQ+, 0(n~1)neRc and qeQ~ by Lemma (4.7). On the other hand there is

some xeR* such that x"1gx is in A and so for some set of real numbers {tt} we hâve

Using lemmas (4.8) and (4.7) and comparing the two expressions for g2 we get that

(4.10) q exp Adx£ tanh 2ttE.ai exp A (g)

Under the isomorphism of theorem (4.5) the coset gRc=wn-qRc goes into (wn,
logq)~(u*nq9 logq) (g, X(g)) in Gc®Bq~ since Q" acts trivially on q~. Hence we

hâve proved tbe following

(4.11) THEOREM. On the set expq* the section S± coincides with the stretched

Harish-Chandra embedding A.
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Remark. This is the best possible resuit along this line. For the orbit of U* in
Gc/B pulls back to £/*i?=expg*i? in Gc and so by (4.6) St is completely déterminée

by its values on exp#*.
(4.12) THEOREM. On the set K exp(pnq)cGc, S2 is given by S2(Kg)=Â(g)

where À is the stretched out version of the Harish-Chandra map ofGJL into (pnq)~.
Furthermore, on the image ofA there is defined an analytic monomorphism d such that
d°A=S2°\l/ where S2 is now regarded as a bona-fide section instead of the coordinate

function.
Remark. Since GB=KQxp(pnq)-B this theorem completely describes S2 via

(4.6).

Proof By 3.4b we can write an arbitrary coset of G/R as kgR with keK and

geexp(pnq). Now by lemma (4.9) applied to (Gt)c we can write g=wn-q where

ue(G1)cn U, ne(G1)cnN and qezxp(pc\q)~. This is a unique décomposition and

(ku)-n-q is thus the corresponding unique décomposition of kg given by (4.9) applied
toGc.

Under the diffeomorphism of theorem (4.5) kg goes into the class (k-u-n, q)~
~ (k • u - n • q, q) (k • g, X (g)) by (4.10) applied to exp (p n q) in (Gx )c. Hence *S2 (kg)
=A(s). Now A(kgR) (k,X(g)). Define d(k, X(g)) (kg9X(g)). Then d°A=S2°>\,
and since A9 S2, and \j/ are analytic monomorphisms, d must be also. It also follows
that d is well defined on équivalence classes, a fact which may also be easily verified

directly.

§5. Let k =dimcK/L. In this section we use a technique of Griffiths and Schmid [5] to
show that G/R is k +1 complète in the sensé of Andreotti and Grauert. In particular
this means that Hn(G/R, ^)=0 for ail n>k where ^ is any cohérent analytic sheaf

on G/R. [1]. A C00 real valued function q> on a complex manifold M is called an
exhaustion function if cp'1 (— oo, c] is compact for every real number c. We say that
M is Jfc-complete if it has an exhaustion function cp whose Levi form — dôç has

dimcM—fc + 1 positive eigenvalues at every point of M. Dénote the image of\l/(G/R)
in Gc/B by D. The idea is to give two différent Hermitian metrics to the canonical line
bundle over D and to obtain the exhaustion function as the ratio of thèse metrics.
The Levi form will then be given as the différence of the metric curvature forms and
thus may be directly calculated from the differential geometry of D.

We shall hâve need of the following spécial basis for q+. Let A be a Cartan sub-

algebra of r which is stable under t. Since zeh and adz is non-singular on q, h must
be a Cartan subalgebra ofg. Let {E±a\ be a Weyl base for gc with respect to hc and t.
Recall that this means that gc=hc +£ CE±a is a root space décomposition ofgc and

that (5.1) xEa=-E_a and (Ea9 E_p)=ôafi. Since hccrc any Ea is either in qc or rc
so we can write q

+ =^ CEa where A {ail roots a such that a (z) +1}.
The tangent bundle of G/R may be described as the associated bundle GxRq-*
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->G/R. Recall that the Killing form restricted to q gives the real part of the natural
pseudo-Hermitian structure hG on G/R. The tangent bundle of Gc/B is the associated
bundle Gc x Bgc/b. Since [#", #+] <=r this is bundle isomorphic to Gc x Bq+ =T where

now B=RCQ~~ acts by AdRc with Q~ acting trivially. The Borel embedding of GjR
into Gc/B induces the inclusion of tangent bundles G xRq^Gcx Bqc/b, where xeq->x
mode. Under the isomorphism of Gc x Bgc/b with T this is given on fibers by

X-*\(X- iJX). Dénote this map oîGxRq onto T\h by 9K. Note that 9JI is a C00 bundle

diffeomorphism onto the holomorphic bundle T\D which defines the holomorphic
structure on G x R q.

We will now define two différent Hermitian (indefinite) structures on T. The first,

Hv, will be CZ-invariant and négative definite on the whole bundle and the second,

HG, will be G-invariant, indefinite and possibly degenerate; but on the restriction of
T to D it will at least be non-degenerate. On gc we define two Hermitian forms in
terms of the complex Killing form. Hère a is the involution determined by the real

form g.

Hx(x, y) (x, t (y)), Ha (x, y) (x, a (y)).

Identify sections of T with functions S:Gc-^q+ such that S(gx)=Adx~1S(g) for
xeB. Then for any two sections S1 and S2 define

HuiS, S2)g H^AdgS, (g), AdgS2 (g)),
HG(StS2)g Ho(AdgS± (g), AdgS2 (g)).

If xeB then Hu(S1S2)gx=Hu(S1S2)g and similarly for HG. Thus we hâve two well-

defined pseudo-Hermitian structures on T which are {/-invariant and G-invariant

respectively. Since U acts transitively on Gc/B it may easily be seen, by using (5.1) for
example, that Hv is everywhere négative definite. On T\ d Hg is non-degenerate since

cr interchanges q+ and q~ and thèse spaces are dually paired under tbe Killing form.

At each point peGc/B there is a linear transformation of the complex vector space

q+ such that HG(SlfS2)p=Hu(ApSltS2)p. Since Ap is given as an Hermitian matrix

detv4p is real. Let us give a différent interprétation of det^4p. On the holomorphic line

bundle L GC xBAnq+ we hâve two Hermitian metrics yv and yG induced in the

standard manner by Hv and HG respectively. At any point p thèse two metrics differ

by a scalar multiple which is just detAp. That is, given any section 5, yG(S, S)p

=detApyu(S, S)p. This proves that det^p is C00 on GJB. We may adjust the signs

of yv and yG to make them both positive on D. With this done, we hâve yG +detAyv.
We claim that q>(p)=—log±detAp is an exhaustion function for D9 where the

sign is chosen to make ±det^ positive on D. This choice can be made because HG

is non-degenerate on the connected set D and so det^4p is never zéro on D. Since det>4

is C00 on ail of Gc/B it will suffice to show that e~ * ± detv4 is zéro on the topological

boundary ofD. We follow the line ofproofgiven in [5, §8].
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(5.2) PROPOSITION. Ifp is on the topological boundary ofD then detAp=0.
Proof. It will suffice to prove that HG is degenerate at p Let p~xB and dénote

(Adx) b=b' etc. ïfp is on the boundary then the orbit G p cannot hâve an interior
since the boundary is stable inder G. Hence the isotropy algebra at p must hâve

stnctly higher dimension than the isotropy algebra at the ongm, so dimr<dimgnb'.
Passmg to the complexification and notmg that (gnb')c=bf na(bf) we get dimrc<
<dimb'na(b'). Now lemma 2.10 of [12] p. 1133 says dimb'na(b')=àim(rcy +
+dim(<7+)'no(q+)\ Since dimrc=dim(rc)' we are assured that (q+)'na(q+)' is

non-empty. Let u' and v' be éléments of q+/ such that <j(v') u' There exist u, v m
q+ s.t. u'=X'U and v'=x-v. Then HG(q+, v)xB (q+/, a(v/)) (q+\ w')=(?+> w)=0
since q+ is isotropic.

_
Q.E.D.

Now the Levi form of (p is — dô<p=ddlogyG — ddlogyu — AG+AV where AG

and Av are the curvature forms of the canomcal Hermitian metric connections of yG

and yv on the holomorphic lme bundle L\D. Note that for a line bundle we may
identify the curvature tensors with the curvature forms.

Let V be the canomcal G-invanant symmetnc space connection m the tangent
bundle of GjR. Let V7 be the connection induced on T\D by 9JI, viz. (V^S)^^

(50lV9Jl_1(x)SDÎ"1*Sf)p where peG/R. Extend everything to the complex tangent

spaces by complex lmeanty We wnte (q+)c &s #+ +J^+ withj2 — 1, being careful

not to confusejwith the almost complex structure i of the real space q+.

(5.3) PROPOSITION. V is the canonical connection determined by HG.

Proof. We must show that V;ifG=0 and that relative to a locally holomorphic
frame field V is given by a matnx of complex 1-forms of type (1,0). From [9] Theorem
15.6 we know that V is the metric connection of any G-mvanant metric on GjR. In
particular it is the metric connection of the real part of hG. Since hG is Kâhler we know
that V/zG=O. A simple computation shows that HG($JIX, WtY)=ihG(X, Y) and so it
follows that VHG=0. Let {St} be a locally holomorphic frame field and {WtJ} the

matnx of 1-forms such that VxSt=Y, WtJ(X) Sr Since V is Kahler the WtJ are ail
of type (1, 0). The correspondmg 1-forms {W^} for V relative to the holomorphic
frame field msiWl~1=s; are given by w;j{X)=mWlJ{W1X)yR'1. Note that
9W/=JÎR împhes that 9K préserves the type of complex vector fields. Hence WXi van
nishes on ail anti-holomorphic vector fields since WtJ does. Hence WVJ is also of type
(1,0). Q.E.D.

COROLLARY. The extension ofVtoL\D by the dérivation rule is the Hermitian
metric connection ofyG and Us curvature tensor is the extension of the curvature ofV
by the dérivation rule.

(5.4) PROPOSITION. In terms of the Killingform on gc the G-invanant curvature
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formonL\D isgivenattheoriginby

Proof. Let W and W dénote the curvature tensors of V and V respectively.
We hâve W'(X9 Y)=(SRW(m'1X9 StR"1!") SOT1. For simplicity let m~1X=X\ etc.

Then at the origin we hâve W(X'Y')= -ad[X', r] \q and Wr{X, Y)=-<m
sd[X'9 7]|€aK"S for X, Ye(q+)c. Since iX'Y'ier^ ad [Y, r] commutes with
$01 and we obtain W (X, Y) — ad \X\ Y'~\ \q+. Hence the curvature induced on LID by

W is then AG(X, Y)= -trace ad\X\ Y%+. Now 0=trad[X\ Y%c=trad[X'9
Y'~]\qc+tr ad[X', F']rc. But rc is reductive so the latter trace is zéro and we can

conclude that trad[JSr'r]|€+ -trad[Ar/r]|q-. Finally (z, [X\ F'])=tr adz

ad[X^|€c /trad[jr7%+-Hrad[jr, r]|f.=2itrad[Jir/, r]|4+. Q.E.D.
Now let V be the {/-invariant canonical connection on U/R*. In the same manner

as before we induce a (/-invariant connection V on T. Again we hâve a C °° vector
bundle isomorphism M:U x R*q*^>Gc x Bq+ which is an isometry of hv on each

fiber and VXS=MVM-HX)M~1S.
As before we see that V7 is the Hermitian metric connection of Hv on T. Calcu-

lating the {/-invariant curvature tensor at the origin gives W{j(X, Y)=MWU(M~1X,
\

OnLthisgives(5.5)AV(X9 Y)=i(z, [M'^M
(5.6) LEMMA. IfXisinq+then

m(X) M (X) (X- ijX) and 2Jt (or KX)) M (t (X)) (X + i/X).

Proof. We will give the proof for 9Jl5 the other case being similar. Write X as

{X+o(X)\)-i{iX+a{iX)\) which is of the form A +iB with A and £ in q. Apply
301, remembering that a interchanges q+ and #~, to get <3R(X)=(3R(A)+j(3Jl(B)

=i(A-iJA)+ji(B-iJB) (X-ijX). Similarly write cr(X) as i(a(X)+X) +
+1±((7(OT)+/Z) and apply 9K to get m<r (X) =X+ijX. Q.E.D.

(5.7) PROPOSITION. Avispositive definite on D.
Proof. By invariance it will suffice to check this at the origin, and since Av is of

type (1, 1) it will suffice to check this on a basis of holomorphic complex tangent

vectors. Let {Ea} be a Weyl base as in (5.1). Then {Ea \ a(z)= +/} is a basis for q+

over C. Let Xa =Ea- ijEa. Then by (5.5) and (5.6) we obtain

~2
(z, [Ea, tE,]) —' (z, [£a, JE.J)

Q.E.D.
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(5.9) PROPOSITION. On (qnk)£c:(q+)c AG~AV andon(qnp)£ AG=-AV.
The spaces (q n k)£ and (q np)£ are orthogonal under both Av andAG.

Proof. The first two statements follow from the fact that <t t on (qr^k)cczgc
and d= — t on (#n/?)cc:gc. Orthogonality follows because (q^k)c and (qc\p)c are
stable under a and t and thèse two spaces bracket together into (pr^r)c which is

orthogonal to (k n r )c under the Killing form ofgc. Q.E.D.
Let/?=dimc(<7r\p)+ and k=dimc(qnk)+. From the preceding calculations it is

évident that the Levi form of (p has at least p positive eigenvalues at every point of D.
Now dimc GjR dimcq+ =p+k and dimcKjL \ dim^K/L -J- dim^ (^ n k)
=| dimc(^ n k)c =dimc {q nk)+ =ksoDisk + l complète as claimed.

COROLLARY. If # is any cohérent analytic sheaf on GjR then Hn(G/R, ^)=0
forn>k.

Proof. This follows from [15 pg. 250].

Appendix

The following is a list of pseudo-Hermitian symmetric spaces taken from Berger's
classification of ail the affine symmetric spaces [2]. Thèse are the entires marked
"¦§¦ Kâhler", which indicates the présence of the canonical central élément of r.

The letter T dénotes the on-dimensional torus which is the non-discrete center of
the isotropy subgroup and C* dénotes the complex torus C — {0}. S (A x B) means the
connected subgroup corresponding to the matrices

with the restriction trace A+ trace i?=0. The other notation is standard, see [6]

Chap. IX, for example. There the matrix groups are described explicitly.

Classical Simple Irreducible Pseudo-Hermitian Symmetric Spaces

1. SL(2n,R)/SL(n,C)x T
2. SU*{2n)/SL(n,C)xT
3. SU(n - U i)/S(U(h, k) x U(n -i-h,i- k))
4. SO* (2n)/SO* (2n - 2) x T
5. SO* (2n)/U (n - k, K)
6. SO(n-k,k)ISO(n-kik-2)xT
7. SO (2 (n - k), 2k)/U (n - k, k)
8. Sp(n-i,i)IU(n-Ui)
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Exceptional Simple Irreducible Pseudo-Hermitian Symmetric Spaces

1. El/SO* (10) x T 5. E]jEl x T
2. EljSO (6, 4) x T 6. £?/££ x T

3. E36ISO(S,2)xT 7. E27/E26 x T
4. jE^/SO* (10) x T 8. E?/E| x T

Simple Reducible Pseudo-Hermitian Symmetric Spaces

1. SL(n,C)/S(L(n-k,C)xL(k,C)) 4. Sp(n9 C)/SL(n, C) x C*

2. S0(n,C)/S0(n-2,C)x SO(2,C) 5. ££/S0 (10, C) x C*

3. SO(2n, C)/SL(n, C) x C* 6. £?/££ x C*
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