Some Non-Linear Equivariant Sphere Bundles

Autor(en): Erle, Dieter
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 48 (1973)

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-37169

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Some Non-Linear Equivariant Sphere Bundles

Dieter Erle

1. Introduction

Let $\varphi: G \rightarrow O_{m}$ be a real m-dimensional representation of a compact Lie group G. Assume that $\pi: T \rightarrow B$ is a smooth G bundle such that the action takes place on the fibres, and each fibre is equivariantly diffeomorphic to S^{m-1} where the action of G on S^{m-1} is given by the representation φ.

Is π smoothly equivalent to the sphere bundle of a G vector bundle with fibre representation φ ?

If yes, π is called linear, otherwise it is called non-linear. If π is linear it bounds a smooth equivariant disk bundle with fibre action induced by φ. Topologically, of course, π is always the boundary of a disk bundle with fibre action induced by φ : The mapping cylinder of π serves as the total space of the required equivariant disk bundle.

For G the trivial group, examples of non-linear sphere bundles over spheres were found by S. P. Novikov [15] and P. Antonelli, D. Burghelea, P. J. Kahn [1]. Let Ge one of the groups $O_{n}, U_{n}, S p_{n}$, and let ϱ_{n} be the standard representation of G, of real dimension $n, 2 n$, or $4 n$, respectively. It is not difficult to show that any sphere bundle with fibre representation ϱ_{n} is linear. We consider sphere bundles with fibre representation $\varrho_{n} \oplus \varrho_{n}$. We prove that for G the orthogonal group $O_{n}, n \geqslant 3$, any G sphere bundle with fibre representation $\varrho_{n} \oplus \varrho_{n}$ is linear (Corollary 4.4). On the other hand, for G the unitary or symplectic group of n dimensions, $n \geqslant 3$, we will construct many non-linear G sphere bundles with fibre representation $\varrho_{n} \oplus \varrho_{n}$ and base space a sphere (Theorem 4.5). It is not clear whether or not these sphere bundles are smoothly linear if one forgets the action of G.

The methods used in this work are quite different from those of $[15 ; 1]$. The total space of an equivariant sphere bundle with action induced by $\varrho_{n} \oplus \varrho_{n}(n \geqslant 3)$ on the fibres, is a G manifold with two orbit types and orbit space a manifold with boundary. The construction of our non-linear bundles relies on the classification of these G manifolds by W. C. Hsiang and W. Y. Hsiang [10] and K. Jänich [11].

Our results have some consequences, naturally, concerning the homotopy type of the topological group of all equivariant self-diffeomorphisms of the unit sphere in the representation space of $\varrho_{n} \oplus \varrho_{n}, n \geqslant 3$. In the orthogonal case, this group has the homotopy type of O_{2} (Theorem 4.3), whereas in the unitary case it does not have the homotopy type of a finite CW complex (Theorem 4.8).

We finally deal with the problem of classifying equivariantly the total spaces of the non-linear bundles over spheres constructed here. It turns out that in most cases these
total spaces are products of a homotopy sphere and the fibre (Theorem 5.2 and Proposition 5.4).
2. Λ_{n} manifolds ocer $\Sigma^{k} \times D^{d+1}$

As we simultaneously deal with orthogonal, unitary, and symplectic actions, the following notation will be convenient (cf. [7]). Λ_{n} is the orthogonal group O_{n}, the unitary group U_{n}, or the symplectic group $S p_{n} . \varrho_{n}$ is the corresponding standard representation of real dimension $n, 2 n$, or $4 n$, respectively. Let $\pi: T \rightarrow B$ be a smooth Λ_{n} sphere bundle over B, with fibre action $\varrho_{n} \oplus \varrho_{n}$. The fibre is $S^{2 d n-1}$ where $d=1,2$, or 4 depending on the group acting. π factors through the orbit map $T \rightarrow T^{\prime}$, and we have a commutative diagram:

$S^{2 d n-1}$ and T are Λ_{n} manifolds with orbit types $\left(\Lambda_{n-1}\right)$ and $\left(\Lambda_{n-2}\right)$, the slice representations corresponding to the orbit types are $\varrho_{n-1} \oplus$ trivial and trivial, respectively. The orbit space of $S^{2 d n-1}$ is D^{d+1}, hence $T^{\prime} \rightarrow B$ is a D^{d+1} bundle. To find and distinguish bundles $\pi: T \rightarrow B$, it is therefore important to classify Λ_{n} manifolds with orbit space a D^{d+1} bundle over B such that over each fibre of this bundle we have $S^{2 d n-1}$ with action $\varrho_{n} \oplus \varrho_{n}$. We use [10] and [11] to do this for a special case.

THEOREM 2.1. Let k be a positive integer; $k>1$ if $\Lambda_{n}=O_{n}$ or $S p_{n}$. Let Σ^{k} be a smooth manifold homeomorphic to S^{k}. For every $n \geqslant 3$, there is a $1-1$ correspondence between equivariant diffeomorphism classes of smooth Λ_{n} manifolds over $\Sigma^{k} \times D^{d+1}$ satisfying the conditions
(i) for each $p \in \Sigma^{k}$, the union of the orbits over $p \times D^{d+1}$ is equivariantly diffeomorphic to $S^{2 d n-1}$ with action induced by $\varrho_{n} \oplus \varrho_{n}$,
(ii) the principal orbit bundle is trivial, and elements of $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$.
G_{d+1} is the H-space of degree one mappings of S^{d} onto itself, and $\pi_{k} S O_{d+1} \rightarrow$ $\rightarrow \pi_{k} G_{d+1}$ is induced by inclusion. Lateron we will see that a Λ_{n} manifold corresponding to a non-zero element of $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ is the total space of a non-linear Λ_{n} sphere bundle over Σ^{k}.

Proof of Theorem 2.1. Let T be a Λ_{n} manifold over $\Sigma^{k} \times D^{d+1}$ with the properties stated in the theorem. T is a so-called special Λ_{n} manifold [11], also [10], and is classified by an equivalence class of pairs (P, σ). Our notation follows [11; 12;7]. P is the compactified principal bundle of the principal orbit bundle of T, i.e. $\Sigma^{k} \times D^{d+1} \times$ $\times \Lambda_{2} \rightarrow \Sigma^{k} \times D^{d+1}$ by (ii). σ is a reduction of the structure group Λ_{2} of ∂P to the sub-
group $\Lambda_{1} \times \Lambda_{1}$ (cf. [7, 3.2]), i.e. a cross-section $\sigma: \Sigma^{k} \times S^{d} \rightarrow \Sigma^{k} \times S^{d} \times\left(\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}\right)$ of the bundle $\partial P / \Lambda_{1} \times \Lambda_{1}$. As $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ is diffeomorphic to S^{d}, σ is given by a map f : $\Sigma^{k} \times S^{d} \rightarrow S^{d}\left(=\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}\right)$. Because of condition (i), $f \mid p \times S^{d}$ has degree ± 1 [7, 3.2]. Thus f is a fibre homotopy trivialization of the trivial d-sphere bundle over Σ^{k}. By taking a suitable identification of $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ with S^{d}, f becomes an oriented fibre homotopy trivialization. On the other hand, by Jänich's construction, any such fibre homotopy trivialization gives rise to a Λ_{n} manifold as in Theorem 2.1. Now f : $\Sigma^{k} \times S^{d} \rightarrow S^{d}$ is nothing but a map $\Sigma^{k} \rightarrow G_{d+1}$ which we also denote by f. It is the class represented by f in $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ which corresponds to the equivariant diffeomorphism class of T. To prove the $1-1$ correspondence we have to analyze Jänich's equivalence relation of pairs (P, σ) in our particular case. Two pairs (P, σ) and $\left(P^{\prime}, \sigma^{\prime}\right)$ are equivalent (i.e. the corresponding Λ_{n} manifolds equivariantly diffeomorphic over $\Sigma^{k} \times D^{d+1}$) if and only if there is a bundle isomorphism of P and P^{\prime} carrying σ to $\sigma^{\prime}[11,3.1]$. If P and P^{\prime} are identified with the trivial bundle $\Sigma^{k} \times D^{d+1} \times$ $\times \Lambda_{2} \rightarrow \Sigma^{k} \times D^{d+1},(P, \sigma)$ and $\left(P, \sigma^{\prime}\right)$ are equivalent if and only if there is a bundle automorphism of the above trivial bundle carrying σ to σ^{\prime}. Such a bundle automorphism is given by

$$
\begin{aligned}
& H: \Sigma^{k} \times D^{d+1} \times \Lambda_{2} \rightarrow \Sigma^{k} \times D^{d+1} \times \Lambda_{2} \\
& H(x, y, z)=(x, y, z \eta(x, y))
\end{aligned}
$$

where $\eta: \Sigma^{k} \times D^{d+1} \rightarrow \Lambda_{2}$. (P is a right principal bundle.) Therefore equivalence of (P, σ) and $\left(P, \sigma^{\prime}\right)$ means the existence of a commutative diagram

$$
\begin{aligned}
& \Sigma^{k} \times S^{d} \times \Lambda_{2} \xrightarrow{H \mid \ldots} \Sigma^{k} \times S^{d} \times \Lambda_{2} \\
& \Sigma^{k} \times \stackrel{\downarrow}{S^{d}} \times S^{d} \xrightarrow{h} \stackrel{\downarrow}{\downarrow} \Sigma^{k} \times S^{d} \times S^{d} \\
& { }^{\sigma} \Sigma^{k} \times S^{\sigma^{\prime}}
\end{aligned}
$$

where H is defined by $\eta: \Sigma^{k} \times D^{d+1} \rightarrow \Lambda_{2}$ as above and h is induced by H via the identification of $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ with S^{d}. We shall need two facts: If σ and σ^{\prime} are homotopic reductions, then (P, σ) and (P, σ^{\prime}) are equivalent [9, p. 23]. $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ can be identified with S^{d} in such a way that the action of Λ_{2} on $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ corresponds to the orthogonal action of Λ_{2} on S^{d} via a homomorphism $\tau: \Lambda_{2} \rightarrow O_{d+1}$ with kernel the center of Λ_{2}. This is well-known (e.g. [2]).

Now suppose (P, σ) is equivalent to (P, σ^{\prime}), the equivalence given by $\eta: \Sigma^{k} \times$ $\times D^{d+1} \rightarrow \Lambda_{2}$. Let $\sigma\left(\sigma^{\prime}\right)$ be given by a map $f\left(f^{\prime}\right): \Sigma^{k} \rightarrow G_{d+1}$. Change η by a homo-
topy such that it is constant on all disks $p \times D^{d+1}, p \in \Sigma^{k}$. This changes σ^{\prime} by a homotopy, using the diagram $\left(^{*}\right.$), and changes neither the equivalence class of $\left(P, \sigma^{\prime}\right)$ nor the homotopy class of f^{\prime}. So we may assume that we have a diagram (${ }^{*}$) with η a map from Σ^{k} to $\Lambda_{2} . \sigma^{\prime}=h \sigma, h$ being defined by $\eta: \Sigma^{k} \rightarrow \Lambda_{2}$. If $\bar{\eta}: \Sigma^{k} \rightarrow O_{d+1}$ is the composition of η with the above homomorphism $\tau: \Lambda_{2} \rightarrow O_{d+1}$, this means $f^{\prime}=\bar{\eta} \cdot f$, or $\left[f^{\prime}\right]-[f]=[\bar{\eta}]$. Thus $[f],\left[f^{\prime}\right] \in \pi_{k} G_{d+1}$ differ by an element in the image of $\pi_{k} S O_{d+1}$.

Conversely, given $f, f^{\prime}: \Sigma^{k} \rightarrow G_{d+1}$, defining reductions σ, σ^{\prime}, assume there is $\bar{\eta}: \Sigma^{k} \rightarrow S O_{d+1}$ such that $\left[f^{\prime}\right]-[f]=[\bar{\eta}]$ in $\pi_{k} G_{d+1} \cdot \bar{\eta}$ can be lifted to $\eta: \Sigma^{k} \rightarrow \Lambda_{2}$. (Here, if $\Lambda_{n}=O_{n}$ or $S p_{n}, k>1$ is used; see Remark 1 below.) This shows that the reduction defined by $\bar{\eta} \cdot f$ can be obtained from σ by an automorphism of P (namely the one defined by η). As $\bar{\eta} \cdot f$ and f^{\prime} are homotopic, (P, σ) and $\left(P, \sigma^{\prime}\right)$ are equivalent, and the proof is complete.

Remark 1. For $k=1$, the proof shows what has to be modified if $\Lambda_{n}=O_{n}$ or $S p_{n}$. In the symplectic case, one gets a $1-1$ correspondence to the elements of $\pi_{1} G_{5}$. In the orthogonal case, one gets a $1-1$ correspondence with the elements of $\operatorname{cok}\left(\pi_{1} \mathrm{SO}_{2} \rightarrow\right.$ $\rightarrow \pi_{1} G_{2}$) where $\pi_{1} \mathrm{SO}_{2} \rightarrow \pi_{1} G_{2}$ is obtained by composing the double covering $\mathrm{SO}_{2} \rightarrow$ $\rightarrow \mathrm{SO}_{2}$ with the inclusion $\mathrm{SO}_{2} \subset G_{2}$.

Remark 2. The zero element of $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ clearly corresponds to the 'trivial' Λ_{n} manifold $\Sigma^{k} \times S^{2 d n-1}$ over $\Sigma^{k} \times D^{d+1}$.

Remark 3. The inclusion $\mathrm{SO}_{2} \subset G_{2}$ is a homotopy equivalence, so $\operatorname{cok}\left(\pi_{k} \mathrm{SO}_{2} \rightarrow\right.$ $\left.\rightarrow \pi_{k} G_{2}\right)=0 . \pi_{k} S_{3} \rightarrow \pi_{k} G_{3}$ is a monomorphism [14], so $\operatorname{cok}\left(\pi_{k} S O_{3} \rightarrow \pi_{k} G_{3}\right) \cong$ $\cong \pi_{k}\left(G_{3}, \mathrm{SO}_{3}\right)$ which is isomorphic to $\pi_{k+2} S^{2}$ for $k \geqslant 3$.

3. The Orbit Space as a Bundle

It was proved in [7, 2.3] that the linear automorphisms of $S^{2 d n-1}$ compatible with the representation $\varrho_{n} \oplus \varrho_{n}$, form a group isomorphic to $\Lambda_{2}(n \geqslant 3)$. The action of this group on the orbit space $S^{2 d n-1} / \Lambda_{n} \cong D^{d+1}$ is what one would expect:

PROPOSITION 3.1. The action of the group Λ_{2} of equivariant linear automorphisms of $S^{2 d n-1}(n \geqslant 3)$ induced on the orbit space $S^{2 d n-1} / \Lambda_{n} \cong D^{d+1}$ is equivalent to the orthogonal action of Λ_{2} on D^{d+1} given by a homomorphism $\tau: \Lambda_{2} \rightarrow O_{d+1}$ with ker $\tau=$ center (Λ_{2}).

Proof. Let F be the real, complex, or quaternionic field, depending on whether the orthogonal, the unitary, or the symplectic group acts. Recall from [7, 2.4] how Λ_{n} and Λ_{2} act on $S^{2 d n-1}$. Write elements of $S^{2 d n-1}$ as n by 2 matrices over F. Then Λ_{n} acts by left multiplication, and Λ_{2} acts by right multiplication. To prove Proposition 3.1 we may confine ourselves to the orbits of Λ_{n} over $B^{d+1}=\operatorname{int} D^{d+1}$ (i.e. principal orbits). An n by 2 matrix is on a principal orbit if and only if the two columns are linearly
independent. If $\alpha=\sqrt{ } \frac{1}{2}$, then the Λ_{n} orbit of the point

$$
q=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \alpha \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right]
$$

is a fixed point of the action of Λ_{2}. We are going to determine the orbit type of nonfixed points of the Λ_{2} action on B^{d+1}. We first need nice representatives of the points in the orbit space B^{d+1} / Λ_{2}.

Clearly, any point of $S^{2 d n-1}$ over B^{d+1} is on a Λ_{n} orbit of a point of the form

$$
\left[\begin{array}{cc}
r & t \\
0 & s \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right],
$$

$r \in R, r>0, s \neq 0$. Applying a suitable element of Λ_{2} (i.e. without changing the Λ_{2} orbit) makes t real non-negative. Then we make s real positive by applying an appropriate element of Λ_{n}. So far we have shown that any point in the orbit space B^{d+1} / Λ_{2} has a representative of the form (**) with $r, s, t \in \mathbf{R}, r>0, s>0, t \geqslant 0$. The following lemma guarantees that we may even assume $t=0$.

LEMMA 3.2. Given real numbers $r \neq 0, s \neq 0, t$, there are orthogonal 2 by 2 matrices M, N such that
$M\left[\begin{array}{ll}r & t \\ 0 & s\end{array}\right] N$
is a diagonal matrix.
(Lemma 3.2 is proved below.)
Assume $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is in the isotropy group of a point of B^{d+1} represented by

$$
\left[\begin{array}{cc}
r & 0 \\
0 & s \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right] \text {. Then }\left[\begin{array}{cc}
r & 0 \\
0 & s \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
r a & r b \\
s c & s d \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right]
$$

is on the same Λ_{n} orbit as

$$
\left[\begin{array}{cc}
r & 0 \\
0 & s \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right] .
$$

Therefore $r^{2}=r^{2}|a|^{2}+s^{2}|c|^{2}$ and $s^{2}=r^{2}|b|^{2}+s^{2}|d|^{2}$, so $r^{2}\left(1-|a|^{2}\right)=r^{2}|c|^{2}=$ $s^{2}|c|^{2}$ and $s^{2}\left(1-|d|^{2}\right)=s^{2}|b|^{2}=r^{2}|b|^{2}$, i.e. $r=s$ or $c=0$ and $b=0$. For $r=s$ we have the fixed point q, otherwise the isotropy group is $\Lambda_{1} \times \Lambda_{1}$. Thus the positive dimensional orbits of Λ_{2} on B^{d+1} are spheres $\Lambda_{2} / \Lambda_{1} \times \Lambda_{1}$ of dimension d, the orbit space B^{d+1} / Λ_{2} is the half open interval $(0, \alpha]$, parametrized by r. Hence B^{d+1} is equivalent, as a Λ_{2} space, to the representation space of τ composed with the standard orthogonal representation of $\mathrm{O}_{2}, \mathrm{SO}_{3}$, or SO_{5}, respectively.

Proof of Lemma 3.2. Left (right) multiplication by an orthogonal matrix does not change the inner product of the columns (rows) of a real 2 by 2 matrix. As the orthogonal group operates transitively on spheres, it is sufficient to find an orthogonal matrix $\left[\begin{array}{rr}u & u^{\prime} \\ -u^{\prime} & u\end{array}\right], u^{\prime}=\sqrt{1-u^{2}}$, such that the columns of

$$
\left[\begin{array}{ll}
r & t \\
0 & s
\end{array}\right]\left[\begin{array}{rr}
u & u^{\prime} \\
-u^{\prime} & u
\end{array}\right]
$$

have inner product zero. This leads to an equation

$$
u^{4}-u^{2}+\frac{r^{2} t^{2}}{\left(r^{2}-t^{2}-s^{2}\right)^{2}+4 r^{2} t^{2}}=0
$$

which does have a solution u in the unit interval.
COROLLARY 3.3. If an equivariant linear $S^{2 d n-1}$ bundle $\pi: T \rightarrow B$ is defined by transition functions $t_{j}: X_{j} \rightarrow \Lambda_{2}$, then the orbit space T^{\prime} is the total space of $a D^{d+1}$ bundle over B with transition functions $\tau \circ t_{j}$.

4. The Homotopy Type of the Equivariant Diffeomorphism Group of the Fibre

The following two (well-known) lemmas are used in the proof of the next theorem.
LEMMA 4.1. The group of diffeomorphisms of D^{2} is homotopy equivalent to O_{2}.
Proof. The group of diffeomorphisms of S^{1} is homotopy equivalent to O_{2}. This is
elementary. So the group of all diffeomorphisms of D^{2} is homotopy equivalent to the group of all diffeomorphisms of D^{2} being orthogonal on the boundary. The latter is homotopy equivalent to the product of O_{2} and the group of all diffeomorphisms of D^{2} leaving S^{1} fixed. But the second factor is contractible [6, p. 132].

Lemma 4.2. Let G be the group of equivariant diffeomorphisms of a manifold M with respect to some fixed smooth action of a Lie group on M. Then G has the homotopy type of a countable CW complex.

Proof. If the action is trivial, the Lemma is obtained by combining [5, p. 277, 283] and [16, Theorem 14]. In [5], the diffeomorphisms close to the identity are identified with certain cross-sections of the tangent bundle of M. This gives the local structure of a locally convex topological vector space. Therefore it is sufficient to observe that the equivariant diffeomorphisms correspond to equivariant cross-sections, which form a linear subspace.

DEFINITION. The diffeomorphisms of $S^{2 d n-1}$ onto itself which are equivariant with respect to the diagonal action $\varrho_{n} \oplus \varrho_{n}$ of Λ_{n}, endowed with the C^{∞} topology, form a topological group. We denote this group by $\operatorname{Diff}\left(\Lambda_{n}, S^{2 d n-1}\right)$, or briefly $D_{n}(\Lambda)$.

The group of all linear equivariant diffeomorphisms of $S^{2 d n-1}$ is a subgroup of $D_{n}(\Lambda)$ which is isomorphic to $\Lambda_{2}[7,2.3]$.

THEOREM 4.3. For $n \geqslant 3$, the inclusion $j: O_{2} \subset D_{n}(O)$ is a homotopy equivalence.
Proof. Every equivariant self-diffeomorphism of $S^{2 n-1}$ is homotopic to a linear one [7, 6.1]. So j induces an isomorphism for π_{0}. To prove that j induces isomorphisms for $\pi_{k}, k>0$, we use that the equivalence classes of bundles over S^{k+1} with structure group G are classified by $\pi_{k} G$ modulo the action of $\pi_{0} G[19,18.5]$. Let $\pi: T \rightarrow S^{k+1}$ be an equivariant $S^{2 n-1}$ bundle (with structure group $D_{n}(O)$). The orbit space T^{\prime} is a D^{2} bundle over S^{k+1}, with structure group O_{2} (Lemma 4.1).

Assume $k>1$. Then $T^{\prime} \rightarrow S^{k+1}$ is a trivial bundle, so T is an O_{n} manifold over $S^{k+1} \times D^{2}$. The principal orbit bundle of T is a bundle over $S^{k+1} \times B^{2}$ with structure group O_{2}, so is also trivial. Thus by Theorem 2.1, the O_{n} manifold T corresponds to an element of cok $\left(\pi_{k+1} \mathrm{SO}_{2} \rightarrow \pi_{k+1} G_{2}\right)$. As this cokernel is zero, T is the 'trivial' O_{n} manifold over $S^{k+1} \times D^{2}$, i.e. $S^{k+1} \times S^{2 n-1}$. Therefore every equivariant $S^{2 n-1}$ bundle over S^{k+1} is trivial, which means $\pi_{k} D(O)=0=\pi_{k} O_{2}(k>1)$.

The case $k=1$ is slightly more complicated. The principal orbit bundle of T is a bundle over int $\left(T^{\prime}\right) \simeq S^{2}$. If $\pi: T \rightarrow S^{2}$ is given by an element $t \in \pi_{1} D_{n}(O)$, the principal orbit bundle of T is given by some element $t_{0} \in \pi_{1} O_{2}$ such that $\left(j_{*} t_{0}\right)^{-1} t \in \pi_{1} D_{n}(O)$ defines an equivariant $S^{2 n-1}$ bundle over S^{2} with trivial principal orbit bundle. So we may assume that T already has trivial principal orbit bundle. If T^{\prime} is a non-trivial D^{2} bundle over $S^{2}, \partial T^{\prime}$ is a lens space $L(q)(q \geqslant 1)$. The principal bundle of the princi-
pal orbit bundle of T is int $T^{\prime} \times O_{2} \rightarrow$ int T^{\prime}, the reduction of the structure group to $O_{1} \times O_{1}$ according to Jänich's classification is a cross-section of the bundle $\partial T^{\prime} \times$ $\times O_{2} / O_{1} \times O_{1} \rightarrow \partial T^{\prime}$, which is of degree ± 1 on any fibre of $\partial T^{\prime} \rightarrow S^{2}$. So it is given by a map

which is of degree ± 1 on any fibre of $L(q) \rightarrow S^{1}$. As every map $L(q) \rightarrow S^{1}$ is null homotopic, this is impossible. Therefore the bundle $T^{\prime} \rightarrow S^{2}$ is trivial. Now we can apply Theorem 2.1. As $\operatorname{cok}\left(\pi_{2} \mathrm{SO}_{2} \rightarrow \pi_{2} G_{2}\right)=0, \pi$ is equivalent to the trivial bundle $S^{2} \times S^{2 n-1}$ over S^{2}. This proves that j induces a surjective map $\pi_{1} O_{2} / \pi_{0} O_{2} \rightarrow \pi_{1} D_{n}(O) /$ $\pi_{0} D_{n}(O)$. As the total spaces of two different linear equivariant $S^{2 n-1}$ bundles over S^{2} have different principal orbit bundles, $\pi_{1} O_{2} / \pi_{0} O_{2} \rightarrow \pi_{1} D_{n}(O) / \pi_{0} D_{n}(O)$ is injective. Then $j_{*}: \pi_{1} O_{2} \rightarrow \pi_{1} D_{n}(O)$ is an isomorphism because $\pi_{0} O_{2}=\pi_{0} D_{n}(O)=\mathbf{Z}_{2}$.

So far we have shown that j is a weak homotopy equivalence. But O_{2} and $D_{n}(O)$ have the homotopy type of $C W$ complexes (Lemma 4.2). Hence j is a homotopy equivalence [18, p. 405].

COROLLARY 4.4. Any O_{n} equivariant $S^{2 n-1}$ bundle with fibre action $\varrho_{n} \oplus \varrho_{n}$, $n \geqslant 3$, is a linear bundle.

THEOREM 4.5. Let Λ_{n} be the group U_{n} or $S p_{n}, n \geqslant 3$. Let $k \geqslant 3$. If T is a Λ_{n} manifold over $S^{k} \times D^{d+1}$ corresponding to a non-zero element of $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ in the classification of Theorem 2.1, then $\pi: T \rightarrow S^{k}$ is a non-linear Λ_{n} equivariant $S^{2 d n-1}$ bundle with fibre action $\varrho_{n} \oplus \varrho_{n}$.
$\pi: T \rightarrow S^{k}$ is of course the composition of the orbit map with the projection on the first factor. Note that in the orthogonal case, the above cokernel is always zero.

Proof. If $\pi: T \rightarrow S^{k}$ is a linear bundle, it is equivariantly trivial. This follows from Corollary 3.3 and the isomorphism $\tau_{*}: \pi_{k-1} \Lambda_{2} \rightarrow \pi_{k-1} S O_{d+1}$. But then, by Remark 2 of section $2, T$ corresponds to zero in $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$. So we only have to make sure that $\pi: T \rightarrow S^{k}$ is a bundle, i.e. locally trivial. If $B=S^{k}$-point, $\pi^{-1} B$ is a Λ_{n} manifold over $B \times D^{d+1}$. The reduction of a structure group occuring in the classification by the Hsiangs and Jänich, is a map $B \rightarrow G_{d+1}$, so is homotopic to a constant map. As homotopic reductions yield equivariantly equivalent Λ_{n} manifolds [9, p. 23], $\pi^{-1} B$ is equivariantly diffeomorphic over B to $B \times S^{2 d n-1}$.

COROLLARY 4.6. If $\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right) \neq 0$ for some $k \geqslant 3$, then $\operatorname{cok}\left(\pi_{k-1} \Lambda_{2} \rightarrow \pi_{k-1} D^{n}(\Lambda)\right) \neq 0$ for every $n \geqslant 3$.

Proof. By Theorem 4.5, there is a bundle over S^{k} with structure group $D_{n}(\Lambda)$ which is non-linear, i.e. the structure group of which cannot be reduced to Λ_{2}. So the corresponding element of $\pi_{k-1} D_{n}(\Lambda)$ is not in the image of $\pi_{k-1} \Lambda_{2}$.

COROLLARY 4.7. Neither of the inclusions $U_{2} \subset D_{n}(U), S p_{2} \subset D_{n}(S p)$ is a homotopy equivalence.

Proof. This follows from $\operatorname{cok}\left(\pi_{3} S O_{3} \rightarrow \pi_{3} G_{3}\right) \cong \mathbf{Z}_{2}$ and $\operatorname{cok}\left(\pi_{6} S O_{5} \rightarrow \pi_{6} G_{5}\right) \cong \mathbf{Z}_{2}$.
THEOREM 4.8. For any $n \geqslant 3, D_{n}(U)=\operatorname{Diff}\left(U_{n}, S^{4 n-1}\right)$, the group of all selfdiffeomorphisms of $S^{4 n-1}$ which are equivariant with respect to the action $\varrho_{n} \oplus \varrho_{n}$ of U_{n}, does not have the homotopy type of a finite $C W$ complex.

Proof. As $\pi_{3}\left(G_{3}, S O_{3}\right) \cong \operatorname{cok}\left(\pi_{3} S_{3} \rightarrow \pi_{3} G_{3}\right) \cong \mathbf{Z}_{2}, \pi_{2} D_{n}(U)$ is non-zero. But according to [3, Theorem 6.11], a topological group of the homotopy type of a finite $C W$ complex, has zero 2-dimensional homotopy group.

Remark. We do not know whether or not $D_{n}(S p)$ has the homotopy type of a finite $C W$ complex. The above method does not work in the symplectic case since $\operatorname{cok}\left(\pi_{3} S O_{5} \rightarrow \pi_{3} G_{5}\right)=0$.

5. Classifying the Total Spaces

In view of the exact homotopy sequence

$$
\cdots \rightarrow \pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1} \rightarrow \pi_{k}\left(G_{d+1}, S O_{d+1}\right) \xrightarrow{\partial} \pi_{k-1} S O_{d+1} \rightarrow \cdots,
$$

$\operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ is isomorphic to $\operatorname{ker} \partial \subset \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. This kernel can be calculated to be non-zero in many cases, giving many examples of non-linear bundles by Theorem 4.5. It turns out, however, that the total spaces of these bundles in most cases are equivariantly diffeomorphic to a product of a homotopy sphere and $S^{\mathbf{2 d n - 1}}$. Before going into this question, we prove a rather technical lemma.

LEMMA 5.1. Let Σ^{k} be a homotopy k-sphere, $k \geqslant 5, F: S^{k} \times D^{d+1} \rightarrow \Sigma^{k} \times D^{d+1}$ a diffeomorphism. Then F is strongly diffeotopic to a diffeomorphism G such that $G \mid \Delta \times D^{d+1}: \Delta \times D^{d+1} \rightarrow \Delta^{\prime} \times D^{d+1}$ has the form $G(x, y)=(g(x), y)$, where Δ, Δ^{\prime} are k-disks in S^{k}, Σ^{k}, respectively, and $g: \Delta \rightarrow \Delta^{\prime}$ is a diffeomorphism.

Proof. If $p \in S^{k}, p^{\prime} \in \Sigma^{k}$, then the map $F^{\prime}: p \times\left(D^{d+1}, S^{d}\right) \rightarrow \Sigma^{k} \times\left(D^{d+1}, S^{d}\right)$, defined by restricting F, is homotopic to a map $F^{\prime \prime}: p \times\left(D^{d+1}, S^{d}\right) \rightarrow \Sigma^{k} \times\left(D^{d+1}, S^{d}\right)$ such that $\operatorname{im} F^{\prime \prime}=p^{\prime} \times\left(D^{d+1}, S^{d}\right)$ and $\pi_{2} \circ F^{\prime \prime}=i d$. This homotopy may be assumed to be composed by two homotopies, the first one moving a neighborhood of the boundary close to the boundary and leaving the complement of a neighborhood of the boundary fixed, the second one moving only the complement of a neighborhood of the boundary in the complement of a neighborhood of the boundary.

As $F^{\prime \prime} \mid p \times S^{d}: p \times S^{d} \rightarrow \Sigma^{k} \times S^{d}$ is $(k-1)$-connected, we can replace the first homotopy by a strong diffeotopy of $\Sigma^{k} \times D^{d+1}$ which is the identity outside a neighborhood of the boundary. This is done using [8, p. 47] and the product structure of small neighborhoods of the boundary. To replace the second homotopy by a strong diffeotopy leaving a neighborhood of the boundary fixed, one has to extend Haefliger's existence theorem for diffeotopies [8, p. 47] to relative homotopies not affecting a neighborhood of the boundaries. Using the composition of the two diffeotopies, we have realized the homotopy between F^{\prime} and $F^{\prime \prime}$ by a strong diffeotopy of $\Sigma^{k} \times D^{d+1}$. Now if Δ, Δ^{\prime} are k-disks, $p \in \Delta \subset S^{k}, p^{\prime} \in \Delta^{\prime} \subset \Sigma^{k}, g: \Delta \rightarrow \Delta^{\prime}$ a diffeomorphism such that $g(p)=p^{\prime}$, then $F^{\prime \prime} \mid \Delta \times D^{d+1}$ and $g \times i d: \Delta \times D^{d+1} \rightarrow \Delta^{\prime} \times D^{d+1}$ are tubular maps for $p^{\prime} \times D^{d+1}$ in $\Sigma^{k} \times D^{d+1}$. (To be precise, we can give Δ and Δ^{\prime} linear structures such that p is the origin in Δ and g is a linear isomorphism.) As D^{d+1} is contractible, there is another strong diffeotopy of $\Sigma^{k} \times D^{d+1}$ carrying $F \mid \Delta \times D^{d+1}$ to $g \times i d$. Combining all the diffeotopies yields G.

Levine [13] constructed a homomorphism $\omega_{3}: \Theta^{k+d+1, k} \rightarrow \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. ($\Theta^{m, k}$ is the group of k-dimensional knots which are homotopy spheres in $S^{m}, k \geqslant 5$.) $\omega_{3}(x)$ is the obstruction for a knot x to bound a framed manifold in $S^{k+d+1} . \omega_{3}(x) \in$ $\epsilon \operatorname{ker} \partial$ if and only if x has trivial normal bundle.

THEOREM 5.2. Let Σ^{k} be a homotopy k-sphere, $k \geqslant 5$. Let T be a U_{n} or $S p_{n}$ manifold over $S^{k} \times D^{d+1}$, corresponding to an element $x \in \operatorname{ker} \partial \subset \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. Then T is equivariantly diffeomorphic to $\Sigma^{k} \times S^{2 d n-1}$ if and only if there is a knot x diffeomorphic to Σ^{k} with $\omega_{3}(x)=-x$.

We first prove the following auxiliary
PROPOSITION 5.3. Let x be a knot diffeomorphic to Σ^{k}, of codimension $d+1$, with trivial normal bundle, and T the U_{n} or $S p_{n}$ manifold over $\Sigma^{k} \times D^{d+1}$ corresponding to $\omega_{3}(x) \in \operatorname{ker} \partial \subset \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. Then T is equivariantly diffeomorphic to $S^{k} \times S^{2 d n-1}$.

Proof. Recall how $\omega_{3}(x)$ is defined if x has trivial normal bundle [13, 3.1]. Let $h: \Sigma^{k} \times D^{d+1} \rightarrow X$ be a tubular map for $\varkappa . S^{k+d+1}$-int X is diffeomorphic to $D^{k+1} \times S^{d}$ by a diffeomorphism $g: D^{k+1} \times S^{d} \rightarrow S^{k+d+1}$ int X such that $g \mid S^{k} \times S^{d}: S^{k} \times S^{d} \rightarrow \partial X$ extends to a diffeomorphism $h_{0}: S^{k} \times D^{d+1} \rightarrow X$ [17, Theorem 4.1]. If π_{2} is the projection on the second factor, then $\pi_{2} g^{-1} h: \Sigma^{k} \times S^{d} \rightarrow S^{d}$ defines an element of $\pi_{k} G_{d+1}$ whose image in $\pi_{k}\left(G_{d+1}, S O_{d+1}\right)$ is $\omega_{3}(x)$.

By the diffeomorphism $h^{-1} h_{0}: S^{k} \times D^{d+1} \rightarrow \Sigma^{k} \times D^{d+1}, T$ can be lifted to a Λ_{n} manifold T^{\prime} over $S^{k} \times D^{d+1}$, which can be detected by an element $y \in \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$ according to the classification in Theorem 2.1. As T^{\prime} was obtained by lifting from T, y is represented by the composition $\left(\pi_{2} g^{-1} h\right) \circ\left(h^{-1} h_{0}\right)=\pi_{2}$. So T^{\prime} is equivariantly diffeomorphic to $S^{k} \times S^{2 d n-1}$. But T is equivariantly diffeomorphic to T^{\prime}.

Proof of Theorem 5.2. First assume the existence of κ diffeomorphic to Σ^{k} such
that $\omega_{3}(x)=-x$. By Proposition 5.3, the Λ_{n} manifold T^{\prime} over $\left(-\Sigma^{k}\right) \times D^{d+1}$ corresponding to $x \in \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$, is equivariantly diffeomorphic to $S^{k} \times S^{2 d n-1}$. Hence there is a commutative diagram

where the equivariant diffeomorphism E induces a diffeomorphism F of the orbit spaces. Let $S^{k}=D_{+}^{k} \bigcup_{i d} D_{-}^{k}, D_{ \pm}^{k}$ k-disks, matching the boundaries by the identity of $S^{k-1},-\Sigma^{k}=D_{+}^{k} \bigcup_{s} D^{k}$ matching the boundaries by an autodiffeomorphism s of S^{k-1}. Applying Lemma $5.1, F$ may be assumed to map $D_{+}^{k} \times D^{d+1}$ onto $D_{+}^{k} \times D^{d+1}$ by the identity. This means that the fibre homotopy trivialization $\left(-\Sigma^{k}\right) \times S^{d} \rightarrow S^{d}$ representing x (and defining the Λ_{n} manifold T^{\prime}) is just the second projection when restricted to $D_{+}^{k} \times S^{d}$. Now we cut our Λ_{n} manifolds $S^{k} \times S^{2 d n-1}$ and T^{\prime} in two pieces, according to the decomposition of S^{k} and $-\Sigma^{k}$ in two hemispheres. The two pieces are glued together after inserting a twist defined by the map s^{-1} on S^{k-1}. This defines a diagram

where E^{\prime} is again an equivariant diffeomorphism. As the fibre homotopy trivializations that define the new Λ_{n} manifolds over $\Sigma^{k} \times D^{d+1}$ and $S^{k} \times D^{d+1}$ still are equal to the second projection when restricted to $D_{+}^{k} \times S^{d}$, we did not change the corresponding elements in $\pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. So we really have the product $\Sigma^{k} \times S^{2 d n-1}$ on the left hand side (corresponding to $0 \in \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$), and a Λ_{n} manifold corresponding to x on the right hand side (i. e. T). Therefore T is equivariantly diffeomorphic to $T^{\prime \prime}$, which is equivariantly diffeomorphic to $\Sigma^{k} \times S^{2 d n-1}$ by E^{\prime}.

Conversely, let T be equivariantly diffeomorphic to $\Sigma^{k} \times S^{2 d n-1}$. As before, in the diagram

$$
\begin{aligned}
& T \xrightarrow{E} \Sigma^{k} \times S^{2 d n-1} \\
& \downarrow \\
& S^{k} \times D^{d+1} \xrightarrow{F} \Sigma^{k} \times D^{d+1}
\end{aligned}
$$

we may assume that $F \mid D_{+}^{k} \times D^{d+1}$ is the identity (with respect to a decomposition $\Sigma^{k}=D_{+}^{k} \bigcup_{t} D_{-}^{k}$). Inserting an appropriate twist as above, we obtain a diagram

$$
\begin{aligned}
& T^{\prime} \quad \xrightarrow{E^{\prime}} S^{k} \times S^{2 d n-1} \\
& \downarrow \downarrow \\
&\left(-\Sigma^{k}\right) \times D^{d+1} \xrightarrow{F^{\prime}} S^{k} \times D^{d+1}
\end{aligned}
$$

where T^{\prime} is still a Λ_{n} manifold corresponding to $x \in \pi_{k}\left(G_{d+1}, S O_{d+1}\right)$. Because of the above diagram, x is representable by $\pi_{2} \circ F^{\prime} \mid\left(-\Sigma^{k}\right) \times S^{d}$. On the other hand, according to our remark at the beginning of this proof, for the knot $-\chi$ given by $F^{\prime}\left(\left(-\Sigma^{k}\right) \times\right.$ $\times 0) \subset S^{k} \times D^{d+1} \subset S^{k+d+1}, \omega_{3}(-x)$ is also represented by $\pi_{2} \circ F^{\prime} \mid\left(-\Sigma^{k}\right) \times S^{d}$. Thus $\omega_{3}(x)=-x$. This completes the proof of Theorem 5.2.

By Theorem 5.2, the problem of deciding whether the total spaces of the bundles constructed in Theorem 4.5 are equivariantly diffeomorphic to $\Sigma^{k} \times S^{2 d n-1}$, is largely reduced to homotopy theory. As $\operatorname{cok}\left(\pi_{k} \mathrm{SO}_{5} \rightarrow \pi_{k} G_{5}\right)=0$ for $k=3,4$, there are no such non-linear symplectic bundles in these dimensions. We do not know whether our nonlinear unitary bundles have familiar total spaces for $k=3,4$. Now assume $k \geqslant 5$. We have Levine's exact sequence [13]

$$
\Theta^{k+d+1, k} \xrightarrow{\omega_{3}} \pi_{k}\left(G_{d+1}, S O_{d+1}\right) \rightarrow P_{k} \rightarrow \Theta^{k+d, k-1} .
$$

According to Theorem 5.2, the total spaces of all bundles constructed in Theorem 4.5 are equivariantly diffeomorphic to some $\Sigma^{k} \times S^{2 d n-1}$ if and only if $\operatorname{ker}\left(\partial: \pi_{k}\left(G_{d+1}\right.\right.$, $\left.\left.S O_{d+1}\right) \rightarrow \pi_{k-1} S O_{d+1}\right) \cong \operatorname{cok}\left(\pi_{k} S O_{d+1} \rightarrow \pi_{k} G_{d+1}\right)$ is contained in $\operatorname{im} \omega_{3}$. As $\pi_{k}\left(G_{d+1}\right.$, $S O_{d+1}$) is finite for all $k \geqslant 5, d=2,4, \omega_{3}$ is certainly surjective unless $k \equiv 2 \bmod 4$. In the latter case, $P_{k}=\mathbf{Z}_{2}$, and ω_{3} is an epimorphism if and only if a codimension 2 knot in S^{k+1} with Arf invariant 1 remains non-trivial after ($d-1$)-fold suspension. (Exactly then $P_{k} \rightarrow \Theta^{k+d, k-1}$ is injective.) As the Kervaire sphere is not diffeomorphic to the standard sphere in dimensions different from $2^{r}-3$ [4, Corollary 2], ω_{3} is surjective for all $k \neq 2^{r}-2$. For $k=6,14$, using [20], ω_{3} can be computed to be surjective in the unitary case $(d=2)$. For $k=6, d=4$ (symplectic action), $\Theta^{k+d, k-1}$ is zero for dimensional reasons [13]. As ker $\partial=\pi_{6}\left(G_{5}, S O_{5}\right)=\mathbf{Z}_{2}, \omega_{3}$ is not surjective in this case, and we have spotted a non-linear symplectic $S^{8 n-1}$ bundle over S^{6} whose total space is not equivariantly diffeomorphic to $S^{6} \times S^{8 n-1}$. We summarize:

PROPOSITION 5.4. If $k \geqslant 5, k \neq 2^{r}-2$, then the total spaces of the nonlinear equivariant $S^{2 d n-1}$ bundles over S^{k}, constructed in Theorem 4.5, are equivariantly diffeomorphic to a product of a homotopy k-sphere with trivial action and $S^{2 d n-1}$. This is also true for $k=6,14$ in the unitary case. For $k=6$, there is a non-linear symplectic $S^{8 n-1}$ bundle over S^{6} whose total space is not equivariantly diffeomorphic to a product of a homotopy sphere with trivial action and $S^{8 n-1}$.

REFERENCES

[1] Antonelli, P., Burghelea, D., and Kahn, P. J., Gromoll groups, Diff S^{n}, and bilinear constructions of exotic spheres, Bull. Amer. Math. Soc. 76 (1970), 772-777.
[2] Borel, A., Groupes d'homotopie des groupes de Lie I, Séminaire H. Cartan 1949/50 No. 12.
[3] Browder, W., Torsion in H-spaces, Ann. Math. 74 (1961), 24-51.
[4] Browder, W., The Kervaire invariant of framed manifolds and its generalization, Ann. Math. 90 (1969), 157-186.
[5] Cerf, J., Topologie de certains espaces de plongements, Bull. Soc. math. France 89 (1961), 227-380.
[6] Cerf, J., Sur les difféomorphismes de la sphère de dimension trois ($\Gamma_{4}=O$), Springer Lecture Notes in Math. No. 53, Berlin 1968.
[7] Erle, D. and Hsiang, W. C., On certain unitary and symplectic actions with three orbit types, Amer. J. Math. 94 (1972), 289-308.
[8] Haefliger, A., Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
[9] Hirzebruch, F. and Mayer, K. H., O(n)-Mannigfaltigkeiten, exotische Spären und Singularitäten, Springer Lecture Notes in Math. No. 57, Berlin 1968.
[10] Hsiang, W. C. and Hsiang, W. Y., Differentiable actions of compact connected classical groups I, Amer. J. Math 89 (1967), 705-786.
[11] JÄnich, K., Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer GMannigfaltigkeiten ohne Rand, Topology 5 (1966), 301-320.
[12] JÄnch, K., Differenzierbare G-Mannigfaltigkeiten, Springer Lecture Notes in Math. No. 59, Berlin 1968.
[13] Levine, J., A classification of differentiable knots, Ann. Math. 82 (1965), 15-50.
[14] Massey, W. S., On the normal bundle of a sphere imbedded in Euclidean space, Proc. Amer. Math. Soc. 10 (1959), 959-964.
[15] Novikov, S. P., Differentiable sphere bundles, Amer. Math. Soc. Translations. Ser. 2. Vol. 63, p. 217-244. Amer. Math. Soc., Providence, R.I., 1967.
[16] Palais, R. S., Homotopy theory of infinite-dimensional manifolds, Topology 5(1966), 1-16.
[17] Smale, S., On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.
[18] Spanier, E. H., Algebraic Topology, McGraw-Hill Book Co. New York 1966.
[19] Steenrod, N., The Topology of Fibre Bundles, Princeton Univ. Press. Princeton, N.J., 1951.
[20] Toda, H., Composition methods in homotopy groups of spheres, Ann. Math. Studies No. 49. Princeton Univ. Press. Princeton, N.J., 1962.

Added in proof: G. Bredon has proved that Levine's homomorphism $P_{k} \rightarrow \theta^{k+2, k-1}$ is injective for all $k \equiv 2 \bmod 4$ (Classification of regular actions of classical groups with three orbit types, preprint, Cor. 8.2). Thus in Proposition 5.4, we may drop the hypothesis " $k \neq 2^{r}-2^{\prime \prime}$ in the unitary case.

Abteilung Mathematik, Universität Dortmund
46 Dortmund-Hombruch, Postfach 500, West Germany.

Eingegangen den 17 Januar 1973.

