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The G-Spectrum for Brown-Peterson Cohomology. Part I
by W. Stephen Wilson

Introduction

BP dénotes the spectrum for the Brown-Peterson cohomology, BP*(*), associated
with the prime/? [1, 3, 11]. The spectrum can be given as an (2-spectrum BP= {BPJ,
[2, 16], i.e. GBPfc-BP^ and BPfc is k-\ connectedfor Jfc>0. We hâve BP*(-)^ [•,
BPk], the unstable homotopy classes of maps. The usual way of viewing BP*(-) is

BP*(-)~ {•, BP}*, the stable homotopy classes of maps of the suspension spectrum
of a space into BP. We will study the Brown-Peterson cohomology theory from an
unstable point of view by studying the BP^.

Interest in the Brown-Peterson theory stems from the fact that it is a "small"
cohomology theory which détermines the complex cobordism theory localized at the

prime/? and that ail of the nice properties of complex cobordism carry over to BP*(*
such as knowledge of the opération ring. Historically, everything about the Brown-
Peterson theory has been as nice as could be hoped for. We will push on further in that
direction. Z(p) is the integers localized at/?, i.e., rationals with denominator prime top.

MAIN THEOREM (3.3). The Z(p) (co)homology of the zéro component of BP*
has no torsion and is a polynomial algebrafor k even and an exterior algebrafor k odd.

(k can be less than zéro.) #
Using the main resuit of [12], the above theorem détermines the Hopf algebra

structure of the (co)homology. (see section 3) We begin by reviewing Larry Smith's
resuit on the Eilenberg-Moore spectral séquence for stable Postnikov Systems. [14]
We combine this with Brown and Peterson's original construction of BP([3]) to
calculate if*(BP2Jk+1, Zp) assuming a technical lemma which we prove in section 2.

In section 3 we prove the main theorem and some miscellaneous items such as lifting
our resuit to MU.

In Part II we détermine the homotopy type of the BPfc using the main theorem hère.

This paper is a part of work done for my Ph.D. thesis at M.I.T. under the supervision

of Professor Frank Peterson. It is my pleasure to thank Prof. Peterson for his

advice, encouragement, and understanding through the last several years. I am very
grateful for the quite considérable influence which he has had on my attitudes and
tastes in mathematics. Thanks are also due to Larry Smith and Dave Johnson for
comments on a preliminary version of this paper, in particular for pointing out a

mistake in the original proof for the prime 2.
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Section 1

For the remainder of the paper ail coefficient rings are assumed to be Zp~Z\pZ
unless stated otherwise. In this section we show H*(BP2k+1) is an exterior algebra
on odd dimensional generators. H*(BP2fc+1) is a Hopf algebra, so for odd primes
having odd dimensional generators is équivalent to being an exterior algebra. The
gênerai référence for Hopf algebras is [10]. We quote what we need from [14].

Let K be a product of Eilenberg-MacLane spaces. We will be concerned with the
situation

«I i (A)
X->K

f
where ail spaces are infinité loop spaces and ail maps are infinité loop maps. n is the
fibration induced by / from the path space PK over K. Ail cohomologies are thus
cocommutative Hopf algebras and H*(K)\\f* and if*(X)///*, the kernel and
cokernel of/* in the category of Hopf algebras are defined.

There is a natural map PH-+ QH, where P and Q dénote the primitives and

indecomposibles respectively of a Hopf algebra H. When this is onto, H is called

primitive.

LEMMA 1.1 ([14, p. 69]). H1a H a subHopf algebra over Zp, H primitive, then

H' is primitive. #
If F is a graded module, let sqV be the graded module (sqV)n+q= Vn. Let F"

dénote the éléments of odd degree. From [14, p. 95] we hâve a filtration of H*(7) of
diagram A such that

as Hopf algebras. E and P dénote exterior and polynomial algebras generated by odd
and even dimensional éléments respectively. E[...] is determined by H*(K)\\f*.

H*(K) is primitive because it is generated by cohomology opérations on funda-
mental classes, therefore, H*(K)\\f* is primitive by 1.1. So for xeg(/f*(^)\\/*)
we hâve x' -> x, x'eP(H* (K)\\f *) and thus x' -* x"ePH* (K). For x of odd degree,

x' and thus x", are determined uniquely by x. Let i:QK-> Y be the inclusion of the
fibre.

LEMMA 1.3 ([14, p. 86 and p. 110]). /?(r1 (*))=$?(**), s* the cohomology

suspension, s* : H* {K) -? H* (QK). #
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Note that if x is of odd degree then s* (x")^0 by the following lemma.

LEMMA 1.4. aePHm(K)9 if ,y*(a) 0, then a=Ptx2t or a=pPkx2k+1 where

PleA is the /-th. reduced p-th power, A is the Steenrod algebra and xt is of degree i.

Proof It is enough to consider K=K(Z(p)9n) and a=Prin where P*eA is an
Adem basis élément. The kernel of s*:QH*(K(Z(p), n))->PH*(K(Z(p), n-1)) is of
the type fiPkx2k+l. The proof is an argument on the excess of / and can be found in
[13]. The kernel of PH*(K)-*QH*(K) is of the type Ptx2t {x2t)p, The degree of
Ptx2t 2pt and the degree of fiPkx2k+x 2pk+2 so the two terms cannot occur in the
same dimension. #

Brown and Peterson [3] construct BP by a séries of fibrations which we now
describe. Let 0t be the set of séquences of non-negative integers (rl9 r2,...) which are
almost ail zéro. Define d(R) ^t2ri(pi-l)9 l(R) ^ri and let Ai be the R with
r{ 1 and zéros everywhere else. Let Vj be the graded abelian group, free over Z(p)i
generated by Reffi with l(&)=j and graded by d(R). Then we hâve the generalized
Eilenberg-MacLane spectrum K(Vj)= \Jl(R)=J SdiR)K(Z(p)). BP inverse limit Xj
where we hâve the fibrations

(*)

induced by kj-x. We hâve an AIA(Q0) resolution for A/A(QOi glv..)
djiMj'+Mj-i with H*(K(Vj)) Mj and (ij)*'(kj)* dJ+1. The Qt are the Milnor
primitives [8]. (For ^ 2, Q.=PJi + 1 in the Milnor basis.) For an A/A(Q0) generator

The spectrum K(Vj) can be given as an ^-spectrum, {K(Vp k)=y^lw=zj Kx
x (Z(p), d(R)+k)}. The entire diagram (*) can be turned into £-spectra and maps of
Q-spectra. From this we get a séquence of fibrations with BPfc inverse limit XJ.

(**)

We suppress the k in the notation for Xj, ij and kj. Note that k can be less than zéro.
We hâve (ij)*-(kj)*-s*=s*'(ij)*'(kj)* where the iy and kj on the right are for BPfc

and on the left for BP^.^. This is because ki for BP*.^ is the loop map of the kj for
BPk. Similarly for /,.. The iterated cohomology suspension gives a map s*:Mj-+H*x
x (K(Vj9 k)) which has as its image the primitives, PH* (K(VP k)). In gênerai we will
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dénote the iterated suspension by s* and it should be clear when we mean only one.
We hâve the following commutative diagram.

H* (K (Vp k)) <— H* (K(VJ+l9k + l)).

We will often use s*(dj+1) for (/,)* • (kj)*. It is given by the same formula £ Ô^'r-^.
In the next section we prove the following lemma.

LEMMA 1.50). For k odd, if aePH2i+1(K(Vj9 jk+l)) such that (fc,_i)* (a) 0,
then there exists bePH*(K(Vj+1, k+l)) such that (//)*•(£,)* (b)=s*(a)*0.#

We use this to prove the next proposition.

PROPOSITION 1.60). For k odd, H*(XJ)H(kj)* has no even dimensional gener-
ators. (For p 2 it is an exterior algebra.) #

Proof. For y 0, X° K(Z(P), k) and ail generators of H*(X°) are in the image of
s*:M0 AIA(Q0)-+H*(K(Z(p), k)). So if x is an even dimensional generator of
H* (K(Z(p), k)) and k is odd, then there is an odd dimensional x'eM0 with s*(x') x.
We hâve the exact séquence

Thus there exists x"eMx with dl(x") x' as e(xf) 0 because e(xf) is an odd dimensional

élément in A\A(Q09 Qu...) which only has even degree éléments. So s*(x") x
xeH*(K(Vuk+l)) and (k0)* (s*(x"))=s*(di)-s*(x")=s*(d1x")=s*(x)=x and
the even dimensional generator xeH*(X°) goes to zéro in H*(X°)H(k0)*. (For/? 2

and x an odd dimensional generator, then x2 Sqdegxx is killed by the same argument,
so we hâve an exterior algebra.)

By induction, assume proposition 1.6(j-l). By 1.2 we hâve:

E0H*(XJ) ~ H
Pis-1 (Q(H*(K(Vp k + l))\\(fc,_0*)-)]

W
[,-J (fi (H* (X (Fy, fc + l))\\(Ary_ ,)*)")]" '

Now by our induction assumption, ail even dimensional generators look like s~1(x)
where xeQH*(K(Vp A: + l))\\(^-i)*". Thèse éléments map injectively to the

cohomology of the fibre, see 1.3 and the remark after it. As discussed above (before
1.3), x can be represented by an aePH* (K(Vp k+l)) with (£,-_ t)* (a) 0. Now, as a
is of odd degree, from 1.50),there exists b such that (*/)*'(*\j)* (b)=s*(à)&0. But
by 1.3, (ij)* (,5"1(jc))=ir*(a)and (i^)* is injective on thèse even degree indecomposibles
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giving that (kj)* (^) .s"1(^) + decomposibles Therefore, the generator 5"1(x) goes
to a decomposible in H:¥{XJ)lJ{kJY and we are done #

COROLLARY 1 7 For k odd, H* (BPfc) is an exîenor algebra on odddimenswnal

generators #
Proof Because K(VJ9 k) is highly connected for highy we hâve Z7*(BPfe) direct

hmit H*(XJ)H(kj)* Because we are working with Hopf algebras, odd dimensional

geneiators for odd primes means we hâve an extenor algebra The direct hmit is
achieved in a nnite number of stages so we hâve the resuit using 1 6 #

Section 2

We will now prove lemma 1 5(j) We hâve already seen that that s*(a)^0 (1 4)
LetAbethemod/?Steenrodalgebra Wedefineafiltration A F°AzdF1A=>F2A=>

by givmg a basis for FSA Given an Adem basis élément, /?c°/>I1/f
*

Plnf}Bn, ît is
basis élément for FSA if $<£ si Also, we give a basis for Bs by takmg ail Adem basis

éléments with s Y, £t For /? 2, Pl Sq21 We do not define Bs for p 2 using the
Adem basis

For our purposes ît is usually more convement to work in the Adem basis, how-

ever, the Milnor basis is a necessary excursion for p 2 For odd primes, a Milnor
basis élément QIPR (ÔJ ôo°Ôi1 is a basis élément for FSA if $<£ e, For/? 2,

a Milnor basis élément PR is a basis élément for FSA if R= (ru r2, has s or more
oddrt Again, a basis élément for Bs has s=^el(p 2, s oddr,)

CLAIM 1 î) The two définitions of FSA and Bs are the same

n) IfaeF'A andbeF'A, then abeFs+tA

m) FSA B,®FS+1A
Sketch proof Milnor's Qt PAip-pPAi For odd primes PAi is in the algebra

of reduced /?-th powers and so can be wntten in the Adem basis without any /Ts,

similarly for ail PR in the Milnor basis The Adem relations for p odd préserve the

number of /Ts exactly, so we see that QleBiczF1A If we were to rewnte a Milnor
basis élément QlPR m the Adem basis we would still hâve £e, /Ts

The proof of the second part just uses the fact that the Adem relations never
decrease the number of Bocksteins

The proof for p 2 is shghtly more comphcated and is left for the reader m) is

elementary #
Given aePH* (K VJ9 k)), (any k), ît can be wntten as a Yliw=j aRlR where '*1S

the fundamental class of K (Z(p), d(R)+k) and aReA If ît can be wntten hke this

with each aReFnA, then we say a is with n Bocksteins (w h^'s) If n= 1, we just say

w J5's If a is with n Bocksteins but not with n +1 jS's we say a is with exactly n /Ts As
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discussed above, Qt is with exactly one Bockstein. Therefore by the définition of di
and the above claim, if a is with «Jî's, then s*(dj)(a) is with n +1 /Ts. Recall that by
our notation s*(dj) (iy-i)*- (*y-i)*.

CLAIM 2. If a=s*{dj){b) and a is with 2 Bocksteins, then there is ab' with Fs

suchthats*(dj)(b')=a. #
Proof. First for odd primes; write b Y,i(R)=j aR*R w^tn oReÂ. A B0@F1A, so

write aR bR + cR with bReB0 and cReFiA. bRQieB1 and cRQteF2A so s*(dj)
ŒbRiR)=O.Utb'=îtcRiR.

For prime 2 we hâve Qi^1 PÀl and for a Milnor basis élément PR we hâve
P*PJI X,.l+,eveilP*"2<Ji+*+i, thus bRPAieB1 and cRPMeF2A and same proof
works. #

PROPOSITION 2.1 (j). GivenaePH*(K(Vpk)),awithp'ssuchthats*(dj)(a) Of

then there exists âeMj such that s*{a) a and rf,(â) 0.#
Proof o/1.5(j) For k and a odd, then a is with jS's in PH*(K(Vj9 k+l)) for

dimensional reasons, i.e., ail of the Steenrod algebra éléments used are odd dimen-
sional, and ail odd dimensional éléments hâve /Ts. (kj^t)* (a)=0 implies s*(dj)(a)=0
and we can apply proposition 2.1(j) to get â such that s*(â)~a and dj(â)=0. By
exactness, there exists beMj+1 such that dj+l(b)=â. Then b'=s*(b)ePH*(Kx
x(Vj+uk+2)) has s*(dj^)(b')=s*(dj+l)(s*(b))=s*(dJ+1(B))=s*(â)=a. So let

b=s*(bf), then s*(a)=s*(dJ+î)(b) which is what we want.#

PROPOSITION 2.2(j). Given an a as in 2.1(j), then there exists bePH*(Kx
x (Vj+U k + l)) such that s*(dj+l)(b)=a.#

Proof See proof ofl.5(j).#
Remark. Proposition 2.2(j) is really the essential feature that makes everything

work. It means that exactness still holds in the unstable range for primitives with jS's.

We need proposition 2.2(j-l) in the induction argument for the proof of
proposition 2.1(j).

Proof of 2.1(j). This follows at once from the next proposition, just lift a up one
step at a time until it is in the stable range. #

PROPOSITION 2.3(j). Given a with p's in PH*(K(Vpk)) (any k) such that

s*(dj)(a)=0, then there exists â with p's in PH*(K(Vp k+l)) such that s*(â)=a and

s*(dj)(â)=0. (For ./=0, s*(do)(a)=0 is a vacuous condition). #
Proof. 7=0, trivial. Fory= 1 the arguments is the same as for/> 1 except easier, so

assume/> 1. Now, trivially, there exists a' with jS's such that s*(a!)=a. (Let a' t (a).)
Now s*(dj)(a')ekeTs* by commutativity of the following diagram.
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PH*(K(Vj-l9k)) <s*(dj) PH*(K(Vj9k + l)) a'

0<

By 1.4, s*(dj) (a') °> Pnx2n9 or pPfx2t+1 in.
Case 1. If s*(dj) (a') 0 we are done.
Case 2. If s*(dj)(a')=PHx2n then s*(dj-l) (Pnx2n) 0 because dj-i'dj^O.

free commutative algebra so this implies s*(dj_l) (x2n)=0. Now a' is with /Ts so

s*(df) (a') is with 2 jff's. This gives us that Pnx2n is with 2 jS's. If x2rt ^(^f A^)ïk
with À^OeZp and £f Adem basis éléments, then P"#2»= £*(!]* ^jPw*j)*k anc* f°r
dimensional reasons PnZ>f is in Adem basis form. Since each Pnbt is with 2 /Ps, each

&f is with 2 jS's and so x2n is with 2 /Ps. x2ll is also in the kernel ofs*(dj^l) so we can
apply 2.2G-1) to produce ay2nePH2n(K(Vj9 k+l)) withs*(dj) {y2n) x2n. By claim
2 we can choose y2n to be with /Ps. a' —Pny2n is with /Ps and has s*(dj) (af —Pny2n)=Q
and s*(a'— Pny2n)=s*(a')=a9 so we are done.

Case 3. If s*(dj) (a') pPtx2t+1 the proof is similar to case 2. We sketch the
différences. fiP* is injective onPH2t+l(K(Vj-29 k—\)) because it is for any product
of Eilenberg-MacLane spaces [13]. So we get x2t+l is in the kernel of s*(dj^l). If
X*Œ* ^ib^R))=:X2t+i bi Adem basis éléments, then each PP^i is also in Adem basis

form and since pptx2t+1 must be with 2 /Ts, each b{ is with one and so x2t+l must be

with /Ts. Use 2.2(j-l) again to produce y2t+i with s*(dj) (y2t+i) x2t+l. Now
a'-pPtx2t+1 has the desired property.#

Section 3

Our first objective is to compute the (co)homology of BP2fc. The bar construction
([4]) gives a spectral séquence of Hopf algebras: (k odd)

Torff*(BPk)ç£^ Zp) > E0H* (zéro component of BPfc+ x).

Now H*(EPk) is an exterior algebra on odd dimensional generators g/^BP*).
(Cor. 1.7) A standard computation (see [14]) gives: TorH*(BPk) (Zp, Zp)=r(s\QH*x
x (BPk))) where r dénotes the Hopf algebra dual to the polynomial algebra. Now ail
éléments in r(sl (QH*(BPk))) are of even degree and the differentials change degree by
one, so our spectral séquence collapses and we hâve: H*(zéro component of BPk+1)

[£o#*(zero component ofBPk+tJ]* [TorH*(BPk+1) (Zp9 Zj]* [r (s\QHJfiP^))]*
=polynomial algebra.

We will now show ^(BP^-j) is a polynomial algebra for k odd. Using the
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Eilenberg-Moore spectral séquence ([6, 14]) we hâve TorH*(BPk) (Zp, Zp) >E0H*
(BPfc^) if BPk is simply connectée. Assume it is, then the same argument just given
shows HWi(BPk^1) is a polynomial algebra. The only modification is:

TorH*(BPk) (Z,, Zp) r(s~1 (QH* (BPk))).

If BPfe, k odd, is not simply connected, then it is easy to see that one can get a

splitting BPk~ x 5<1)(p) x X where X is simply connected. This is because BPfc is an
H-spa.ce with Z(p) free homotopy. Its A>invariants are therefore torsion and primitive,
but x S1)^ has no torsion in Z(p) cohomology. Thus we hâve a spectral séquence of
Hopf algebras :

TorH*(X) (Zp, Zp) E0H* (zéro component

and our argument goes through. We hâve proved the following proposition.

PROPOSITION 3.1. The modp (co)homology of the zéro component of BPfc is a

polynomial algebra on even dimensional générâtors for k even, and an exterior algebra
on odd dimensional generators for k odd. (Note that for k odd, BPfc is connected.) #

PROPOSITION 3.2. The Z(p) (co)homology o/BPk has no torsion.#
Proof. For k even this is trivial because H*(BPk) has no éléments in odd degrees.

For k odd we view the Bockstein spectral séquence as a spectral séquence of Hopf
algebras. The differentials are the higher order Bocksteins. Let fis be the first non-
trivial differential and let x be the minimum degree generator that fis acts non-trivially
on. f$s(x) is an even dimensional primitive, contradiction, so ail differentials are zéro. #

We can now prove the main theorem.

THEOREM 3.3. The Z(p) (co)homology ofBP2k+i is an exterior algebra and the

Z(P) (co)homology of the zéro component of BP2fc is a polynomial algebra. #
Proof. We will do the case for polynomial algebras, the exterior case being similar.

From 3.2 we know the (co)homology is free over Z(p) and so we can lift the mod/?

generators (3.1) up to it. Thèse lifted éléments generate the Z(p) (co)homology ring
because there is no torsion and their modp réductions generate the Zp (co)homology.
By considering the rank we can see there can be no relations and we hâve a
polynomial algebra. #

We can now lift our resuit to MU. Normally the spectrum MU is given by {MU
(n)}9 the Thom complexes, and maps S2MU(«)->MU(w+l). [9, 15] However, if
Mn=\im(k-+ oo)Q2k~nMU(k)9 then QMn^Mn^x and for finite complexes MU"(I)

lim(ifc-> oo) {S2k-nX, MU(Jfc)] lim(ifc-> oo )[X, O2*""MU(/c)]=[I5 Mn]. Thus,

{M„} MU as an Q-spectrum.
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COROLLARY 3.4. The integer (co)homology of the zéro comportent ofMnhas no
torsion and is a polynomial algebra over Zfor n even and an exterior algebrafor n odd. #
Proof. From [3] we hâve MU(P)~ V* S2rhB? and so (M,,)(p)~n* BP* + 2nr By 3.3 for
n even H*(Mn, Z)®Z(p)~H*(Mn, Z(p))~H*((Mn)(p), Z(p))~ polynomial algebra
over Z(p). Thus the integer homology has no torsion, and localized at every prime it is

a polynomial algebra, so it is a polynomial algebra over Z. Similarly for n odd. Since
there is no torsion, the same thing works for cohomology. #

Remark 1. A completely analogous theorem is true for MSO if the ring Z(l/2) is
used.

Remark 2. There are several ways to détermine the number of generators for 3.1,

3.3, and 3.4. The spaces BP,, and Mn are just products of rational Eilenberg-MacLane
spaces when localized at Q. (This is because their ^-invariants are torsion.) Because

there is no torsion, the number of generators is the same as for the rationals. As
examples we hâve 7r*(BP) Z(p)[x2(/,_1),..., x2(p/_1)5...] so for 2n>0, H*(B?2n,

s and ^(MU) Z[x2,..., x2,,...] so for 2«>0, H*(M2n, Z)

We hâve shown that both the cohomology and homology of the zéro component
of BP2n are polynomial algebras. This is a very strong statement, in fact, it détermines
the Hopf algebra structure of the (co)homology.

DEFINITION. A connected bicommutative Hopf algebra is called bipolynomial if
both it and its dual are polynomial algebras. #

There is a bipolynomial Hopf algebra B(p)[x9 2n\ over Z(p) (or Zp) which has

generators ak(x) of degree 2pkn [7]. It is isomorphic as Hopf algebras to its own dual.
In [12] we prove the following proposition.

PROPOSITION 3.5. If H is a bipolynomial Hopf algebra over Z(p) (or Zp), then

H~®j B(p)\_xj9 2dj~\. (For p 2 and Z2, replace 2dj by dj).#
Using this and the counting argument of remark 2 we can just write down the

Hopf algebra structure for BP2n. As an example, we will do this for n>0. Let ffln be

the set of séquences of non-negative integers R (ru r2,...) with almost ail rf 0.

Let d(R) 2n + Yj 2(pi—\)ri for our fixed prime/?. We say R is prime if it cannot be

written R=pS+(n, 0, 0,...), Se&n.

PROPOSITION 3.6. For «>0, #*(BP2m, Z(p))~®Re^n B(p)[xR9 d(R)].#
R prime

If we work over the integers and let B [x, 2rf] be the bipolynomial Hopf algebra on
generators cn(x) of degree 2dn with coproduct £„(*)-?£ cn-.j(x)®cs(x) ([7]) then

we hâve an analogous proposition. [12]
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PROPOSITION 3.7. // H is a bipolynomial Hopf algebra over Z, then H~ ®,
Blxp2djl#

We can now apply this to MU= {Mn}. Let /„ be the set of séquences of non-
negative integers I=(il9 i2>~-) with i{^n and almost ail ij—0, (n>0). Let d(I)
=^j2//y. We say / is prime if it cannot be written I=kJ, where k>\ and Jeln.

PROPOSITION 3.8. // {Mk} is the Q-spectrum for MU, then for «>0, #*
(M2n9 Z)^ ®, prime € imB\xl9 </(/)] asHopfalgebras.#

Proof. Just use 3.7 and the counting done in remark 2. #
Let S be the sphère spectrum and let i: S-+ BP represent 1 eTTo(BP). S= {QSn} as

an Q-spectrum where QX=limQ"S*X. i induces maps iH:QSm-+BPn. H*(QSn) is

given in terms of homology opérations on the n dimensional generator [5].

PROPOSITION 3.9. Let n>0, the kernel of (in)*:H*(QSn)-+ H*(BPn) is

generated by homology opérations on the n-dimensional class which hâve Bocksteins in
them. #

PROPOSITION 3.10. Let «>0, if jn:B¥n-+K(Z(p), n) represents the generator
of ir(BPn, Z(p)), then the kernel of (jn)*:H*(K(Z(p)9n))->H*(BPn) is generated

by cohomology opérations on the n-dimensional class which hâve Bocksteins in them. #
Proof of 3.9. By 3.2, any homology opération which has Bocksteins in it goes to

zéro. Let w be a homology opération with no jS's such that uxn^0 in H*(QSn). As u
has no jS's, u(s*)kxn is a/?-th power for some k. So u(s*)kxn uxn+k (u'xn+kY. Now
by induction on the degree of m, U{u'xn+k)^ in #*(BPn+fc) and n +k is even since we
hâve a/?-th power. H*(BPtt+k) is a polynomial algebra and so [i*(w'xn+k)]p#0 and is

ï*[wX+k?=ï*<^f^B=î*(^)^=(^)%K) and so iJ(uxn)ï0.#
The proof of 3.10 is similar.
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