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48

On the genus of finite CW-H-spaces

A. Zabrodsky

The study of the Grothendieck groups of certain stable catégories (initiated in
[1] and [2] and pursued in [3]) led to the study of two phenomenas: That of non
cancellation [4] and that of the genus of a space [7]. Their inter-relations
were observed and their study led to the discovery of new finite CW-H-spaces.
Our main référence in this study of the genus of an H-space should be [7]
but many of the facts studied hère are closely related to those studied in [1], [4]
and [6]. Hère we use the notion of genus with regard to /^-équivalence in the
sensé of Serre ([5]) rather than that of localization which are équivalent for H-spaces
(see [7]).

0. Notations, Définitions and Summary of Results

As usual we dénote by PA and QA the modules ofprimitives and indécomposables
in a Hopf algebra A.

We dénote by P the set of ail primes. Ail spaces considered are of the homotopy
type of simply connected CW complexes of finite type, ail graded modules, according-
ly, are finitely generated in each dimension.

Let peV. A homomorphism <p\G-+G' between two finitely generated abelian

groups is said to be a /?-epimorphism (/?-monomorphism) if coker<p (ker<p) is a finite

group with order prime to /?. If <p is both /?-epimorphism and />-monomorphism then
it is said to be /?-isomorphism. If J*t cP then cp is said to be a Pi-epimorphism (Px-
monomorphism or Pj-isomorphism) if it is a /?-epimorphism (/Mnonomorphism or
/Msomorphism) for every peFt.

A map <p;Y-+X is said to be a Ft équivalence iff n*((p) (equivalenty
H*(<p, Z), H*(<p, Z)) is a Pt isomorphism. By the genus of the space X we
mean the set G{X) of homotopy classes of spaces Y which are /?-equivalent to X for
every/?eP.

If X is a CW complex the homotopy (or Postnikov) approximation of
X in dim<m is a pair (Htm(X), rm) where tm:X-*Htm{X) is such that nk(xm) is

an isomorphism for k^m and nk(Htm(X))=0 for k>m. Similarly, the homology
(or Moore) approximation of X is a pair (Hlm{X\t'm) where %'m\Hlm{X)-+X
yields an isomorphism Hk(Hlm(X), Z)->Hk(X, Z) for k<m and Hk(Hlm(X), Z)=0
for k>m.

Though we work in the category of CW complexes and continuous maps by a
commutative diagram we mean commutative up to homotopy.
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A commutative diagram

V /2 v
[H2 |*i (0.1)

is said to be a fiber square induced by/1? h± if up to homotopy one has

X {yu J>2> <PeYi xY2x PX0 | fx (yx)

where

p, :7i x Y2 x PX0 -> 7f are the projections.

(0.1) is said to be a fiber square in dim<m iffit becomes a fiber square after apply-
ing Htm to the entire diagram. If X is a finite dimensional H-space then H*(X, Q)

A(xni9xn2,...9 xnr), xnieHni(X, Q) nt^ni+1. Xis then said tobeoftype(«l5«2,...,«r).
Given a vector n («x, n2,..., «r) ofnatural numbers we write X(Z, w) fjj= i

In this study we consider G(X) for a finite dimensional H-space. Using exactly the

same (or dual) methods one can obtain similar (or dual) results for H-spaces with
finitely many non-vanishing homotopy groups (or for finite dimensional co-H-spaces).

To state results of this study concerning the structure of G(X) one needs few
notations: If A and B are matrices (over any ring R) dénote by A*B the matrix

(A 0
V0 B

Let Z be an H-space of type (nl9 n2,..., nr). Hom °Z{QH*{X, Z)/torsion,
QH* (X, Z)/torsion) can be identified with the set of ail matrices (over Z) of the form
ASl*AS2*...*ASl9ASl being an ^x^ matrix, sl9s29...st uniquely determined by
nl9 n2,... nr. Dénote ail such matrices by Jl{sX9 s29...9 st; Z). Given an integer t let

s/=sft be the set of ail matrices in Jt(sX9 sl9...9 st; Z) which are invertible modZt.
Then one has :

Theorem (essentially 2A). There exists an integer t tk in 2.4) and a correspon-
dence t;:£/=s/t-*G(X) described as follows: Fix a map ho:X-*K(Z9n) so that

QH*(h0, Z)/torsion is an isomorphism. Given Aes/let/0 =fo(A):K(Z9 n)->K(Z9 n)
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be given by H* (/0, Z) iHi=Yj au l«jA (av)- If

f A X

is a fiber square then

(a) lHlk(Vy] ir]
(b) QH*(hl9 Z)/torsion is an isomorphism where hx: Y-+K(Z, fi) is induced by

h:hl fi1Tf.

Corollary (2.6) £ is onto.
If a:uf ^25-> sil Z)-*~éf(sl9 s2,..., st; Zt) is the réduction it induces homo-

morphism

â: GL(su st; Z) -»• GL(^, 52,..., sl9 Zt)

of invertible matrices and (cokerâ)==[(Z,*)/{±l}]* where Z* are the units in Zv
Note that ja^a"1 GL(su s2,..., st; Zt).

Structure Theorem (2.7) { factors through cokerâ to obtain a correspondence

l\ [Zfl{±l}]'->G(X) which is onto.
The correspondence is given by

where Id{ is the st x st matrix given by

'* (o °d)

One also obtains:
H-structure theorem (2.10, compare with [6] and [7] lemma 1.4):
LetX be a finite CW complex. If for every prime/? there exists an H-space X(p) and

a /?-equivalence/p: X-* X(p) and if H* (X(p)9 Q) are ail isomorphic as Hopf algebras
then X is an //-space.

A Product Theorem (2.11). Let A9 A'erf. Then

') Xx t(A-A').

Consequently if Ai9 Btes/ and

Al*A2— Am B1-B2~ 'Bm
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then

-..x Ç(Bm).

Theorem (2.12). If [Y~]eG(X) then

where q> is the Euler fonction. Finally, one obtains
A non cancellation theorem (3.5 and compare with [1], [2] and [7], p. 83). If

1. Some Algebraic Lemmas

The following are well known simple facts concerning finitely generated abelian

groups :

1.1. LEMMA : Let G and Gf befinitely generated abelian groups. Iffor every prime
p there exists a p isomorphism (pp:G->Gf then G and Gr are isomorphic.

1.2. LEMMA: Suppose G&G'. Then ç:G-+G' is a p-isomorphism if and only if
<p®Zp is an isomorphism.

1.3. COROLLARY. Let {q>p\péVx} be a finitefamily,q>p.G-+G'ttG a
p-isomorphism. Put ct=Y\pePlp. Then <p=XpePi (a-p~x) cpp is a Px isomorphism.

Proof For every posPi <P®lZ>P0=apô1((PpQ®ZP^) *s an isomorphism. Hence (p is

a Pj isomorphism.

1.4. COROLLARY. If[Y']eG(X)then
(a) H*(Y)kH*(X) and n{X)*n{Y).
(b) Letf: Y-*X. Ifn(f)®Zp is an isomorphism for ail peVx then fis a F1

équivalence.

Throughout this chapter let X be a finite CW-H-space.

1.5. PROPOSITION. IflY^eGiX) then there exists a partition P=PiUP2 and
two mapsft: Y-+ X i 1, 2 so thatft is a Ft équivalence.

Proof Choose an arbitrary prime qeP. Let f2 : Y-+ Ibea ^-équivalence. Then
there exists a set P2 of primes so that Ft =P-P2 is finite and/2 is a P2 équivalence.
For every pePx let/p be a p-equivalence. Let a be the product of ail primes in Vt.
If fi: Y-+ X is given by [/i]=rLePi Ifp] a/p (where the product represents a product in
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the algebraic loop [F, X~] with an arbitrary bracketing) then by 1.3 nn(ft)
ZpePi(tf/7~1) nn(fP) *s a I*i isomorphism andyi is a Px équivalence.
One notices that Pj may be replacée! by any larger (but finite) set of primes.

1.6. LEMMA. Given a commutative diagram

(1.6.1)
T±

fl

Iffor i= 1, 2 Aj andf are Pf équivalences in dim^m, P=P][ uP2 f/ze# (1.6.1) is a

fiber square in dim < m.

Proof. Form the fiber square of/i and/2

l*'t

then there exists a:Z->Z' with A^Àja f=l, 2./f being Pf équivalence in
implies that h[ is a Pf équivalence and as ht is a P£ équivalence so is a. Now, a being
Px and P2 équivalence in dim<m is a homotopy équivalence in that range.

Let R be a ring. If M {Mn | 0<w</} is a graded module over i?, Mn-free of rank
sn then e^(i^) Hom^(M, M) can be represented by the set of matrices of the form

1 where An is sn x sn matrix over R and B^B2 is the matrix of the form

P B2

Dénote this set by ^(s1,s29...,Si;R). Similarly define GL(si,s2,...,sl;R) and

SL(sl9 s2,..., st; R) as the invertible and déterminant one matrices in
Jt(sl9 s2,..., st; R). The product *g in M(su s2,..., st; R) given by

{A1*A2*- • '*At)*g (Ât*Â2*' • -*Ât) (>41*vî1)*(^42*J[2)*---*(v4/*^)

corresponds to the natural homeomorphism Hom°(M, Af)®Hom°(M, M)-+
-* Hom° (M®M, M®M). Let X be of type (wl5 «2,..., nr). Define ^, s2,..., ^ by the
relation

n < n +s + +s +1 ns +s +.. +s +s 0 < m < l (1.7)

Put Mm=gF"1+S2+...+Sm (Jf, Z)/torsion and one has

Hom° [QH* (X, Z)/torsion, QH* (X, Z)/torsion] ^(su s2,..., st; Z).
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Let t be an integer. Put

a:GL(n,Z)->GL(n,Zt)

Then one has

1.8. LEMMA. GL(n9 Z,)/ima Z*/{±l} where Zf are the units in Zv The

homomorphism GL(n, Zt)-* GL(n, Zf)/ima is given by the déterminant.

Let ôL:+4f(sl9s2,..., sil Z)-+*Jf(sl9...9 sti Zt) induce

â: GL(su s29..., st; Z) -> GL(sl9 s2,..., ^z; Zt)

then

GL(jlf s29..., j|; Z,)/imâ « [Z*/{± l}]1.

2. The Structure of

Throughout this chapter let (Z, /*) be an H-space of type n (nl9 n29..., nr). To this
one associate the séquence (,sl5 s2,...9 st) defined by (1.7). Let dimX^k. Given an
integer m, m^k let tm tm{G(X)) be the order of the finite group

where an:nn(X)-+ PHn(X)/torsion is the Hurewicz-Serre homomorphism.
Another interprétation for tm can be given by the following

2.1. LEMMA. Let ho:X->K{Z9n) ]\iK{Z9ni) satisfy: xni H*(h09 Z) ini9
1 <i<r, represent a basisfor QH*(X9 Z)/torsion. Let F=nberA0. Then order7rn(F)

order(ker(Tn+coker(Tn+1). Hence, tm order Yn<mnn(F)-
(Note that cokeram+1=Pj^m+1 (X9 Z)/torsion=0).
Proof. One has the following commutative diagram

-^U ntt{K{Z,n))

PHn (X, Z)/torsion *% > PHn (K (Z, n)9 Z)/torsion

As QH*(h09 Z)/torsion is an isomorphism so is its dual /*0J|e. Hence, kercrn=

ker^^o) and coker(jn=coker7un(/i0) and obviously order7rn(i?)=order [ker7rrt(A0)

+coker7cïl+1(Ao)].

2.2. PROPOSITION. Given a set {xni9 xn2,...9 xnr}9 xnieHni (X9 Z)/torsion which
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reduces to a basisfor QH* (X, Z)/torsion andgiven maps g: Y-* %f: Y-+ X, (Yand Y
arbitrary CW complexes of dim^mj so that im [Ë(g, Z)/torsion] is an idéal in

Ê(Y, Z)/torsion. For any set {zni,..., znr}, znieHni (Y, Z)/torsion there exist maps
fi : ?-? X, i 1, 2,..., r with torsion nn f)c ker nn {Jt)for n^mso that

[if* (/, Z)/torsion - H* (/, Z)/torsion] xni tm [(H* (g, Z)/torsion) znj (2.2.1)

where J is given by

(the products taken in [F,
Protf/. Let Xm Htm(X). As dimF^m, dimY^m and m^k one can replace ail

maps in [Y, X"} and [?, X] by the corresponding maps in [7, Zm] and [Y, Zm]. Con-
sider xnf being in /f"' (Xm9 Z)/torsion and it suffices to prove relation (2.2.1) for Xm

instead of X. By 2.1 fm=order7c*(Fm) (Fm the fiber of Xm-+K(Z, «)). Hence, rm[l]
([l}e[K[Z,nlK(Z,ny]) lifts to ^:^(Z, «)->Z, [Vi] 'm[l]- We construct/£
inductively. Suppose/i,/2>---,/i-i where constructed so that if

then

(there is no problem in starting the induction by starting with /0 : ?-» X being the
constant map and znj—0). Let /, be the composition

Then torsion*: (?)<= ker7t(/(). Let )* dénote H*( Z)/torsion. If [/,]
/

5=0

where x'njiM and <JiS are given by H*xnj='%<Lox'l,J,s®x"njiS (x'njf0=xnj=x'^s<),
x"nj 0 l—x'njtS0 andfot0<s<so,0<àimx'nji<nj, 0<dimx^>s<«y).

As H'iftog, Z)/torsion=Oforn<n( a.nd f,*xnt=Jfô ini=tm(zni-2.,) one has
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and hence forj<ï

(/,* - /*) xnj (/* - /,* 0 xnj + (/*, - /*) xnj tmg*ztt

For j>i (as f*xnj=0 forj¥*i) one has

s=l

and as iin(/,og)*c:fOT(img*) and as img* is an idéal a^e^img* and hence for

i>j (/*-/*) *., (/*-/*-1) *ny>Ur*^ Ur% and 2.2 follows.
Let fm be the smallest integer divisible by *m and by every torsion prime in H* (X, Z).

Let Pm= {p\p\ tm) and POT P-Pm. Applying 2.2 one obtains:

2.3. PROPOSITION. Let [Y]eG(X). Given a Pk équivalence f: Y->X, a set of
intégral classes xni, xn2,..., xnr representing a basis for QH*(X, Z)/torsion and a set

zni, zn2,..., znr, znteHnt(Y, Z), there exists a Fk équivalence f:Y-+ X with

[H* (/, Z) - H* (/, Z)] xnj ttzUi + e,

where 6j is a torsion élément.

Proof Apply 2.2 for Y= Y, g=l, znj=ik/tk znj. Then one has only to show that

/=/is a Pk équivalence. (Note that if H*(X9 Z) is a torsion free tk=ik and then

H*(f,Z)®Ztk H*(fZ)®Ztk implies that / is a ¥k équivalence). By 2.2

torsionrc(/,) 0 and hence torsions(/) torsions(/).
Consider the following diagram :

,* \/ • Jc(/)/torsion /^\,ni Y)/torsion > n(X)/torsion
5{Y) ff(X)

PH* (F)/torsion —-^—+ PH* (X)/torsion

(<r - the Hurewicz-Serre monomorphism).
Now ail groups are isomorphic and det[â(F)]=det[â(lr)]

H* (/, Z)/torsion ® Zïk H* (/, Z)/torsion ® Zïk

It follows that H*{f, Z) and its dual/* are Fk isomorphisms. Now if G is free abelain

a homomorphism a:G->G is a Pk isomorphism if and only if (deta, ik)=l. Now,

(det /*) (det ô (Y)) (det â (X)) (det n (/)/torsion)

implies (det/J|s)=det(7r(/)/torsion) and hence ;r(/)/torsion is a Pk isomorphism.
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As torsions(/) torsion7r(/) and 7i(/)/torsion are Pfe isomorphisms soisn(f)
and 2.3 follows. One can construct éléments in G(X) as follows:

2.4. PROPOSITION. Let h0:X-> K(Z, fi) realize a basis for QH* (X, Z)/torsion
Le.: xni H*(h0, Z) ini reduces to a basis for QH*(X, Z)/torsion. Given any matrix
A (aij)e^(sus2,...9sl;Z) with (deU, tk)=\ let fo:K(Z,n)-*K(Z9n) be given
by m(/0, Z) int=Yj atJ inj. Let Y= Y(A)=Hlk(Y) where

f lU X

is afiber square induced by hOifo. Then:

(a) t(A) ir\eG(X)
(b) The set {yni Hni(hl9 Z) int} reduces to a basis for QH*(Y, Z)/torsion, where

hi:Y-+K(Z, n) is the composition

Proof By 2.1 h0 is a Pfe=P—Pfc équivalence in dim^/: hence so is /ïi. It follows
that in dim<& YœY&j>kK(Z9 n)&pkX. Consequently, Y&j>kX in dim^fc but both
being of dim<& it follows that F^£kX. Now, (det^4, 4)=1 implies that A n(f0)
is a Pfc isomorphism and hencef0 (and consequently /x) are Pfc équivalences. Again in
dim <fc F«?and F«pfeZ and (a) follows. To prove (b) one notices first that in

one can consider

as a fiber square. Further, if [FjeCrpf) then cokercrn(F)«cokero>II(Z) and

kero-n(7)=ker(xll(X) (as ail thèse groups are finite they involve only a finite set Px

of primes and by the procédure of 1.5 there exists a Px équivalence F-> X which will
yield the desired isomorphisms). One obtains the following commutative diagrams
for
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where F=fiber/0 fiber/i«]"],• K(ZXt, fy—l) where the matrix diag^, A2,..., kr) is

équivalent to A. As j0 0 and as the order of nn (F) is prime to that of nn (F) nn (j\ 0

and nn(fi) is a monomorphism. As (pt factors through a free group (pt (tornn(X)) 0

and one has a commutative diagram with exact rows

0 -> nn(7)/torsion /l#
> nn (Z)/torsion -^-> nn_1 (F) -+ 0

0 -> Pf/rt (Y)/torsion ri*
> P/fn (X)/torsion -?U coker/f

0 -^ PHn (K (Z, »), Z)/torsion
/o*

> P//M (X (Z, «), Z)/torsion -^ 7in_

0) *w(/0>) ^n(^(^«)) /
and àn{X) are monomorphisms.

Coker ân( 7) « coker <7M( F)« coker crM(Z)« coker ân(Z) are Pfc torsion groups and

as/t is a Pfc équivalence/1# and/t* are Pk isomorphisms and they induce a Fk iso-

morphism coker ân( Y) -? coker ^(JJf) and hence an isomorphism. It follows that the
left upper square in the last diagram is a push out diagram and g' and consequently h'
are isomorphisms. As h0* is an isomorphism so is ht* and so is its dual QH*(hl9 Z)/
torsion.

Again let &:JV(sl9 s29...9 st; Z)-^Jif(s1, s29-..9 s; Zïk) and let stf—

a~1 x GL(sl9 s29...9 st; Zîk). 2.4(a) defines a correspondence

2.5. PROPOSITION. Let [X\sG{X). Letf:Y-*Xbe a Vk équivalence and let
Ae<s/ represent QH*(f, Z)/torsion. Then

Proof. Suppose A represents QH* (/, Z)/torsion with respect to bases represented
by xni9...,xnr9 xnieHni(X9Z) and y'H1,...9y'nr9y'nieHni(Y9 Z). We shall replace/by
a Fk équivalence/ QH*(f9 Z)/torsion (?#*(/, Z)/torsion and ^,...,^2 by

jBl,...,j;nr representing the same basis as y'ni9...9y'nr so that if ho:X-+K(Z,n)9
hx:Y-+K(Z9 n)9 f0:K(Z9 n)->K(Z, n) are given by

H*(h09Z)int xni, H*(hi9Z)int yni

then
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In the diagram

Y -U X

/0 and/are Fk équivalences and as QH(hl9 Z)/torsion z=0,1 are isomorphisms by 2.1

they are Pfc équivalences in dim<&. Hence, by 1.6 the last diagram represents a fiber

square in dim<& and hence [F] Ç(A). Equivalently one has to construct/and find

ynt so that

First note that without a loss of generality one may assume A to be diagonal for
otherwise D=ElAE2 where Et are invertible and D-diagonal, D=diag(Als A2,..., Ar).
Then if E2X applied on yni9...,yttr yields the basis yni9 ;pn2,..., ynr and 2^ applied on

xHl9...9 xnr yields a basis xBl,..., xMr then

H*(f, Z) (xB1,..., xnr) ElAE2E2l(yni9 yn2,..., *J
So i/^/Z)^^^.^^ if and only if H*(f9 Z)xnt Xtyni. So assume
y4 Z)=diag(A1, A2j---» ^r)- Hence, it is given that

^-decomposable and 0t a torsion élément. Now (detyl, tk)=l implies (Xi9 tk)—\. Let
1 +ai'ik=b-Ài. Now apply 2.3 for znj=aydj. /then will satisfy

H* (/, Z) xnt H* (/, Z) xni + fka,dt + Ôt Xtyfni + (1 + ftflf) d, + Ô, + 9t.

As (order («, + 8,), A,)=l 0f + 9I. Ar0l' and

^ are the desired classes.

2.6. COROLLARY. £ :^ -> G(X) o/2.4(a) w
Proa/. If [Y~]eG{X) then by 1.5 there exists a Pk équivalence/: F^JT and by

2.5 [F] £(,4) for some Ae^.
It is quite obvious from the définition of £ in 2.4 that ifBeGL(sl9 s2,..., st; Z)then

Ç(BA)=Ç(A). A simple application of 2.3 and 2.5 shows also that for any
Hence if,

â: GL(si9 s29..., st; Z) -» GL(su s2,..., st; Zh)

then <J factors through cokera=(Zf*/{ ± 1 })f (see 1.8). Hence, one obtains the foliowing
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2.7. A STRUCTURE THEOREM for G(X). There exists a correspondence

l\ (Z*/{± l})1 -* G(X) which is onto. l is given by

dt eZ,*, where Idt is the st x st matrix given by

(1 (T

By(2.4)itfollowsthat f«fiber(g:Ar-^^A)forsomemap Jrwherei^l fjf==1 K(ZXi, nt)
and the Af's are defined by the fact that A is équivalent todiag (Xx, A2,..., Ar). Moreover,
if ^:F*( ,Z)-*H*( ,ZAf) is the réduction then H*(g9 ZXi) Tnt Qktxnt where

inieHni{K{ZXi,n^Zx^ is the fundamental class and xMl, xn2,..., xMr are intégral
classes representing a basis for QH*(X, Z)/torsion. Note that given [7]eG(X) by
1.5 there exists a P2k équivalence/: F->^ and by 2.5 [7] £(,4), (det^, f2fc)=1-

2.8. PROPOSITION. Let m 2k. Given integers Xl9 A2,..., Xr prime to lm and
éléments xni, xn2,..., xnreH* (X, Z) representing a basisfor QH* (X, Z)/torsion, there

exists an ^-structure fi0for X with respect to which Qxtxni are primitive.
Proof. As ail Af are prime to ail torsion primes of H*(X,Z) H*(X, ZXi)&

&H* (X, Z)®ZXi. Replacing each kt by the product A=/11A2 Xr suffices to prove
the theorem for Àt À2 • • • Xr A.

Dénote )* H* Z)/torsion. Let xHt be the image of xni in F* (X, Z)/torsion.
Given any H-structure pi of X one has

5=1

Put coi=^*^< M*^n<~-^nf®l
œieH*(XAX9 Z)/torsion and y

one can apply 2.2 for

«,s<,s then (o

is the réduction. As
where

(and note that im/1* is an idéal) and znt=kœt where k is an integer satisfying
1 +tmk=bL If/=ju0 then, as each/f of 2.2 factors through XaX, ft \XvX=* and

/i0 | XvX=n | Ivl. Hence ^0 is an H-structure. Now,

+ tmk(Oi xni®l + l®xni + œi+ tmkœi
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As QxxHt ëx*u< (Sx'-H*(X, Z)/torsion->#*(X, Zx))

H* (fi09 Zx) Qkxni #* (/i0, Zx) Qkxni

and Qxxni are primitive.

2.9. COROLLARY. If [Y]eG(X). Then Y is an H-space and there exists a P2k

équivalence^ : Y-* X which is an YL-map with respect to some ^structure ofX.
Proof. By the remarks preceding 2.8 one may replace k by m=2k in 2.7 and then

f±: Y^Zis thefiber of amapg:X-*KkKx Y[t K(Ài9 nt) (Xi9 t2k)=l. By 2.8choosing
the H-structure of Zproperly g is an H-map and so Yandfl become an H-space and

an H-map. As Hl2k(î) Hlk(Y)= Y Y and t': Y-+ Y admit H-structure and so does

2.10. COROLLARY. (See [6] and [7]). LetXbeafiniteCWcomplex.Ifforevery
prime p there exist an H-space X(p) and a p-equivalence fq:X-+X(p) and if ail
H*(X(p), Q),peP, are isomorphic as Hopf algebras then X admits an YL-structure.

Proof Let H*(X, Q)&H*(X(p), Q)*A(ni9 xn2,..., xj. As X*(S*=Sn> x Sn*x

X"-xSnr for almost ail primes one may assume that the number ofdifférent spaces X(p)
andmaps /^isfinite.Now, forevery/?, qéPH*(X(p\ Q)&H*(X(q), g).Hence^(Z, n)

n?=i K(Z>nd admits an H-structure and there exist Q équivalences hp:X(p)->
-*K(Z, n) which are H-maps. Moreover, using the procédure of [8] one may replace

X(p) by X'(p) so that hp décomposes into two H-maps -X{p}-+Xf{p)-^K(Z, n)
where h'p is a /7-equivalence and h"p is a P—{/?} équivalence. The pullback
X' l\h»pX'(p) is then an H-map, and X'&pX'(p)kpX. Hence [r\eG(X') and

apply 2.9.

Let A, ÂestfaM(su s2,..., st\ Z). Then

ÔL4 dt(I(dl9 Si)*I(d29 s2)*--*I
ôtÂ dt

(If A=A1*A2*---*Al then di detAieZ*k and similarly for Ât and ât). It can be

easily seen that

((A) xt(Â) ï(A*gÂ)eG{X x X)

As I(dh st) *l(di9 st)=/* I{dt • âi9 st)=I(dt • âi9 2st) modimâ one has a (A *g A

=ôt(I*gAÂ) modimâ and therefore

We thus proved
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2.11. A PRODUCT THEOREM. Let A, Âesf. Then Ç(A)xÇ(Â) XxÇ(A-Â)
and consequently if Av Btestf andifA1-A2 An and B1-B2 Bm hâve the same

image in GL(su s2,..., £/:Z?k)/imâ then

x t(B2)x~.xÇ(Bm).

If cp is the Euler function then as I{dl9 st) *(fc"2=/ modima one obtains (see [7],
p. 82):

2.12. COROLLARY. For every \J~\eG(X) y^^&X^12.
Similarly one obtains

2.13. COROLLARY. Let Y be a finite CW H-space if QHn(Y, Z)/torsion^0
whenever QHn(X, Z)/torsion#0 then G(Xx 7) {X} x G(Y).

3. Genus and non-Cancellation

3.1. DEFINITION. (See [5]). Let Kbe sl finite CW complexé -a set of primes.
K is said to be Pj universai if for every prime q$T*x there exists aPt équivalence

fq:K-+Kso that #* (/,, Zq) 0.

A space Fis said to be an Ho space if //* (F, Q) is a free (commutative and
associative) algebra. If H*(Y, Q) A(xni, xn2,..., xnr) then Y is said to be of type

nu n2,..., nr. The following is a generalization of [7] Lemma 1.5:

3.2. PROPOSITION. Let P=P!uP2. Let X, Yl9 Y2 be finite CW complexes

f:X-* Y1x Y2. IfX is an H0-space, Yt—P, universal i= 1, 2 and ifpt°f is a Pt
équivalence where pl:Ylx Y2-* Yl9 i= 1, 2, is the projection then f admits a homotopy left
inverse.

Proof We may assume that P1nP2 0. Let ho:X-+Xo K(Z9n) be a rational
équivalence. Put m=max (nr, dim Yx x Y2). Factor îi0 : Htm {X)-+Xo by maps

hll_l:Xl-^Xl^l9 0<i^s Xs Htm(X), hltl^l being the fiber of a map k^.X^^-^
-^K(ZPi,ml)pleF. Let al:YlxY2->Y1xY2 be given as follows: ïf pl^Pl let

g[: Yt-+ Yx be a Pi équivalence with H*(g'n Zpi) 0. If pt$F2 let g" :Y2-+Y2 be

defined similarly. Let

x 1 if pl$F1
xgf; if PltV2

suffices to find a left inverse for/= ax o a2 o • • • o as o/and one has /?» o/is a P, équivalence.
Let yni H*(h0, Z) ini, (ini,..., inr)eH*(K(Z, n\ Z) the "fondamental vector". As

pxof is a Px équivalence À1yntEimH*(piof, Z) Àt prime to P^ Similarly
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X2ynt e im H* (p2 o/, Z). As (A1? A2) 1 A^,, A2jBi e im Jff* (/, Z) implies
ynteimH*(f,Z). Hence, /z0 factors through Y± x Y29 h0 r0o/, r0: Yt x Y2 -»
-» K(Z, n) X0. Suppose one obtains inductively the following commutative diagram :

Without loss of generality suppose pn$Vt. Then H* (an, ZPi) H* (g'n, ZPi)® 1

(where e:H*-+Zp-* H* is induced by augmentation). Hence, one obtains

Y1xY2 2 >Y2

/?2oaB+1o...oaso/isaP2-equivalence, and as kn<>hn,IJ_1~*, *-^oVioa«°a»+i0"10
O"'°ois°f~rop2o(xn+io...oasof. It follows that r~*, knorn-1oocn^ * andr^: Yx x Y2-+
-+Xn exists so that hntn^1°r!t~rn-.lo<xn. Comparing <j5i=^oaB+1o.-oa5o/ and

P2=A»+l,no*» + 2.»+lo---o*.,s-lo*m^
^(^2 (where * dénotes the action of \X, K(ZPn, mn — I)] on [Z, Zn] induced by the

principal fibration K{ZPn, mn — 1 )->Zn->Z,,_x). But aH+ioafl+2o-<o«so/isaP2 equi-
morphism, hence, co factors as d)oafl+1o-oaso/5 œ: Yx x Y2-*K(ZPni mn — \).

Replacing r'n by c5*rn=rB one obtains rn: 7X x 72 -*Xn and

~cp2 hn+Unohn+2tn+1o..- hStS-toTm.

The final step of lifting r^Y^x Y2-+Xs Htm(X) to r:Y1xY2->X with r<>f~ 1 is

automatic as dimX^m, dim Y1xY2^m and hence [Z, rm] : [Z, X~\^+\X, Xs~],

[Y, x Y2, tJ: [7i x F2, ^^[^ x F2, Zs] and rm= \X, tJ [1].

3.3. LEMMA.

M 1/,
Y > Y

6e afiber square. IfX0 is an H-space then X—-—?—+ Yt x Y2—-—-—>X0 isa (quasi)
fibration.

Proof. Dénote nXo(x> x') by x*x' and if c\X-*X is the homotopy inverse put
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(x) x~~1. Now,

and

F {yu y2, <peYt x Y2 x <?X0 \ f2 (y2yft (y,)'1

is the fiber of [/"] [/J"1. Let ct.X^Fbe given by <x(yuy2, <p)=yi>y2> a(fi
«P'/iCVi)1 where a{z) is the homotopy Connecting the base point with z-z'1. The
obvious maps X^> Yx x Y2 and F-> Yt x 72 are (Hurewicz) fibrations with the same
fiber QX0 and a | £2Z0= 1. Hence, a is a homotopy équivalence.

Combining 1.6, 3.2 and 3.3 one gets

3.4. THEOREM. Given a commutâtive diagram

i»,

Suppose f^ hx are Ft équivalences in dim^w, /= 1, 2, Pj uP2=P. If Yx is Ft universal
/= 1, 2, X is an Ho space and Xo is an H-space then

YlxY2&X x Xo in

Proof. By 1.6 3.3.1 is a fiber square. By 3.3 one has a fibration

where hx are Pt équivalences and one can apply 3.2 to find a left inverse for (ht x h2)A
and 3.3 follows.

Let Xbc again an H-space of type (nu n29..., nr) and of dimension <,k. The set of
primes P2k contains ail primes involved in H* (X, Z), nn(X) n^2k and coker(tt* (X)/
torsion-*PH*(X, Z)/torsion). One can easily see that every map SH->X yielding an

isomorphism of n( )/torsion is a Pfc=P-Pfc équivalence. (Hence Fk contains only
regular primes). Let [Y~\eG(X) and let/: Y-*X be a F2k équivalence which is an

H-map (see 2.9). Diagonalizing ;r(/)/torsion one obtains bases ai9...9 aren(Y)/tor-
sion and bl9...9 bren(X)/torsion so that (7r(/)/torsion)a1=>llèI, A, prime to ¥2k.

Ifâxennt(F),5^e7rni(Z)representatand6,respectivelythenn(/) âi=^ibl^-6i96l-a
torsion élément. But A, is prime to the torsion primes in nn(X) n^2k hence to the

order of 0tand0t A,^. Replacingbtbyô; + ff,ifnecessary onemay assumen(f)âl
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Af5f. Hence one obtains the following commutative diagram:

hXl vhX2-vhXl

As/is an H-map one can add h Y\t hÀi to the above diagram to obtain a commutative
diagram:

Sn^Y

Now/and h are P& équivalences while a and 5 are Pfc-equivalences and one can apply
3.4 to get the following:

3.5. A NON CANCELATION THEOREM. (Compare with [1], [2] and [7],
p. 83). If[Y\eG{X) then YxSn^XxSn.
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