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Polynomial Growth in Holonomy Groups of Foliations

J. F. Plante and W. P. Thurston

Introduction

A notion of growth in finitely generated groups has been introduced by Milnor
[8]. One type of growth considered there is called polynomial growth and it has

been conjectured that a finitely generated group has polynomial growth if, and

only if, it has a nilpotent subgroup of finite index. That groups which hâve a

nilpotent subgroup of finite index hâve polynomial growth has been shown by
Wolf [22] (see also Bass [1]). So far, the converse has been proved for solvable

groups (Milnor-Wolf [9, 22]) and for linear groups (Tits [21]). In the présent note
we show that the conjecture is true for finitely generated groups of differentiable

germs. There are also related results about groups of homeomorphisms which

may be of independent interest. Our interest in groups of germs was motivated by
the study of holonomy groups of foliations and we give some applications in that
direction. It turns out, for example, that holonomy groups of codimension one,
transversely oriented foliations of class C2 which hâve polynomial growth, must
actually be abelian. Thèse results are applied in the last section to generalize a

resuit of Haefliger concerning analytic foliations of codimension one.

1. Polynomial Growth

This section reviews the notion of polynomial growth in discrète groups
introduced by Milnor [8]. For further background on this subject the reader is

also referred to [1], [9], and [22]. Since it will be necessary to allow for the

possibility of groups which are not finitely generated (in passing to subgroups),
our définition will be somewhat more gênerai than that in [8].

Assume that G is a (discrète) group with metric d : G x G -* [0, ») which is

invariant under the action of G by left translation. The growth function of the

pair (G, d) is defined as follows: If f &gt;0, y(t) is defined to be the cardinality of the
set {g€ G | d(e, g)*s t}, where e dénotes the identity élément of G. If y(t) is finite
for every t we call y :R+-*R* the growth function of (G, d).

567



568 J F PLANTE AND W P THURSTON

DEFINITION. (G, d) has polynomial growth of degree k if there is a polyno-
mial p(x) of degree k such that y(t)^p(t) for every t &gt;0. For convenience we
extend the notion of polynomial to permit terms of the form ax\ where r^O need

not be an integer.

Note that a group having polynomial growth must be countable. It is also clear
from this définition that every subgroup of a group with polynomial growth must
hâve polynomial growth of the same (and possibly, lower) degree.

Suppose G is generated by a set S. Let nx : S -» R+ be any function such that
for each reR+, n^O, r] is finite. Now for ge G we define a function n(g) as the
minimum of X!==i ni(st) where si, s2,..., Si is a séquence of generators such that
II !=i sf1 g. It is clear that n(gh)^n(g) + n(h); hence the formula

defines a metric on G. With such a metric, 7(0 is finite for each t.

If S G, every left-invariant metric is obtained by this construction. If S is

finite, then G has polynomial growth for some metric ifï it has polynomial growth
for the metric defined above with nt 1. If S is infinité, on the other hand, it is

obvious we can prescribe nx so that 7(0 exceeds any given function, for ail t&gt; 1.

The interest, however, is in finding nx such that the growth rate of 7 is low. In this
regard we hâve

1.1. PROPOSITION. For every e&gt;0, a countable group G has a metric with
polynomial growth of degree d + e if every finitely generated subgroup has a metric
with polynomial growth of degree d.

Proof. Let S {si, s2,...} be a generating set; let G, be the subgroup generated

by si, s2,..., s,. Inductively, we will construct a function ni so that the

growth 7,(0 of G, satisfies

This is clear when i 0 and G, is the trivial group. Suppose nx has been so chosen

for i k. Let n[ be defined on Si,..., Sk+i by

tti(Si) ni(st) if

By hypothesis, the growth function 7^+1 of this group is dominated by some
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polynomial P of degree d. Then, there is some constant C^O such that

2-(fc+1) • (t + C)d+e.

Let tti(sk_n) C+l, and yk+1 be the associated growth function. For t&lt;C+l,
7k+i(0 Tk(0- For f s* C +1, the set of éléments of Gl+1 which hâve at least one
s,+i in their minimal représentation has cardinality &lt;y&apos;k+1(t-C)&lt;2~(k+1)td+e,

while those without sk+i in the représentation hâve cardinality &lt;yk(f)&lt;

l + (l-2~k)fd+e. Combining, we hâve yk+1(0^1 + (l-2~(k+1V+e.
Note that this gives a necessary and sufficient condition for G to hâve a metric

of polynomial growth in terms of its finitely generated subgroups.

Example. Every finitely generated subgroup of the rationals, Q is infinité
cyclic, hence has polynomial growth of degree one. Hence Q has metrics of
polynomial growth; in particular the function ni(l/n) n! defines a metric with
quadratic growth. On the other hand, it is easy to verify that Q can hâve no metric
with linear growth. (The same is true for any non-finitely generated subgroup of
Q)

Wolf [22] has shown that a finitely generated group which has a nilpotent
subgroup of finite index has polynomial growth. On the other hand, it is

reasonable to conjecture that a group having polynomial growth must hâve a

nilpotent subgroup of finite index. This conjecture has been proved for finitely
generated solvable groups by Wolf-Milnor [22, 9]. It has also been proved by Tits
[21] for finitely generated subgroups of GL(n, R). In Section 3 we give some
extensions of this last resuit.

2. Polynomial Growth Versus Polycyclic

A group G is said to be polycyclic if there is a finite descending chain of
subgroups

such that each subgroup is normal in the preceding one and the corresponding
quotient groups are ail cyclic. We refer the reader to [22] for a discussion of other
conditions on G which are équivalent to polycyclic. The following resuit is proved
in [22].



570 J F PLANTE AND W P THURSTON

2.1. THEOREM. A polycyclic group G has polynomial growth if and only if it
has a nilpotent subgroup of finite index.

The purpose of this section is to show that in certain cases a group having
polynomial growth must be polycyclic. We assume that our group G has a fixed
left invariant metric.

2.2. THEOREM. Let Gbe a group having polynomial growth and suppose that
Hom (H; R) 5*0 for every non-trivial finitely generated subgroup H of G. Then

Hom(G;R)*0.

The proof of (2.2) will follow soon. It should be noted that R may be replaced

by Q in the statement of (2.2).
If G is countable, it can be written as an increasing union

G U G,, G, c G,+i
1 1

of finitely generated subgroups. The vector space Hom(G;R) is just
&lt;-^-{Hom (G,; R)} where the homomorphism

Hom (G, ; R) -» Hom (G, ; R), i &gt; j

is defined by restriction.
We need a lemma which relates polynomial growth to a chain condition.

2.3. LEMMA. Suppose that G has polynomial growth of degree k and that

is a finite séquence of subgroups such that for each i (1 &lt; j &lt; n) there is a non-zero
homomorphism /, : H, -&gt; R such that Ht-i &lt;= ker /,. Then n&lt;k.

Proof. Let a, € H, -ker /,. The words of the form a?1 • • • apnn represent distinct
éléments of G. This means that the growth function of G dominâtes a polynomial
of degree n with the coefficient of xn being positive. Hence, we must hâve n &lt; fc.

Proof of (2.2). Let G be an increasing union of finitely generated groups G,
and let V, dénote the finite dimensional real vector space Hom (G*;R). When i^j
let Vv be the subspace of V, consisting of homomorphisms which extend to G/. If
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then VlkcVlr Define

Note that W^O if and only if Vl}=0 for / sufficiently large. We claim that for i
sufficiently large W,#0. Suppose this is not the case, i.e., there exist arbitrarily
large i such that Wt 0. Wt 0 means that Vi;=0 for / sufSciently large. In
particular, we may choose / &gt; 1 such that W, 0. Thus, we hâve a non-zero
homomorphism /:G;—»R such that G, &lt;=ker/. By repeating this process we
would obtain an infinité increasing chain contradicting (2.3). This proves the
claim.

For k&gt;i the restriction Vk;--»¥,, is surjective for every ;&gt;k. Hence, the
restriction Wk —? W, is also surjective. Since the W, are non-zero for i sufficiently
large, this shows that the inverse limit is non-zero and complètes the proof of
(2.2).

2.4. COROLLARY. If G has a polynomial growth (with respect to some
invariant metric) and every finitely generated subgroup of G admits a non-zero
real-valued homùmorphism then G is solvable. If G is also finitely generated then G
is polycyclic.

Proof. Using (2.2) construct inductively a chain of subgroups

and corresponding non-zero homomorphisms /l€Hom(Gl;R) such that Gl+1
ker /,. By (2.3) the chain must reach the trivial subgroup after a finite number of
steps which implies that G is solvable. If G is also finitely generated then it must
be polycyclic by a resuit of Milnor [9].

Note. The example (G Q) following Proposition 1.1 shows that G need not
be finitely generated—in which case it cannot be polycyclic.

3. Groups of Diffeomorphisms and their Germs

Dénote by ^&apos;(R&quot;, 0) the groups of germs of Cr (r &gt; 1) diffeomorphisms of Rn

which fix the origin.

3.1. THEOREM. If Gc&lt;8r(Rn,0), r&gt;l, is a finitely generated group having
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polynomial growth then G has a nilpotent subgroup of finite index. If we also

assume n 1, then G is polycyclic.

Proof. Let

D:&lt;Sr(Rn,0)-»GL(n,R)

be the homomorphism which takes a germ to its derivative at the origin. Thus,
Go Gflker D is a normal subgroup of G and the quotient G/Go is isomorphic
to a subgroup of GL(n, R). By the generalized Reeb Stability Theorem [19] every
finitely generated subgroup of Go has a non-zero real-valued homomorphism.
From (2.4) it follows that Go is solvable. By Tits [21] the quotient group G/Go
must hâve a nilpotent subgroup of finite index since it has polynomial growth and
is isomorphic to a subgroup of GL(n, R). This means that G has a solvable

subgroup of finite index and this subgroup is finitely generated (cf. page 90 of [6]).
Since this solvable subgroup has polynomial growth it has a nilpotent subgroup of
finite index. Since this nilpotent group has finite index in G the first statement of
(3.1) is proved. When n l, G/Go is abelian and, hence, G is solvable and,
therefore, polycyclic. This complètes the proof of (3.1).

Remark. (3.1) may be thought of as an extension of Tits&apos; resuit that a finitely
generated group of linear isomorphisms of R&quot; having polynomial growth must
hâve a nilpotent subgroup of finite index. Any linear group has a corresponding

group of germs which uniquely détermines the linear group.
The following is a related resuit about groups of diffeomorphisms with

compact support.

3.2. PROPOSITION. Let G be a group of Cr (r&gt;l) diffeomorphisms with

compact support of an open manifold M. If G has polynomial growth then it is

solvable. If G is also finitely generated then it is polycyclic and has a nilpotent
subgroup of finite index.

Proof. We show that every finitely generated subgroup of G has a non-zero
real-valued homomorphism. If a subgroup H of G is generated by gi,..., gn let

Let x0 be a boundary point of the set l/i U • • • U Un. Since the derivative of g, at

x0 is the identity (i: 1,..., n) the generalized Reeb Stability Theorem yields a

non-zero élément of Hom(H;R). (3.2) now follows from (2.4).
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4. Groups of Homeomorphisms of One Dimensional Manifolds

Dénote by Homeo (R) and Homeo (S1) the groups of homeomorphisms of R
and S1, respectively.

4.1. PROPOSITION. // G c= Homeo (R) is a group having polynomial growth
then G is solvable. If G is also finitely generated then G is polycyclic and has a

nilpotent subgroup of finite index.

Proof. Let GocGbe the subgroup (of index at most 2) consisting of orientation

preserving homeomorphisms. It suffices to show that Go is polycyclic. Let H
be a non-trivial finitely generated subgroup of Go. Choose a point x e R which is

moved by some élément of H and let a, b e R be, respectively, the inf and sup of
the set {h(x) \ fie H}. Since H has polynomial growth and the interval (a, b) is

homeomorphic to R, the fact that Hom (H; R) # 0 follows from (5.5) of [15]. Now
(2.4) implies that Go and, hence, G are solvable and polycyclic if finitely
generated.

4.2. COROLLARY. 1/ G ci Homeo (S1) is a group having polynomial growth
then G is solvable. If G is also finitely generated then G is polycyclic and has a
nilpotent subgroup of finite index.

Proof. Let Go^ G be the subgroup consisting of orientation preserving
homeomorphisms. Since Go has polynomial growth it préserves a Borel measure

ix on S1 such that ^(S1) 1. In [14] it is shown that the rotation number of g e Go
is /ul([x, g(x)) where [x, y) dénotes the half open interval going from x to y in the

positive direction (according to the orientation of S1). Furthermore, it is also

shown in [14] that the rotation number map

p:Go-*[0, l)modl

is a homomorphism. The image p(G0) is abelian and every élément of the

subgroup ker p fixes every point x in the support of /ul. By cutting the circle at
such an x the action of ker p on S1 may be thought of as an action on an interval.
Thus, by (4.1), kerp and, hence, G are solvable. If G is finitely generated it is

polycyclic.
It turns out that somewhat more can be said if the homeomorphisms in

question are of class C2. This will be based on a resuit of N. Kopell which is

proved in [5] and may be stated as follows.
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4.3. THEOREM. Suppose /, g:[a, b)-»[a,oo) are C2 diffeomorphisms (not
necessarily onto butf(a) a g(a)) such that the following conditions are satisfied:

0 f(x)&lt;xforallxe(a,b)
ii) g(x) x for some x e (a, b)

iii) f(g(x)) g(/(x)) for ail x e [a, b).
Then g(x) x for ail x e [a, b).

We will also need the following observation of Moussu [10]. We say that a

group G acts withoutfixed points on (a, b) if g(x) x for some geG and jc € (a, b)

implies that g(x) x for ail x e (a, b). We say that G acts essentially on (a, b) if
g(x) x for ail x e (a, b) implies that g is the identity élément of G.

4.4. LEMMA. If a group G acts essentially and withoutfixed points on an open
interval (a, b) then G is (torsion free) abelian.

Proof. Let x e (a, b) and define a partial ordering on G as follows:

f&lt;g if /(x)&lt;g(x).

Since G acts on (a, b) essentially and without fixed points this définition is

independent of x € (a, b) and gives an Archimedean total ordering of G. By a

theorem of Hôlder (cf. [2] page 226) G is isomorphic to a subgroup of R and is

therefore abelian.

4.5. THEOREM. If G is a nilpotent group of diffeomorphisms of [0, &lt;») of class
C2 then G is (torsion free) abelian.

Proof. If the restriction of G to (0, &lt;») acts without fixed points then we are
done by (4.4). Otherwise, let / be a non-trivial élément of Z(G) (center of G) and

let a&lt;fe&lt;oo be such that f(a) a9 f(b) b (if b&lt;&lt;x&gt;) and / has no fixed points
between a and b. By taking an inverse, if necessary, assume that f(x) &lt; x for x in
(a, b). If ge G we claim that either g is the identity on [a, b) or g(x) # x for every
x in (a, b). Suppose g(x) x for some x in (a, b). Since / and g commute, /n(x) is

fixed by g for every integer n and, hence, so is limn—«,/n(x) a. It now follows
from (4.3) that g is the identity on [a, b). A similar argument (reversing the rôles
of / and g) shows that, in either of the above cases, g(a) a and g(b) b (if
b&lt;oo). Let K\ dénote the closure of the set

{xe[0,oo)|/(x)#x for some feZ(G)}.
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(4.4) and the claim proved above imply that G commutes on Kx. Z(G) acts

trivially on the complément of Kx so we can think of G/Z(G) as acting on this
complément. If G/Z(G) acts trivially we are done. Otherwise, since G/Z(G) is

nilpotent, we repeat the above argument to find a closed set K2 =&gt; Ki (K2 ^ Ki)
such that G commutes on K2 and Z(G/Z(G)) acts trivially on the complément of
K2. Since G is nilpotent this process can be repeated only a finite number of times
and we eventually obtain a closed set Kq such that G commutes on Kq and acts

trivially on its complément. Thus, G is abelian and the proof of (4.5) is complète.

4.6. COROLLARY. If G is a group of C2 diffeomorphisms of [0, «) which has

polynomial growth then G is (torsion free) abelian.

Proof. Passing to a subgroup we may assume that G is finitely generated.
Since R is homeomorphic to (0, »), (4.1) implies that G has a nilpotent subgroup
Go of finite index. By (4.5) Go is abelian. From the proof of (4.5) we see that
there is a closed set C such that every élément of Go fixes every point in C and
that on each maximal open interval in the complément of C, Go acts without fixed
points. Since each élément of G has a power in Go, it is clear that every élément
of G fixes every point of G Let (a, b) be a maximal open interval in the

complément of C and restrict the action of G to the interval (a, b). Suppose geG
and x € (a, b) are such that g(x) x and let k be an integer such that gk € Go.

Since gk(x) x and Go acts without fixed points gk and, hence, g must be the

identity on (a, b). Hence, G itself acts without fixed points on (a, b). Doing this
for every maximal open interval in the complément of C we conclude that G is

abelian.

4.7. COROLLARY. If G is a finitely generated group of C2 diffeomorphisms of
S1 which has polynomial growth then G has an abelian subgroup of finite index.

Proof. Without loss of generality, we may suppose that g contains only
orientation preserving diffeomorphisms. As in the proof of (4.2) we consider the
rotation number homomorphism p. The image of p must either be finite or dense.

If the image of p is dense then some élément of G has irrational rotation number
and by Denjoy&apos;s theorem is conjugate to an irrational rotation. This implies that
the support of the G-invariant Borel measure must be ail of S1. In this case, [14]
((4.2) or proof of (2.3)) implies that G is conjugate to a group of rotations and is

abelian. On the other hand, if the image of p is finite then ker p has finite index in
G and every élément of ker p fixes some xeS1. Thus, ker p can be identified with
a group of C2 orientation preserving diffeomorphisms of [0,oo). Now kerp is

abelian by (4.6) and the proof of (4.7) is complète.
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Remarks. The differentiability assumption in (4.6) is crucial. A C° counterexample

(which can be made C1 using an unpublished construction of D. Pixton)
may be constructed as follows. Let ^: [0,1] -»[0,1] be a C°° diffeomorphism such

that i/f(0) 0, t/f(l)= 1, &lt;A has infinite order contact with the identity at 0 and 1,

and ij/(x)&gt;x for jce(O,1). Now define a C°° orientation preserving diffeomorphism

/:R-»R by

}M)
+ I&gt;] if W^O mod 4

x if [x]sl or 3 mod 4

ilt~\x-[x]) + [x] if [x]s2 mod 4

Define g:R-»R by g(x) Jc + 2. The group G generated by / and g has

polynomial growth but is not abelian (it is isomorphic to the fundamental group of
the Klein bottle). If we identify R with (0, a&gt;) we can realize G as a group of
homeomorphisms of [0, a&gt;).

The arguments in the proof of (4.6) show that a group of orientation
preserving C2 diffeomorphisms of a closed interval which has polynomial growth
must be abelian. The above example shows that this assertion is false for open
intervals.

5. Groups of Germs in Dimension One

In this section we establish results analogous to those of the previous section
for groups of germs. Let &lt;§+ denote the group of germs of Cr (r=0) diffeomorphisms

of [0, a&gt;) which fix 0. Let X\ denote the pseudogroup consisting of local Cr
diffeomorphisms which are defined in a neighborhood of 0. There is a natural map
5£+ -»&lt;§+ which takes a local diffeomorphism to its germ at 0. If F &lt;= &lt;£\ is a

subpseudogJTOup which goes to a group G c &lt;§+ via the above map then F is called
a realization of the group of germs G. It is clear that any group of germs has many
realizations but we will be interested in having certain properties of the group G

carry over to the pseudogroup F. If the group G has polynomial growth, for
example, we would like to be able to make a similar statement about F. If G is

finitely presented then this can be done. Suppose that G is generated by
gi&gt; •.., gn and that G is determined by finitely many relations JRi,..., JRm

involving the gi&apos;s. For each g, we choose a representative fte3!r+. For each

relation R} we restrict the domains of the /,&apos;s so that the relation JR, holds (for
those JC€[O, o&gt;) for which it makes sense) with gi&apos;s replaced by /,&apos;s. Restrict

/l, ...,/n so that they satisfy each of the relations Ri9 ; l,...,m. These
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restricted /,&apos;s generate a pseudogroup F and if G has polynomial growth then it is
clear that each orbit of F has polynomial growth (in the obvious sensé [15]).

5.1. PROPOSITION. If G &lt;^&lt;ê\ is a finitely generated nilpotent group then G is

free abelian.

Proof. In this situation it is clear that G has no torsion and, hence, by results
of MaPcev [7], G is the fundamental group of a compact nilmanifold. Since such a

manifold can be triangulated, G must be finitely presented. From the discussion
above there is a finitely generated realization Fc S£\ of G such that each orbit of
F has polynomial growth. By (5.1) and (5.4) of [15] there are two possibilities:

i) There is an x &gt;0 which is fixed by every élément of F, or
ii) There exists fe F such that the restriction of / to some interval of the form

[0, e) has no fixed points other than 0. (We will say in this case that the

germ of / at 0 is fixed point free.)

In case i), F restricts to an action of G on the interval [0, x) and, hence, G is

abelian by (4.5). In case ii) we claim that every élément of G is fixed point free. If
/ogF corresponds to a non-trivial élément in the center of G then by (4.3) the

germ of f0 at 0 is fixed point free. The same argument now shows that every
élément of G other than the identity is fixed point free. Finally, the argument
used in the proof of (4.4) shows that G is abelian and (5.1) is proved.

5.2. THEOREM. If a subgroup G&lt;=&lt;g+ has polynomial growth then G is a
torsion free abelian group.

Proof. By passing to a subgroup we may assume that G is finitely generated.
(3.1) implies that G has a nilpotent subgroup Go of finite index which by (5.1)
must be abelian. Furthermore, there is a realization of Go which satisfies i) or ii)
above. Since every élément of G has a power in Go we conclude that either G is

realized by an action on an interval of the form [0, jc), x &gt;0 or G is a fixed point
free group of germs. In either case G is abelian and the proof of (5.2) is complète.

The following is immédiate from (5.2).

5.3. COROLLARY. If G&lt;=&lt;8r(R, 0), r&gt;2, is a group of orientation preserving

germs which has polynomial growth then G is a torsion free abelian group.

We conclude this section with some observations about analytic germs which
will be used in Section 7. Let &lt;8+(R, 0) dénote the germs of orientation preserving
analytic diffeomorphisms of R which fix zéro. Such a germ is determined by its
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Taylor séries. Suppose / is a local diffeomorphism représentée by a power séries
of the form

f(x) x + akxk +higher order terms.

If cik^O then we say that the germ of / at zéro has order k. Define a map

(.ogU + a,) if *-l
[ak if fc&gt;l.

5.4. LEMMA. IfG c *S+(R, 0) is a group of germs such that every élément of G
other than the identity has order &gt;k then the restriction of 8k to G is a homomorph-
ism. If every élément other than the identity has order k then this homomorphism is

injective.

The proof of (5.4) is straight forward and may be obtained either by substitution

of power séries or by use of Leibnitz&apos; rule. The second statement of (5.4)
follows from the first.

5.5. LEMMA. 1/ two germs in ^(R, 0) commute and neither is the identity
then both germs hâve the same order.

Proof. Suppose the commuting germs are represented by

/(x) x + akxk + higher order terms

g(x) x + b;ocJ + higher order terms

where ak^0, fy/O. Substituting to get power séries for /g and gf and equating
coefficients of xk+i&quot;1 we conclude that k /, i.e., the germs of / and g hâve the
same order.

6. Holonomy Groups of Foliations

Let M be a smooth manifold and îaCr(r^l) foliation of M of codimension
k. We begin by recalling briefly the notion of holonomy groups. If L is a leaf of 3F

we choose an embedding of Rk in M which is transverse to 9 and such that the

origin in Rk is sent to a point of L which we take as the basepoint. A based loop
in L détermines, by sliding along leaves near L, a local diffeomorphism of Rk at
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the origin. If y dénotes a loop we dénote by h(y) the germ of the corresponding
local diffeomorphism. It turns out that h(y) dépends only on the homotopy class

[y]eir1(L) and that the map [y]-* h(y) détermines a homomorphism (or anti-
homomorphism depending on conventions) from tti(L) to &lt;Sr(Rk, 0). The image of
h is called the holonomy group of the leaf L and will be denoted by H(L). H(L)
dépends on the original embedding of Rk in M but its isomorphism class does not.
The next two results are immédiate from (3.1) and (5.3).

6.1. PROPOSITION. If L is a leaf of a Cr foliation (r &gt; 1) of codimension k
such that H(L) is finitely generated and has polynomial growth then H(L) has a
nilpotent subgroup of finite index. If, further, k 1 then H(L) is polycyclic.

6.2. PROPOSITION. If L is a leaf of a transversely oriented codimension one
Cr foliation (r^2) and H(L) has polynomial growth then H(L) is ^a torsion free
abelian group.

Remark. The hypothesis regarding H(L) in (6.1) or (6.2) holds, for exampie,
if 7Ti(L) is a finitely generated group having polynomial growth.

The following resuit gives a case in which the structure of holonomy groups is

related to the fundamental group of the manifold M. We say that a codimension
one foliation SF of M has a null transversal if there is a loop in M which is

everywhere transverse to 2F and which is freely homotopic to zéro.

6.3. PROPOSITION. Let SF be a transversely oriented codimension one

foliation of class C2 of a manifold M. If 7Ti(M) has polynomial growth and 3F has

no null transversals then the holonomy group of every leaf is abelian.

Proof. Let L be a leaf of SF and assume that tti(L) is finitely generated. By
(6.2) it is sufficient to show that H(L) has polynomial growth. Let xoeL be the

basepoint, i:L~* M the inclusion map, and i# the induced homomorphism
between fundamental groups. i# induces a homomorphism

kerh i#(kcrh)&quot;

We claim that this homomorphism is injective. If not then there is a based loop y
such that h[y] # 0 but i#[y] 0. Since h[y] ï 0, y is freely homotopic to a loop of
the form a * /3 where a is a path in a single leaf of 9 and j8 is a path transverse to
9. On the other hand, by a standard argument, a * j3 is freely homotopic to a

closed curve transverse to 9. If ï#[y] 0 then we would hâve a null transversal
and contradict the hypothesis of (6.3). Thus, H(L) has polynomial growth and
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must be abelian. If tti(L) is not finitely generated then we replace tti(L) by an

arbitrary finitely generated subgroup in the above argument. The corresponding
subgroups of H(L) are ail abelian and, hence, so is H(L). This proves (6.3).

Remark. The hypothesis in (6.3) concerning null transversals arises naturally.
For example, it is satisfied if 3F cornes from a locally free Lie group action [12] or
if 9 is real analytic [3,4].

7. Analytic Foliations of Codimension One

Let M be a compact C00 manifold. It is known [20] that if M has Euler
characteristic zéro then M admits a C°° foliation of codimension one. On the
other hand, Haefliger [3,4] proved that if M has a real analytic codimension one
foliation then the fundamental group of M is infinité. In particular, if tti(M) is

finite M does not hâve such a foliation. Other examples of manifolds not
admitting analytic codimension one foliations hâve been given by Novikov [11],
Thurston [18], and Goodman. In each case the examples are 3-dimensional and

are obtained as a by-product of a compact leaf theorem. Analytic foliations are

interesting because they tend to hâve nice géométrie properties, which are also

common to foliations that arise in nature. Almost nothing is known about analytic
foliations except in codimension one. In this section we give an extension of
Haefliger&apos;s resuit about codimension one analytic foliations on n-manifolds.

7.1. THEOREM. Let M be a compact manifold such that tti(M) has polyno-
mial growth. If M admits a transversely oriented real analytic foliation of codimension

one then Hl(M, R) # 0.

7.2. COROLLARY. If M is compact, tti(M) has polynomial growth, and
HX(M, R) 0 then M does not admit a transversely oriented analytic foliation of
codimension one. If H1(M;Z2) is also zéro, M does not admit any analytic
codimension one foliation.

The proof of (7.1) will require the following preliminary resuit.

7.3. LEMMA. Let M be a compact manifold with boundary (possibly empty)
and let Ll9..., Lp be disjoint compact connected submanifolds of codimension one,
each of which séparâtes a connected component of M. Let Vx,..., Vq be connected
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manifolds with boundary such that

M- Û U Û interior V,
1=1 1=1

Let ^gH^ V,; R) and if Lk c Vt dénote by &lt;Plk the restriction of &lt;Pt to Lk. Assume
that &lt;Pt^0 (i 1,..., q) and that 4&gt;lk and &lt;P]k are linearly dépendent if Lk VtC\ Vr
Then there is a non-zero class ^gH^MjR) whose restriction to each Vt is a
multiple (not always zéro) of &lt;£,.

Proof If q 1 then p 0 and the assertion is obvious. Assume that (7.3) is
known for q — 1. We suppose that Vu Vq are ordered so that ViC)Vq^0.
From the induction hypothesis we hâve a non-zero class ^o^H^U^i V,;R).
Since the restriction of &lt;2&gt;0 to Vi is a multiple of &lt;PX there exist a and b, not both
zéro, such that (a&lt;P0, b&lt;t&gt;q) has image zéro in the Mayer-Vietoris séquence

î)

Choosing ^eH^MjR) to hâve image (a&lt;P0, b&lt;Pq) complètes the proof of (7.3).

Proof of (7.1). Suppose that M has an analytic transversely oriented foliation
9? of codimension one. By [3,4], 3? has no null transversals. Since ttx(M) has

polynomial growth, standard arguments [15] imply that every leaf of 2F has

polynomial growth. If ^ has no compact leaves then (7.1) follows from (6.4) of
[15]. On the other hand, in [3,4] it is shown that either every leaf of 9 is compact,
in which case M fibers over S1 and HX(M\ R) # 0, or 9? has finitely many compact
leaves Lu..., Lp. If some leaf L, does not separate M, then it is dual to a

non-zero élément of Hl(M\ R), since it has a trivial normal bundle. Thus, we may
assume that 2F has a finite (positive) number of compact leaves, each of which

séparâtes M. If we remove the compact leaves we are left with finitely many
connected components. Let L be one of the compact leaves and let V+ and V_ be

the connected components on either side of L (with + and - determined by the
orientation transverse to 2F). The foliations determined by restricting 9? to V+ and
V_ admit non-zero invariant measures in the sensé of [15] since every leaf of 9
has polynomial growth. Pick such measures for V+ and V_ and let &lt;P+e

H^V+jR) and «Ê-eH^V-jR) be the corresponding cohomology classes. Since

the inclusions V+cz V+, V_&lt;=: V_ are homotopy équivalences we may think of &lt;#+

and &lt;2&gt;_ as cohomology classes for V+ and V-, respectively. Let U - L -» V+,
L:L~&gt; V- be inclusion maps. We claim that the classes i?£&lt;î&gt;+ and i*&lt;P- are

linearly dépendent in H1(L; R). This follows immediately if either of them is zéro
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so we assume that they are both non-zero. (This amounts to assuming that the

support sets for both invariant measures are asymptotic to L.) Take coordinates
for a neighborhood of L in V+ which is diffeomorphic to L x [0,1) and such that
the foliation induced from 3F is transverse to the [0,1) factor. The .^-invariant
measure on V^ induces a measure on (0,1) which is invariant under the action of
the holonomy group H(L). (Note that we do not need to distinguish the

holonomy group on each side of L since 3F is analytic.) The cohomology class
i*4&gt;+ is represented (up to sign) by the composition

where t is the &quot;translation number&quot; homomorphism defined in (5.3) of [15].
Since H(L) is abelian by (6.3), it follows from (4.3) and the définition of t that r
is injective. By (5.4) and (5.5) the map 8k : H(L) -» R is injective for some k &gt; 1.

(Hère we are thinking of H(L) as a group of germs.) The group H(L) has an

ordering determined by germ (/) &lt; germ (g) if f(x)&lt;g(x) for ail sufficiently small
x&gt;0. Note that the homomorphisms 8k and -t are both order preserving. This
implies that one is a constant multiple of the other. Hence, i*&lt;P+ is represented by
a multiple of the composition

The same argument shows that this is also the case for i?&lt;£_, thus proving that
iÎ4&gt;+ and i?&lt;f&gt;_ are linearly dépendent. (7.1) now follows from (7.3).

Remarks and Examples. 1) For the case dim M 3, (7.1) has been proved by
S. Goodman.

2) In the proof of (7.1) we hâve used only the properties
a) that when the holonomy around a compact leaf is non-trivial, it is

non-trivial in some r-jet, and

b) that there are no null transversals.

3) If F is a uniform discrète subgroup of SL(2,R) such that
H1(SL(2,R)/r;R) 0 (as in [19], for example) then SL(2,R)/F has an oriented

analytic foliation of codimension one so the hypothesis that 7ri(M) has polynomial
growth cannot be dropped.

4) Let N be a bundle over the Klein bottle with fiber [0,1] which is twisted to
make N orientable. If two copies of N are appropriately attached along their
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boundary tori ([15]) the resulting compact 3-manifold M satisfies the hypothèses
of (7.2). N has an obvious foliation of codimension one by compact leaves (one
Klein bottle, the rest tori) which is not transversely orientable. Attaching as above

we conclude that the transverse orientability assumption cannot be dropped. (The
resulting foliation of M actually has a &quot;bundle-like me trie&quot; and the statements of
(14.1) of [17] and (1.5) of [13] should be modified to require transverse orientability.)

Note that tti(M) is infinité; in fact, the universal covering space of M is R3

and every élément of tti(M) has infinité order.
5) Examples in higher dimensions of manifolds not admitting Cw transversely

oriented foliations may be obtained by noting that the hypothèses of Corollary 7.2
dépend only on

REFERENCES

[1] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London
Math. Soc, 25 (1972), 603-614.

[2] G. Birkhoff, Lattice Theory, A.M.S. Colloquium Publication Vol. 25 (1948).
[3] A. Haefliger, Structure feuilletées et cohomologie à valeur dans un faisceau de groupoides,

Commentarii Math. Helv., 32 (1958), 248-329.
[4] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397.
[5] N. Kopell, Commuting diffeomorphisms, Proc. Symposia in Pure Math. Vol. 14, A.M.S. (1969),

165-184.
[6] W. Magnus, A. Karass, and D. Solitar, Combinatorial Group Theory, Interscience, New

York (1966).
[7] A. Mal&apos;cev, On a class of homogeneous spaces (Russian), Izv. Akad. Nauk. (Ser. Mat.) 13

(1949), 9-32.
[8] J. Milnor, A note on curvature and the fundamental group, J. of Difïerential Geometry, 2 (1968),

1-7.
[9] Growth of finitely generated solvable groups, J. of Difïerential Geometry 2 (1968), 447-449.

[10] R. Moussu, Sur les feuilletages de codimension un, Thèse, Orsay (1971).
[11] S. Novikov, Topology of foliations (Russian), Trudy Mosk. Mat. Obsch., 14 (1965), 248-277

(A.M.S. translation 1967).
[12] J. Plante, Asympototic properties of foliations, Commentarii Math. Helv. 47 (1972), 449-456.
[13] On the existence of exceptional minimal sets in foliations of codimension one, J. of

Difïerential Equations, 15 (1974), 178-194.
[14] Measure preserving pseudogroups and a theorem of Sacksteder, Annales de l&apos;Institut Fourier

25 (1975), 237-249.
[15] Foliations with measure preserving holonomy, Annals of Math., 102 (1975), 327-361.
[16] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Hermann, Paris (1952).
[17] R. Sacksteder, Foliations and pseudogroups, American J. of Math., 87 (1965), 79-102.
[18] W. Thurston, Foliations of 3-manifolds which are circle bundles, Thesis, U. of California,

Berkeley (1972).
[19] A generalization of the Reeb Stability Theorem, Topology, 13 (1974)*, 347-352.
[20] Existence of codimension one foliations, Annals of Math, (to appear).

[21] J. Trrs, Free subgroups in linear groups, J. of Algebra, 20 (1972), 250-270.



584 J. F. PLANTE AND W. P. THURSTON

[22] J. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J.

of Difïerential Geometry, 2 (1968), 421-446.

Department of Mathematics
University of North Carolina
Chapel Hill NC 27514

Department of Mathematics
Princeton University
Princeton, NJ 08540

Received April 1976.


	Polynominal Growth in Holonomy Groups of Foliations

