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Comment. Math. Helvetici 51 (1976) 23-44 Birkhâuser Verlag, Basel

The Cut Locus of Noncompact Finitely
Connectée! Surfaces Without Conjugate Points

by Patrick Eberlein (University of North Carolina

Chapel Hill, North Carolina 27514, U.S.A.)

Introduction

In this paper we obtain a characterization and dérive some implications of the
condition that a complète two dimensional Riemannian manifold without conjugate
points hâve finitely generated fundamentai group. The characterization in terms of
fundamental domains is a classical resuit in the case of Gaussian curvature K= — 1.

See for example [7] and [11].
Let M dénote an arbitrary complète surface without conjugate points along any

géodésie, H the universal Riemannian covering of M and D the deckgroup of the
covering. Given a point p in H we define the canonicalfundamental domain for D with
center p to be the set Rp^H given by

4&gt;eD

where E + (p, &lt;t&gt;p)={qeH: d{p9q)^d(4&gt;p9q)}. The set E(p, 4&gt;p)={qeH: d(p,q)
d((j)p9 q)} is a bounding side for Rp if Rp is a proper subset of P) E + {p, ij/p).

THEOREM A. Let M=H/D be a complète nonsimply connected surface without
conjugate points. Then thefollowing are équivalent.

1) n1(M) is finitely generated.
2) For some peH the fundamental domain Rp has only afinite number of bounding

sides.

3) For every peH the fundamental domain Rp has only afinite number of bounding
sides.

As a corollary we obtain

This research was supported in part by NSF Grant GP-43246.
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THEOREM B Let M be a complète nonsimply connectée surface without con-

jugate points For each peM let G2(p) be the set ofpoints q in M for which there are

exactly two shortest geodesics from p to q Then G2 (p) is nonempty for each p and each

connectée component of G2(p) is an open différenttable arc Moreoxer the following
statements are equn aient

1) n1(M) is finitely generated
2) For somepeM, G2(p) has afinite number of connected components
3) For every peM, G2(p) has afinite number of connected components
I am grateful to the référée for pointing out that the attempt to generalize theorems

A and B to arbitrary dimensions fails m dimension 3 by theorem 1 of [8] See also

page 410 of [12]
A further conséquence of theorem A is

THEOREM C Let M be a complète nonsimply connected surface without con-

jugate points and with finitely generatedfundamental group Then for each point p in M
there are at most afinite number ofpoints q in M for which there exist three or more
shortest geodesics joining p to q

We do not know if the converse to theorem C is true We remark that there exists

at least one shortest géodésie joinmg any two distinct points p, q of M since M is complète

If q lies in the cutlocus of p, then there are at least two but at most a finite
number of shortest Connecting geodesics since M has no conjugate points

In each of the theorems A, B and C ît suffices to consider the case that M=HjD is

noncompact If M is compact then n1 (M) is finitely generated and each fundamental
domain Rp^H has only a finite number of bounding sides A proof of the second

assertion is contamed m the discussion m section two The first assertion follows from
the second in view of the proof of the statement 2) -»1) in theorem A

The paper is organized as follows Section 1 contains basic définitions and notation

For convemence we assume that ail manifolds M and Riemannian metrics g
are C00 Section 2 contains the statements of basic properties of the fundamental
domains Rp The proofs of thèse statements form the hardest part of the paper and
because of their length are found in the appendix, section 4 In section 3 we prove
theorems A, B and C Theorems B and C follow quickly from theorem A and the
facts from section two The proof of theorem A is reminiscent of the method used by
Marden to prove theorem 2 of [11] In fact, theorem A can also be denved from that
resuit in the orientable case See the remark at the end of section 3

§1. Preliminaries

In this section we establish notation and hst some basic facts M will always dénote
a complète connected Riemannian manifold with Riemannian structure &lt; &gt;,

Riemannian metnc d( and sectional curvature K Let TM dénote the tangent
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bundle of M and Tp(M) the tangent space to M atp. If veTM is given let yv:R-^M
be the géodésie suchthat y&apos;v(0) v. The mapexp/,:7rrp(M)-^Mgiven by expp(v) yv(\)
is the exponential map at/?. In this paper ail geodesics are assumed to hâve unit speed
and to be defined on the entire real line unless otherwise indicated. A géodésie segment
is a géodésie defined on a compact interval [a, b~\. A géodésie ray is a géodésie defined

on [0, oo].
A manifold M is said to hâve no conjugate points if there exists no nontrivial

Jacobi vector field that vanishes twice on some géodésie y of M. If M is simply con-
nected, then there is a unique géodésie joining any two distinct points of M. In the
sequel H will dénote a simply connected and M an arbitrary complète two dimensional
manifold without conjugate points. M can be written as a quotient surface H/D,
where H is the universal Riemannian cover of M and D is a freely acting, properly
discontinuous group of isometries of H. D will always dénote such a group. Each non-
identity élément of D has infinité order since Zp does not act properly discontinuously
on RM for any primep and any integer n^\ [10].

DEFINITION 1.1. If p and q are distinct points of //, let ypq dénote the unique
géodésie such that ypq(0)=p and ypq(a) q, where a d(p, q). Let V(p, q) dénote the
unit vector y^(0).

Since H^R2 is two dimensional one may define the left and right half planes
determined by a géodésie y of H. Since H is orientable we may assign an orientation
to each tangent space Tp{H) that varies continuously with/?. A basis {vl9 v2} ofTp(H)
is positively oriented if the orientation of Tp(H) that it détermines agrées with the
given orientation for Tp{H) and is negatively oriented otherwise. H—y consists of
two connected components for any maximal géodésie y of H. Each of thèse compo-
nents is convex in the sensé that it contains the unique géodésie segment between any
two of its points.

DEFINITION 1.2. Let y be a maximal géodésie of H. A point p in H—y lies to
the right (left) of y if for some number t the pair of unit vectors {V(yt,p), y&apos;(t)} is

positively (negatively) oriented relative to the fixed orientation of H. The points lying
to the right (left) of y constitute the right (left) halfplane determined by y.

Note that the orientation of the pairs {V(yt,p), y&apos;(t)} is continuous in t hence

constant.

DEFINITION 1.3. An end of a Hausdorff space X is a function e that assigns
to each compact subset K&apos; ofX a connected component s (Kf ofX- K&apos; with the further
requirement that e(K&apos;)^e(L) if K&apos; çL. A subset U of X is a neighborhood of an end e

if U contains e(K&apos;) for some K&apos;. A séquence of points pn converges to an end e if each
neighborhood of s contains pn for sufficiently large n.
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In a noncompact Hausdorff space Xa divergent curve y: [0, oo)-»Xdétermines an
end e of X; for each compact subset ^ofMdefine e(K) to be the connected component
of X— K that contains a terminal segment of y. A curve y is divergent if for any compact

set C^X there exists a number T=T(C)&gt;0 such that y/eZ-C for t&gt;T.

If M is a noncompact surface with finitely generated fundamental group, then it
is known [1], [9] that M is homeomorphic to a compact surface with a finite number
of points removed. Each end of M corresponds to one of thèse missing points and
has a neighborhood U homeomorphic to a punctured disk or equivalently a half
cylinder S1 x(0, oo).

§2. Fundamental Domains

In this section we deflne for every point/? in H and for every freely acting, properly
discontinuous group D of isometries of H, a canonicalfundamental domain for D with
center p. We dérive basic properties of fundamental domains that are well known if H
is the hyperbolic plane but which require more discussion in this gênerai case. We also
relate the fundamental domain with center/? to the eut locus of n(p) in the quotient
surface M=H/D.

DEFINITION 2.1. Let Z) be a freely acting, properly discontinuous group of
isometries of H. For any point/? in if the canonicalfundamental domain for D with center

/?, denoted Rp, {qeH:d(p, q)^d(&lt;j)p, q) for ail &lt;j) in D}.
It is easy to see that the interior of Rp, denoted Int(i?p), {qeRp:d(p, q)&lt;d{(j)pi q)

for every &lt;/&gt; # 1 in Z)}. Also dRp9 the boundary of Rp, {qeRp:d(p, q) d(4&gt;pi q) for
some (j) # 1 in D}. Hence dRp is contained in the union of the equidistant sets E(p, &lt;/&gt;/?),

(f)eD, where E(p, &lt;l&gt;p)={qeH: d(p, q) d(&lt;t&gt;p, q)}. Now, for each ^ in D and each

point p in H define E + (p, 4&gt;p) to be {qeH: d(p, q)^d(&lt;j)p, q)}. By définition then

&lt;t&gt;eD

We remark that Rp is starshaped relative to p; that is if qeRp then the géodésie
segment ypq is contained in Rp. This assertion follows from the fact that for each (j&gt;eD the
function r-*d(p, r) — d{(\)p, r) is nondecreasing on geodesics starting at/?, which
implies that each set E+ (p, &lt;j&gt;p) is starshaped relative to p.

DEFINITION 2.2. We say that an equidistant set E(p9 $p) is a bounding side for
Rp if Rp is a proper subset of

n E+(
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The définitions and discussion so far apply to a manifold H of arbitrary dimension.
The next définition is motivated by the fact that in dimension two the sets £&quot;(/?, (\&gt;p) are
differentiable curves in H that meet transversally if at ail.

DEFINITION 2.3. A point q in Rp is a vertex of Rp if it lies on the intersection of
two distinct bounding sides of Rp.

The proper discontinuity of D implies that only finitely many of the sets E(p9 $/?),

0eZ), meet any given compact subset of H. Since two distinct sets E(p, (j&gt;p) and
E(p9 \j/p) intersect in at most one point by Proposition 2.8 below, it follows that only
finitely many vertices of Rp lie in any given compact subset of H.

We next briefly describe the eut locus at a point/? of an arbitrary complète Rieman-
nian manifold M. If M has no conjugate points, then we relate the eut locus at p
to the canonical fundamental domain for D with center p in //, where M=H/D and

np=p, n:H-+M.
Let M be a complète Riemannian manifold of arbitrary dimension, and iet p be a

point of M. If S(p) dénotes the sphère of unit vectors in Tp(M) let/: S(p) -&gt; [0, oo]
be given by /(V) sup{f^0: d(p, expp(tv)) — t}. The function/is known to be con-
tinuous on the extended real numbers, and hence it has a positive lower bound on
S(p) [3].

The eut locus at/?, denoted C(/?), is defined to be {expp(/(i;)- v): veS(p)^Tp(M)}.
The eut locus at p is a closed subset of M, and f(v) measures the distance from p to
C(p) in the direction v.

DEFINITION 2.3&apos;. A point qeC(p) is a vertex of C(p) if there are at least three
distinct shortest geodesics from p to q.

We shall show later in corollary 2.15 that a point qeRp is a vertex of Rp if and

only if q nqeC(np) and q is a vertex of C(np). If qeC(p), then it is known [3] that
either there are at least two distinct shortest geodesics from p to q, or q is conjugate
to p along some shortest géodésie segment from p to q. If M has no conjugate points,
then the second case does not occur, and furthermore there are only finitely many
shortest geodesics from/? to q. If M H/D, where H is the universal Riemannian
cover of M and D the deckgroup of M, then it is straightforward to verify the following
assertions.

1) For any point pin H, a point q lies in the interior of Rp if and only if there is a

unique shortest géodésie in M from np to nq.
2) n:H-±M maps the interior of Rp onto its image in a one-one fashion.
3) n:H -+M maps Rp onto M and maps 3Rp onto C(np).
4) If qeRp is a vertex of Rp, then 7rg lies in C(np), and 7i# is a vertex of C(7c/&gt;).

For a more refined study of the eut locus of a compact surface with curvature
e [2].
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We return to a study of the fondamental domain Rp9 especially its boundary. To
do this we will need to establish certain properties of the equidistant sets E(p, q)

{reH: d(p9r) d(q, r)} for any pair of distinct points p and q in H. The set

E(p, q) is a géodésie if H is the hyperbolic plane. In the gênerai case E(p, q) is no
longer a géodésie but retains some properties of a géodésie. First, E(p, q) is a C00 one
dimensional submanifold of H since it is the zéro level set of the function g(r) —

d(p, r)—d(q, r), which is C00 on H— {puq}. Note that the gradient of g is nonzero
at any point r in E(p9 q) since the gradients of r-*d(p,r) and r-+d(q,r) point
radially outward from p and q respectively if&gt;#/? and r^q. Precisely, thèse gradients
are — V(r,p) and — V(r, q).

In the remainder of this section we omit the proofs of the results to make reading
easier. The proofs may be found in section 4, the appendix.

We first defîne the canonical parametrization of E(p, q). Actually there are two
such parametrizations ; if a is one then a*:J-»a( — f is the other. This parametrization
has also been used in [6].

PROPOSITION 2.4. Let p and q be distinct points in H. Then there exists a
continuons, one-one map a:R-»H such that a(R) E(p, q), a(0) is the midpoint of the

segment ypq and d(p, oct)=\t\ + t0/2for every teR, where to d(p, q).

PROPOSITION 2.5. The canonical parametrization oc of an equidistant set E(p, q)
is C™ at every number t^O.

We now describe some of the properties of geodesics of H that are retained by the

equidistant sets E(p, q).

PROPOSITION 2.6. Let p andqbe distinct points in H. Then H-E(p, q) consists

oftwo connected components. The components containing p and q are starshaped relative
to p and q respectively. Any maximal géodésie containing p or q meets E(p, q) at most
once.

PROPOSITION 2.7. Let p and q be distinct points in H and let a be the canonical

parametrization of E(p, q). Then lim^^F^, cet) and limf^_00F(/7, otf) exist and are
distinct. If y1 and y2 are the geodesics whose initial velocities are thèse limits, then the

maximal geodesics yt and y2 do not intersect E(p, q). The same assertions hold ifp is

replaced by q.

PROPOSITION 2.8. Let p, q and r be distinct points in H. Then E(p, q)nE(q, r)
contains at most one point.

The resuits above prépare one to study the properties of the bounding sides of a

fundamental domain Rp in H with center p, relative to a freely acting, properly dis-
continuous group D of isometries of H.
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PROPOSITION 2.9. The boundary of a fondamental domain Rpfor D with center

p is contained in the union of the bounding sides.

COROLLARY 2.10. Rp is the intersection of those sets E + (p, &lt;j&gt;p) such that
E(p, 4&gt;p) is a bounding sidefor Rp.

PROPOSITION 2.11. Let E(p, &lt;f&gt;p) be a bounding side of Rp. Then E(p, 4&gt;p)nRp

is nonempty and consists of a subarc,finite or infinité, of the arc E(p, (j)p). If q is an
interior point of E(p, (j)p)nRp9 then q is not a vertex of Rp. If E(p, 4&gt;p)nRp is

nonempty for some (j)^l such that E(p, &lt;j&gt;p) is not a bounding side, then E(p, &lt;j&gt;p)r\Rp is

a single point.
The next resuit shows that the bounding sides of a canonical fundamental domain

may be identified in pairs.

PROPOSITION 2.12. Let E(p, #) be a bounding sidefor Rp. Then Rp n E(p, 0&quot;1/?)

0~1 {RpnE(p, (j)p)}. In particular E(p, &lt;l&gt;~lp) is also a bounding side for Rp.
The next results characterize the vertices of Rpp.

PROPOSITION 2.13. IfqeôRp is a vertex of Rp, then q lies on the intersection of
exactly two bounding sides of Rp.

PROPOSITION 2.14. A point qeRp is a vertex of Rp ifq lies in the intersection of
any two distinct equidistant sets E(p, 0/?) and E(p, \j/p) that are not necessarily bounding
sides of Rp.

COROLLARY 2.15. Let qedRp be a point such that n(q) is a vertex ofC(np), the
eut locus at n(p) in M=HjD. Then q is a vertex of Rp.

Thèse last results show that there exists an élément &lt;j&gt; # 1 in D such that E(p, (j&gt;p) n Rp
is a single point q if and only if for some point q in Rp there are at least four distinct
shortest geodesics from n(p) to n(q) in M=H/D. If there exist at least four shortest
geodesics from n{p) to n(q) in M, then there exist at least three distinct, nonidentity
éléments 4&gt;u &lt;/&gt;2 and $3 in D such that qeE(p9 4&gt;tp) for /= 1, 2, 3. One of thèse equi-
distants sets cannot be a bounding side of Rp by proposition 2.13, and therefore it
intersects the set Rp in exactly the point q. Conversely if E(p, 4&gt;p) n Rp is a single point
q for some &lt;/&gt;^ 1 in D, then qedRp and q lies in some bounding side E(p, \j/p) by
proposition 2.9. By proposition 2.14 q is a vertex of Rp and since E(p, (j&gt;p) is not a

bounding side of Rp there exists by proposition 2.13 a third élément f # 1 in D such
that E(p, Çp) is a bounding side and qeE(p, £/?). Therefore there are at least four
shortest geodesics from np to nq in M=H/D. For a discussion of this possibility in
the case that M is compact with curvature K= -1 see [2].
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§3. The Main Results

In this section we prove the theorems A, B, and C stated in the introduction. For
the proof of theorem A we shall need the following resuit in which we make no as-

sumption about conjugate points.

LEMMA. Let M be a complète, noncompact Riemannian manifold of dimension

two. Let U be an unbounded open set in M that is homeomorphic to S1 x (0, oo), and let

peM—Obe given. Let pn be a divergent séquence ofpoints contained in Ufor large nfor
which there exist distinct shortest geodesics yn and an joining p to pn. Then infinitely

many of the loops at p given by ocn a~lfyn are homotopic.

Proof Passing to a subsequence we may assume that pneU for ail n and there

exist geodesics y and a (possibly equal) such that )C(0)-*/(0) and 0^(O)-kt&apos;(O) as

«-?oo. The geodesics y and a start at p and are distance minimizing on [0, oo).

Dénote dU=S1 x {0} by C. We may assume that C is parametrized as a nonsingular
C00 curve; merely replace Uby S1 x (1, oo) and replace S1 x {1} by a nonsingular C00

curve from the same homotopy class that lies in S1 x (0, oo). Since C is compact we

may defineto&gt;0 sxxp{t&gt;0:yteC} SLndso&gt;O sup{t&gt;O:ateC}. By further altering
C if necessary we may assume that y and a meet C transversally at t0 and s0 respectively.

Letting cn d(p,pn) we define tn $wp{O&lt;t^:Cn:ynteC} and 5rt sup{0&lt;^cn:
anteC}. Since y and &lt;r meet C transversally it follows that tn-+t0 and sn-+s0 as

n-+oo. Moreover ynteU for tn&lt;t^cn and anteU for sn&lt;t^cn sincc pneU. Note that
cw-* + oo since pn is a divergent séquence. Finally, yteU for t&gt;t0 and ateU for
t&gt;s0.

Parametrize C on [0, 2tt] and let ani bn be those numbers in [0, lit] such that
yn(tn) C(an) and (Tn(sn) C(bn). The points yn(tn) and 0n(sn) are distinct for large n
since yn and an are minimizing on [0, cn~]. By passing to a subsequence and relabeling
if necessary we may assume that an &lt; bn for every n. Let Cn dénote the restriction of C
to \an, bn~]. Let y*, yn dénote the restrictions of yn to [0, fw] and [?„, cn~] respectively.
Let a-*, ân dénote the restrictions of on to [0, sn~] and [sn, cn~\. Let y* and a* dénote
the restrictions of y and a to [0, ?0] and [0, ^o]- We may write the loop oin cr~1yn

as a product of two loops at p, an=[(o-)*~1 -#ncr*] An9 where An* (a)~1 Cny* and
Bn=(ân)~i(yn) C&apos;1. The curve Bn is a simple closed curve since yn and cTn intersect C

only at tn and sn by the définition of thèse numbers and intersect each other only at
Pn=:yn(cn) (Tn(cn) s^nc^ Jn anc* &lt;*n are minimizing on [0, cw]. Since Bn lies in Û, a
closed half cylinder, and is a simple closed curve an application of the Jordan curve
theorem shows that Bn is homotopic either to a point or to the curve C&quot;1, which
wraps around the cylinder exactly once. Passing to a subsequence the loops {o*)~x
Bna** are homotopic either to a point for ail n or to the loop (c*)&quot;1 C&quot;&quot;V* for ail n.
For large n the loop An is homotopic to the loop (ff*)&quot;1 C*y*, where C* is a point if
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y &lt;t and is the restriction of C to [a, Z&gt;] if y ^ &lt;x, where C(a) y(/0) and C(b) a(s0).
Therefore the loops ccn are homotopic to each other for large n.

We now begin the proof of theorem A. The assertion 3)-&gt;2) is obvious. We show
that 2)-&gt;l). Let S= {0eD:0(i?p)ni?p is nonempty}, where i?p is a fixed fundamental
domain in H with a finite number of bounding sides. We assert that S is a flnite set,
and assuming that this has been proved we apply theorem 29.4 (i) of [4, p. 184] to
conclude that S is a generating set for D.

Suppose that S is an infinité set. By removing a finite number of éléments from S

we may assume that for each &lt;j&gt;eS9 E(p, 4&gt;p) is not a bounding side of Rp. By proposition

2.11^(Rp)nRp Rpn E(p, &lt;j&gt;p) is a single point q for &lt;/&gt;eS. Since qedRp it foliows
that q lies in some bounding side of Rp by proposition 2.9. Hence q must be a vertex of
Rp by proposition 2.14. The proper discontinuity of D implies that only finitely many
0 e S détermine the same vertex (j)(Rp)nRp, and therefore Rp has infinitely many
vertices. However, Rp has only finitely many vertices since any two distinct bounding
sides intersect at most once by proposition 2.8. This contradiction shows that S is a
finite set and complètes the proof. One may also show that if 0l5..., (j)k are those
éléments of D such that E(p, &lt;£,/&gt;), 1 &lt;/^A:, are the bounding sides of Rp, then the
éléments &lt;f&gt;u..., (j&gt;k are a set of generators for D.

We now prove that l)-»3). Let peH be given and suppose Rp has an infinité
number of bounding sides E(p, (j)np), w=l, 2,.... Choose a point pneE(p, cj)np)nRp,
which is possible by proposition 2.11, and htpn n(pn). By the choice of pn the geo-
desic segments ^n n°y&lt;j&gt;np,pn and yn n°yppn are distinct shortest geodesics in M
from p np to pn. By elementary covering space facts no two loops ocn a~1yn and
am — ^m1ym are homotopic ifm # n since &lt;/&gt;„ ^ &lt;/&gt;m. Ifwe pass to a subsequence the points
/?„ converge to some end A of M since the séquence pn is divergent. Since Tii(M) is
finitely generated it is known that M is homeomorphic to a compact surface with a
finite number of points removed. For a surface of this type each end A has a neigh-
borhood U homeomorphic to a punctured disk or equivalently to S^x^, oo).
Applying the lemma above we obtain a contradiction.

We now prove theorem B. Let peM be given, and let pen~1(p)9 n:H-*M, be

arbitrarily chosen. By définition G2(p) equals the eut locus of p, C(p), minus the
vertices of C(p). By the discussion following définition 2.3&apos;, G2(p) is the image under n
of the boundary of Rp minus the vertices of Rp. By proposition 2.9 and 2.11 the set
SRp minus vertices of Rp is the union of the interiors of the differentiable arcs

p&gt;
where E(p9 &lt;f)p) is a bounding side of Rp. To show that G2(p) is a

disjoint union of open differentiable arcs it suffices to show that if E(p, Qp) n Rp and
E(P&gt; ^p)nRp are distinct boundings arcs of Rp, then the images under n of their
interiors are either disjoint or identical. Suppose that thèse images intersect for some
&lt;t&gt;, ^eZ). Then there exists a point q in the interior of E(p, (j&gt;p)r\Rp and an élément
£¥* 1 in D such that Çq lies in the interior of E(p9 ij/p) n Rp. Define geodesics segments
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yi^noytP.&amp;^noyp.t-tw 72 *°7^&gt; y3 ^o^f« and y^noy^^noy^-^. By
the choice of 0, \j/ and £ it follows that thèse are ail shortest geodesics in M from/&gt; to
qz=n(q). The point q is not a vertex of Rp since it lies in the interior of E(p, &lt;j&gt;p) n Rp,

and therefore q is not a vertex of C(p). It follows that at most two of the geodesics

7i&gt; 72? 73? y4 are distinct. By inspection y2¥&quot;ys and y2¥zy4- Hence 73 74, which

implies that £ 0~1. Similarly yi/y3 and since y2¥^y3 it follows that 7i=y2&gt; im&quot;

plying that ^&quot;^ 1. Therefore ^ (/&gt;~1 and E(p9xl/p)nRP (j)-1 {E(p, (j)p)nRp}
by proposition 2.12. Therefore the images under n of the interiors of E(p, &lt;f)p)nRp

and E(p9 ij/p)nRp are identical.
Suppose now that M is a complète surface without conjugate points and that

n1(M) is finitely generated. Let peM be given, and let peH, pen~1(p), be chosen

arbitrarily. By theorem A Rp has a finite number of bounding sides, and by the
discussion above it follows that G2(p) has a finite number of connected components.
Thus l)-&gt;3) in theorem B. Clearly 3)-»2). The discussion above also shows that
each connected component of G2 {p) is the image under n of exactly two bounding
arcs of Rp. If G2(p) has a finite number k of connected components for some peM,
then Rp has 2k bounding sides for any pen~1(p). By theorem A nl(M) is finitely
generated and we hâve proved that 2)-&gt;l).

We now prove theorem C. Let M be a complète surface without conjugate points
and with finitely generated fundamental group, and let peM be given. If qeM is a

point for which there are at least 3 shortest geodesics from p to q, then by définition q
lies in the eut locus, C(p), of p and is a vertex of C(p). Let pen~l(p) be arbitrary.
By corollary 2.15 and the discussion in section 2, q=n(q)9 where q is a vertex of Rp.

By theorem A Rp has only a finite number of bounding sides. It follows that Rp has

at most a finite number of vertices since a vertex lies in the intersection of two bounding

sides, which must be a single point by proposition 2.8. Therefore C(p) has a finite
number of vertices, which complètes the proof of theorem C.

We do not know if the converse to theorem C is true although we suspect that it is.

In principe it might be possible to hâve a deckgroup D of isometrics of H for which
each fundamental domain Rp has an infinité number of bounding sides, only finitely
many of which intersect. The quotient surface HjD would then hâve an infinitely
generated fundamental group, but each eut locus C(p) would hâve only a finite
number of vertices.

Remark. Theorem A can be derived from theorem 2 of Marden [11] in the case

that M is a noncompact, nonsimply connected orientable surface. Since M is orientable

it has the structure of a Riemann surface, and M is therefore diffeomorphic to a

quotient A/G, where A is the open unit disk in the complex plane and G is a freely
acting, properly discontinuous group of fractional linear transformations preserving
A. If g is a metric without conjugate points in M, then the covering map n:A-+M
induces a metric n*g without conjugate points in A, and the éléments of G are iso-
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metries of the metric n *g. The results of section 2 of this paper show that the canonical
fundamental domains in A determined by G are fundamental régions in the sensé of
Marden. Therefore if G ^ nx (M) is finitely generated, then each canonical fundamental
domain has finitely many bounding sides by Marden&apos;s theorem 2. This shows that 1)

implies 3) in theorem A and the other assertions follow as above.

§4. Appendix

In this section we give the proofs of the results stated in section 2.

Proof ofproposition 2.4. We shall need

LEMMA 2.4. Let p and q be distinct points of H, and let to d(p, q). Then there
exists a unique point z in E(p, q) such that d(p, z) d(q, z) tol2, and moreover,
d(y9 p)^d(z,p) for any yeE(p9 q). If t*&gt;to/2 is any number, then there are exactly
two points zu z2 in E(p, q) such that d(p, z1) d(p, z2) t*.

Proof Let y be the maximal géodésie ypq. If z is the midpoint of the géodésie
segment ypq between p and q, then d(p, z) d(q, z) to/2. The uniqueness of z and the
fact that d(y9p)^d(z9p) for every yeE(p, q) follow immediately from the triangle
inequality. Let H be given a fixed orientation. Given t*&gt; toj2, let P : [0, Â] -&gt; H be a
unit speed parametrization of the circle of center p and radius t* such that (1(0) and
P{A*), 0&lt;A*&lt;A, are the two points of this circle that lie on y and /?:(0, A*)-+H
parametrizes the semicircle lying to the left of y. Let J(t) d(q, pt). Since P(t)^q for
0&lt;t&lt;A* it follows from lemma 2.3 of [5] that Jf(t)= -&lt;j8&apos;(0&gt; HPt,q)&gt;&gt; Since
P&apos;{t) is orthogonal to the vector V(fit,p) for every t and since V(Pt,p) and V(pt9 q)
are not collinear for 0&lt;t&lt;A* it follows that Jf(t)^O in this interval. Since /(0)
fo + ** and/(y4*)=|f0 — t*\&lt;t* by a sui table choice of P, it follows that there exists a

unique number s with 0&lt;s&lt;^4* such that d(p, (ïs) d(q, fis) t*. Similarly there is a

unique number sf with A*&lt;s&apos;&lt;A such that d(p, fis) d(q, psf) t*. The points fis
and ps&apos; are on opposite sides of y.

We now complète the proof of proposition 2.4. Given distinct points/? and q in H,
let a(0) be the midpoint of the segment ypr Let t&gt;0 be given. Relative to a fixed
orientation of H, let oc(t) be the unique point to the right of ypq such that a(f) lies in
E(p, q) and d(p, at) t + fo/2, where t0 d(p, q). Let a( -1) dénote the unique point in
E(p, q) such that a(-1) lies to the left of ypq and d(p, a(-t)) t + tol2. This defines a

map a:R-+E(p, q) which is a homeomorphism. The proof is complète.
Proof ofproposition 2.5. The set E(p, q) is a C00 one dimensional manifold since

it is the zéro level set of the function r-+d(p, r)-d(q, r), which is C00 on H- {puq}
and whose gradient is never zéro on E(p, q). Given a number t&gt;0 let /?:(-£, e)-&gt;

-&gt;£(/?, q) be a nonsingular C00 map such that p(O) oc(t). The C00 function &lt;/&gt;(w)

=^(A pu)=d(q, Pu) is nonsingular at w 0. If this were not the case, then the vectors
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V(P0,p) and V(PO, q) would both be perpendicular to /?&apos;(0), which would imply that

p, /?0 and q are collinear, contradicting the fact that /?(0)=a(f), /&gt;0. If h(s) is the

inverse function of 0, then h is a C00 diffeomorphism of some neighborhood J of
t + tol2 onto some neighborhood / of 0, /ç( — s, s). It follows that d(p9 fi(hs)) s for
ail s in /, and therefore a(s—toj2) p{h{s)) for ail s in /. Hence a is C00 at every num-
ber f&gt;0.

Proof of proposition 2.6. Let g.H-*R be given by g(r) d(p, r) — d(q, r). It is

clear that £(/?, q) g~l(0) and that the two components of H—E(p, q) are the sets

A1 {r:g(r)&gt;0} and^42= {r:g(r)&lt;0}. The set AX is starshaped relative to q since g
is nonincreasing on every géodésie starting at q, and A2 is starshaped relative to p
since g is nondecreasing on every géodésie starting at p.

Suppose now that y is a unit speed géodésie with y(0)=p such that y meets E(p, q)
twice at times s#0, /#0. There are two cases: 1) qey and 2) q$y. In the first case

y ypq, Now */(/?, yt) — d(q, yt) vanishes for only one value of t since p, q and y(t) are

always collinear. Suppose now that q$y. Then q, ys and yt are not collinear. If s and f
both hâve the same sign with |7|&gt;|s|, then d(p, yt) d(q, yt)&lt;d(q, ys) + d(ys, yt)

d(p, ys) + d(ys, yt) d(p, yt), a contradiction. Suppose that s and t hâve opposite
signs. Then d(ys, yt)&lt;d(ys, q) + d(q, yt) d(ys,p)-\-d(p, yt) d(ys, yt), another
contradiction. Similarly no géodésie containing q can meet E(p, q) twice.

Proof ofproposition 2.7. We prove the assertions only for the point/». The curve

f(t)= V(p, at) is a continuous map of R into S1, the unit vectors in Tp(H). Since any
maximal géodésie through p meets E(p, q) at most once it follows that / is one-one

and/(R) contains no pair of antipodal points. Therefore /(R) is an open arc in S1 with
distinct endpoints v1=limt_+o0 V(p, cet) and v2 limf_&gt;00 V(p, cet). Suppose now that
the maximal géodésie yx intersects E(p, q) at yi(s) cc(t) for some numbers s and t.

If s&gt;0 then v1 yi(0)= V(p, cet) is an interior point of /(R), which is impossible.

If s&lt;0 then — v1 V(p, at) is an interior point of/(R), which implies that /(R)
contains a pair of antipodal points near {v1? — vt}, a contradiction. Therefore yx does

not meet E(p, q). Similarly y2 does not meet E(p, q).

Proof ofproposition 2.8. We shall need some preliminary results.

LEMMA 2.8a. Letp, q, r be distinct points in H. Let h&apos;.H-*Rbe the function given
by a^d(r, a) — d(q, a), and let a be the canonical parametrization of E(p, q). Then

ho a has at most one relative maximum or minimum point. If ho a has a
relative maximum or minimum point at t0 eR then either

1) r=a(ï0)
2) r$a;p, r and a(t0) are collinear with p and r on the same side of a or
3) r£a; q, r and a(t0) are collinear with q and r on the same side of a.

Proof. If r lies in a, say r a(t*), then the triangle inequality implies that ho a has

a strict global minimum at t*. Assuming that the latter part of the lemma has been

proved it follows that in this case ho a has no relative maximum or minimum at t0 ^/*.
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Suppose now that ho ce has a relative maximum or minimum at t0 and that r ^a(t0).
Then h is C00 in a neighborhood of a(/0). If to 0 then a is not C°° at /0, but in any
case we can find a C00 diffeomorphism &lt;x:( — e, s)-+E(p, &lt;?)suchthat a(0) a(ro)since
E(p, q) is a C00 submanifold. Therefore 0 (/?&lt;&gt; a)&apos; (0) &lt;(j&apos;(0), grad/?(otf0)&gt; since /?o&lt;x

has a relative maximum or minimum at t0. Define g : H -+ R by g(a) d(p9 a) — d(q, a).
Since ^(p, ^r)=g~1(O), g°a=0 and thus 0 (g°(r)&apos;(0) O&apos;(0), gradg(afo)&gt;. Since
a&apos;(0) is nonzero it follows that either

i) (gradg) («/&lt;&gt;) 0,

ii) (grad/?)(afo) 0, or
iii) (gradg) (atQ) and (grad/?) (a/0) are both nonzero and collinear.

If a^p and a^q, then (gradg) (a) exists and equais — V(a,p)+ V(a, q). In particular
gradg is nonzero at ail points of E(p, q) so case i) does not occur. If a^r and a^q,
then (grad/?) (a) exists and equais — V(a, r)+ F(a, ^). The point a(t0) is neither/? nor
q, nor r by assumption so that both gradg and gmdh exist at a(t0). If (grad/?) (afo) 0

as in case ii), then V(at0, r)= V(&lt;xt0, q), which implies that q, r and a(f0) are collinear.
Moreover r does not lie on a since no géodésie through q intersects E(p9 q) twice.
Hence q and r lie on the same side of a. Finally suppose that (gradg) (otf0) and (grad/?)
(a/0) are both nonzero and coliinear. If the unit vectors V(cct0, r), V(ato,p) and
V(at0, q) are ail distinct, then it is easy to see from the expressions above that (gradg)
(otf0) and (grad/?) ((xt0) are not collinear, a contradiction. Hence V(cct0, r)= V(&lt;xto,p)

(implying that grad/? gradg at a(/0)). Thus p, r and a(f0) are collinear with/? and r
lying on the same side of a. The point r cannot lie on a since no géodésie from/&gt; meets

E(p, q) twice. This property of geodesics through/? or q now implies that /?oa has at
most one relative maximum or minimum upon inspection of the possibilities 1), 2), 3)
of the lemma.

LEMMA 2.8b. Let p, q, r, h and a be as in the previous lemma. Then one of the

following must occur:
1) h o a has a unique global minimum at some number t0, and hoais strictly monotone

on(-&lt;x),t0)and(t0,co)
2) h o a has a unique global maximum at some number t0, and hoccis strictly monotone

on(-co9t0)and(t0i oo)
3) ho ce is strictly monotone on R.

Moreover,
1) occurs if r a(t0) or ifq, r, a(f0) are collinear with q and r on the same side ofa,

and r between q and a(t0) or ifp, r, ct(t0) are collinear with p and r on the same side of
oc, and r between p and a(f0),

2) occurs ifq, r, a(f0) are collinear with q and r on the same side ofa, and q between

r and cc(t0) or ifp, r, a(f0) are collinear with p and r on the same side ofa, andp between

randa{to\



36 PATRICK EBERLEIN

3) occurs ifr and q lie on the same side of a and yqr does not meet a or ifr and p lie

on the same side of a and ypr does not meet ce

Proof. If ho a has no relative maximum or minimum on R, then it is one-one and
hence strictly monotone on R. If ho a has a relative maximum or minimum at a number

t0, then by the previous lemma it is one-one hence strictly monotone on the intervais

(—00, t0) and (t0, oo). Therefore t0 is a global maximum or minimum.
We now consider the various cases in which thèse possibilities occur. We hâve

already observed that 1) occurs if r a(/0) for some t0. Suppose now that r does not
lie on oe. If q and r lie on the same side of ce and yqr does not meet a, then ho ce has no
relative maximum or minimum by the previous lemma and hence case 3) occurs.
Suppose now that q and r lie on the same side of ce and yqr meets a at ce(t0) (only one
intersection is possible). Ifr lies between q and ce(t0), then for any seR (ho a) (s) —(ho ce)

(to) d(r, as)-d(q, as)-d(r, ato) + d(q, &lt;xto) d(r, as)-d(q, as) + d(q, r)^0. Hence

case 1) occurs. If q lies between r and ce(t0), then (^a) (s)-(hoa) (to) d(r, ces) —

— d(q, ces) — d(q, r)^0. Hence case 2) occurs. The various cases where p and r lie on
the same side of a are handled in a similar fashion. Note that d(q, as) d(p, as) for ail s.

We begin the proof of proposition 2.8. We show fîrst that E(p, q)nE(q, r) con-
tains at most two points. This is équivalent to showing that ho ce is zéro at most twice.

If h o ce had at least three zéros, however, then it would hâve at least two relative maxima

or minima, which is impossible by lemma 2.8a.

Let P dénote the canonical parametrization of E(r, q). Suppose that E(p, q)n
r\E(r, q) contains two points ^(to) P(to) and &lt;x(ti) P(t1). By replacing ce if necessary
by the other canonical parametrization of E(p, q), t-+ce( — t), we may assume that
t0 &lt; tx and ?0 &lt; h • Now let S1 dénote the unit vectors in Tq (H). Define continuous curves

Ji - [t0, h] -&gt; S1 and y2: [ï0, ït] -&gt; S1 by setting y±(t)= V(q, at) and y2(t)= V(q, fit).
Let z1 y1(t0) y2(t0) and z1 yl(t1)=y2(t1). Then y1 and y2 are both one-one arcs
in S1 joining zt to z2, since each géodésie from q meets a or P at most once. Therefore
either

1) ^1 or

Suppose that case 1) holds. Then any géodésie y starting at q intersects a [f0, t{\ u
vP\jo, ti&apos;]^E(p9 q)uE(q, r) at least twice, including one intersection point of the
form y(t), t&gt;0 and one point of the form y(tf), t&apos;&lt;0. Consider the géodésie y such

that y&apos;(0) limf_+oo V(q, yt). By proposition 2.7 y never intersects a E(p, q), so that
y must intersect p E(q, r) at least twice by the preceding remark. This contradicts
the fact that any maximal géodésie through q meets E(q, r) at most once, and hence

case 1) is eliminated.

Suppose that case 2) holds. Choose any number te(t0, tt). By hypothesis the geo-
desic yqat meets /?(ï0, ïj) in some point fi(t*), and f}(t*)ï£a(t) since E(p, q)nE(q9 r)
consists of the points a(/0), a(^). If /?(**) lies between q and a(t), then q and a(t) lie
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on opposite sides of E(q, r). Hence a(/0, /x) and q lie on opposite sides of E(q, r).
If ot(t) lies between q and p(t*), then it follows similarly that P(t0, t^) and q lie on
opposite sides of E{p, q). We shall only obtain a contradiction to the first possibility
since the second reduces to the first by interchanging the rôles of p and r.

We are given that ct(t0, tt) and q lie on opposite sides oîE(q, r). Define a continuous

map q: \t0, t1&apos;]-&gt;E(q, r) by setting g(t) equal to the unique point of intersection of
yqat with E(q, r). The fact that yt y2, the hypothesis of case 2), implies immediately
that the point sets ^[r0, ^] and /?[fo&gt; hl are equal. Let g:H-+R be given by g(a)

d(p, a) — d(q, a). Then g(qt)&gt;0 for any number te(t0, tt) since g(t)lies between^
and a(t) and g is strictly monotone decreasing on the segment yqat. Therefore
(g°P)&gt;0 on (t0, ti), which implies thatg°/?has a global maximum in (?0&gt; ^1) by lemma
2.8b and the fact that go fi vanishes at ?0 and 11. Lemma 2.8b implies further that either

i) ypq meets E(q, r) in a point z and q lies between p and z or
ii) ypr meets E(q, r) in a point z, and r lies between p and z.

We treat thèse cases separately.
If i)holds then g (z) &lt;/(/?, z)-d(q, z) d(p, q)&gt;0. Thus z p(t) for some t in

(?o&gt; ?i) since (gojÇ)^o on (— oo, ?0] and [?l9 oo). If ^*g(^0, rjis that number such that
P(t) Q(t*), then yp9 meets E(p, q) twice, once between p and q and once at a(?*),
which is beyond z f}(t) Q(t*). This contradicts the fact that any géodésie from p
meets E(p, q) at most once.

Suppose that ii) holds. Then ypr meets E(p, r) at a point y between p and r and
meets E(r, q) at a point z as assumed. The point r is thus an interior point of the
segment yyz. Now if u and v are the points of intersection ofE(p, q) and E(r, q) then they
are equidistant from/?, q and r and hence also lie in E(p, r). Let ô be the canonical pa-
rametrization of E(p, r) with w ^(r*), v ô(t*) and t*&lt;tf. As in case 1) earlier we
let S1 dénote the unit vectors in Tr{H). Define continuous curves ôl : [f0*, * *] -* S1 and
^2:(A» hl^S1 by 51(r)=K(r, ôt) and S2(t)=V(r, fit). Then ^ and &lt;52 are both
one-one arcs in S1 joining V(r, u) to V(r, v). Either

1) Sluô2 Sl or
2) ^1 &lt;52.

The case 1) is impossible by the same argument used earlier in the proof. Suppose that
&lt;5i=&lt;52. We show first that ^e^[/0*, &apos;f] and ze^[?0, ?i]- By the définition of z, gop
has a global maximum at ^*, where /?(/*) z, and **e(ïo&gt; ïi)- Moreover, K(r, z) is an
interior point of ô2. Now ô2 does not contain any pair of antipodal points of S1 ; if
V(r, a) and V(r, b)= - V(r, a) both lay in S2 for points a, b in ^[ï0, ïj, then the
géodésie 7flb=yrfl=yrb would intersect E(q, r) at a and b, contradicting the fact that
any géodésie containing r meets E(q, r) at most once. Therefore ô2 is an arc in S1 of
length &lt;tt. The fact that V(r, z) is an interior point of ô2, whose endpoints are V(r, u)
and V(r, v), now implies that u and u lie on opposite sides of the maximal géodésie
yrz ypr. Now ô [**, fi*] is a curve joining u to i; so 5 must intersect ypr in a point y*.
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Since ypr meets E(p, r) in the points y and .y* it follows that y=y*. Thus yeS[t$,tf].
The previous work has shown that V(r, y)eô1 and V(r, z) — V(r, y)eô2. Since

Sl ô2 by hypothesis, the géodésie yyz yrz yry meets E(p, r) (and E(q, r)) twice, on
opposite sides of the point r. This contradiction complètes the proof of the proposition.

Proof ofproposition 2.9. We hâve already observed that ôRp is contained in the

union of the sets E(p, 0/?), 0eZ&gt;. Let a point qedRp be given. The proper discontinuity
of D implies that q is contained in only finitely many equidistant sets E(p, 0f/?),

l^i^n. Since only finitely many of the sets E(p, (f&gt;p) meet any compact neighborhood
of q, it follows that for a sufficiently small open set 0 containing q and any 0eZ&gt; —

-{0i,..., 0»}, 0^lntE + (p, (f)p)= {reH:d(p, r)&lt;d((f)p, r)}. Choose xeO-Rp; this
can be done since qedRp. Moreover, let/?, q and x be noncollinear. The géodésie
segment ypx meets dRp, and in fact if ypx intersects E(p, 0/?) then 0e{0l9..., 0W} by the

way in which 0 was chosen. Now ypx meets each of the sets E(p, 0,/?) at most once so
there are a finite number k &lt; n of intersections of ypx with [Jni= x E(p, 0,-/*). Let ypjc(f,-),

K/&lt;fc, be thèse intersections, where tt&lt;ti+u and let r be that integer such that
ypx(t1)eE(p, (j)rp). Note that ypx{tx) lies in exactly one of the sets E(p, 0f/?) since the

unique point of intersection of any two sets E(p, 0f/?), E(p, (frjp) is q.
We assert that E(p, 0r/?) is a bounding side. Let t * e(^, f2) be arbitrary. Ifz ypx(f *)

then the géodésie segment ypz intersects E(p, 4&gt;rp) but not E(p, 4&gt;p) if 0^0r, 0#1.
Therefore J(/?, z)&lt;d((pp, z) if 0 ^0r, 0 ^ 1 and ze f| ..E&quot;^ (/?, 0/?). However z^i?p since

ypz intersects E(p, 0r/?), implying that J(/?, z)&lt;d((j&gt;rp, z). This proves that E(p, &lt;j)rp)

is a bounding side.

Proof of corollary 2.10. If ^4 dénotes the intersection of thèse sets it is clear from
the définition of Rp that Rp^A. If Rp were a proper subset of A, then for any point q
inA — Rp the géodésie segment ypq would meet ôRp in a point q* in the interior of ypq.

By the preceding resuit q* lies in some bounding side E(p9 cj)p), which implies that
points on ypq beyond q*, in particular q, lie in H—E + (p, 0/?). This contradicts the

hypothesis that qeA^E+ (p, &lt;j&gt;p).

Proof ofproposition 2.11. We first establish the following

LEMMA 2.11. If RpnE(p, (j)p) is nonempty, then RpnE(p, (j)p) is an arc con-
nected subset ofE(p, 0/;).

Proof We may assume that Rp n E(p, 0/?) contains at least two points, for other-
wise the resuit is vacuously true. Let qt and q2 be two points in E(p, (j&gt;p) n Rp. Giving
E(p, (j&gt;p) the canonical parametrization a, we know that qt a(s) and q2 oc(t) for
some numbers s and t. We may assume that s&lt;t. If a(u)eH—Rp for some number u
with s&lt;u&lt;t, then ol{u)eH—E*(p,\j/p) for some nonidentity élément ^#0. Let
f:H-&gt;R be the function given by f(r) d(p,r)-d(\j/p,r). Now f(ocs)^O and

since a(^) and a(t) lie in Rp. On the other hand /(aw)&gt;0 by hypothesis.
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Hence /°a equals zéro at some points s* and t* with s^s*&lt;u&lt;t*^t. Therefore
E(p, (pp)nE(p, \pp) contains the distinct points &lt;x(s*) and a (7*), contradicting proposition

2.8. Therefore a[&gt;, t]^RpnE(p, (pp).

We begin the proof of proposition 2.11. Suppose that E(p, (pp)nRp is nonempty
but E(p, (pp) is not a bounding side of Rp. Assuming that E(p, (pp) n Rp contains more
than one point we see by the previous lemma that E(p, (pp) n Rp consists of an entire
subarc of E(p, (pp). Let q be an interior point of E(p, (pp)n Rp&gt; and choose a number
8&gt;0 such that the set A BE(q)nE(p, (pp) is a compact subarc of E(p, (pp) that is

contained in Rp. In particular A^dRp. (BE(q) dénotes the closed bail of radius e and
center q in H). Let ipl9..., \j/k be those éléments of D such that E(p, ij/ip), l^i^k, are
the only bounding sides of Rp that intersect A. The élément (p is not equal to ipi for
any / since E(p, (pp) is not a bounding side of Rp. Hence E(p, (pp)nE(p, ipip) is at
most one point for each i by proposition 2.8. Therefore the set A — U^=i E(p&gt; ^iP) is

an infinité set. Let r be an arbitrary point of point of A — U?=i E(p&gt; ^iP)- Proposition
2.9 implies that r lies in some bounding side of Rp since redRp. However, the only
bounding sides of Rp that meet A are E(p, ipip), l&lt;/&lt;&amp;, contradicting the choice of r.
Therefore E(p, (pp)nRp is a single point.

Next let E(p, &lt;f&gt;p) be a bounding side of Rp. We show first that E(p, 4&gt;p)n&gt;Rp is

nonempty. By définition there exists a point q in Ç\ E + (p, ij/p) — Rp. Let q* be the

unique point of intersection of the géodésie segment ypq with E(p, (pp). We claim that
q*eE(p, 4&gt;p)r\Rp. For every \j/ in D the set E+ (p, \j/p) is starshaped relative to/?, and

any géodésie from p that meets E(p, \j/p) leaves E + (p9 xjjp) after intersecting E(p, \j/p).
If \j/^z(j) it follows that q*eE+ (p9 ij/p) but not in E(p, if/p) since qeE+(p, xj/p). Since

q*eE(p, 0/?)ç£ + (/7, ftp) by the choice of q* it follows that q*eRpn&gt;E(p9 (j&gt;p).

We show that Rp contains a set U such that q*eU^E(p, (f&gt;p) and U is open in
E(p, (j)p). If this were not the case, then we could find a séquence ofpoints q* ç (H— Rp)
n£(/7, (pp) that converges to q*. Therefore we could find a séquence (j)n^D such that
(pn^cj) and d((j)np, q*)&lt;d(p, q*) for every /?. There are only finitely many distinct
éléments &lt;/&gt;„ by the proper discontinuity of D since the points &lt;/&gt;„(/?) are a bounded
séquence in H. Passing to a subsequence we may assume that 0n ^7é0 for every «.
Since E(p, \j/p) is closed q*eE(p, if/p), which contradicts the fact proved above that
q*&lt;£E(p, ij/p) if \j/ jzcj). Since £(/?, (j&gt;p)nRp contains more than one point it consists of
an entire subarc of Rp by the previous lemma.

Finally we show that no interior point of E(p9 (pp) n Rp can be a vertex of Rp.
Suppose that q is a vertex of Rp and also an interior point of E(p, (pp) n Rp for some
bounding side E(p, (pp). By the définition of vertex there exists an élément \j/^=(p in D
such that E(p9 \pp) is a bounding side for Rp and qeE(p, #). Relative to canonical
parametrizations a, p for E(p, (pp), E(p, xj/p) we can write q a(to) P(so). There
exists by hypothesis an e&gt;0 such that octeE(p, (pp)nRp for \t-to\&lt;e. Since
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E(p9 \jsp) n Rp is an arc there exists some Ô &gt;0 such that p(s)eRp for ail se [s0 — ô9 Sq]

or ail sel/o, ^o + ^]- Hence there exists t^t0 such that \t — to\&lt;e and ypat intersects

E(p, ij/p)nRp in a point q*. However ateSRp also and since any géodésie from p
meets 3Rp at most once it follows that cct q*. This implies that both q and q* lie in

£(/?, (f&gt;p)nE(p, xj/p), contradicting proposition 2.8.

Proof of proposition 2.12. We show first that if qeE(p9 (j&gt;p)nRp then (j)~lqeRp
nE(p, &lt;/&gt;~V)- Let such a point q be given. Clearly (j)~1qeE(p9 (j)~ip) so it suffices to
show that 4&gt;~1qeRp. For any nonidentity élément \j/ in D we know that d(^/?, &lt;f&gt;~lq)

d((j)\l/p9q) ^d(p9 q) d((j)p9 q) d(p9 (j)~lq). Therefore 4&gt;~lqeRp9 and this implies
that 0&quot;1 {E(p, (j)p)nRp}Ç:E(p, (j)~1p)nRp. Reversing the rôles of 0 and (j)~l we see

that cj){E(p,(l)~1p)nR]p}^E(p,(l)p)nRp, which implies that E(p, (j)~lp)nRp^
c^r1 {£(/?, (t)p)r\Rp} and proves that £(/?, (j)~1p)nRp (t)~1 {E(p, 4&gt;p)nRp}. The
set £(/?, cj)p)nRp is an arc by the preceding resuit, hence £(/?, (j)~~1p)nRp is an arc.
This implies that E(p, (j)~1p) is a bounding side for i?p, again by the previous resuit.

Proof ofproposition 2.13. Let q be a vertex of /Êp and suppose that g lies on three

distinct bounding sides L1=E(p, 4&gt;ip), L2 E(p9 4&gt;2P) and L3 E(p, 4&gt;3p). Fix an

orientation of the tangent space Tp(H), and set v= V(p9 q). For each positive number
s we let B+ (v)={weTp(H):\\w\\ l and (K£(&gt;, w&gt;)&lt;e} and jB8&quot;(i?)= {werp(//):
||w|| l and -e&lt; £(î;, w)^0}. By £ (u, w)&gt;0 (respectively &lt;0) we mean that the

pair {v, w} is positively (respectively negatively) oriented relative to the given orientation

of Tp{H). Since L{ is a bounding side of Rp for each / the point q is an endpoint of
some arc f}t contained in LtnRp. Therefore for each /= 1, 2, 3 we can find a number
et&gt;0 such that one of the following two possibilities occurs:

i) For any vector weB* (v), yw intersects LtnRp.
ii) For any vector weB~ (v), yw intersects LtnRp.

Since we hâve three bounding sides Li9 L29 L3 we can fînd an s&gt;0 such that one of
the half neighborhoods of v, say B* (v)9 corresponds to two of the bounding sides.

Dénote thèse sides by L and L&apos;&apos;. Now LnL&apos; {q} by proposition 2.8 so that ifwe J5e+ (v)
is not equal to v9 then yw meets LnRp and L&apos;r\Rp in distinct points r and r&apos;. The

points r and r
&apos; both lie in ôRp. However, any géodésie y from p intersects dRp in at

most one point q9 for \îqeE{p9 (j&gt;p) for some (j) ^ 1 in D9 then ail points on ypq beyond
q lie in H—E+(p9 (f&gt;p). We hâve obtained a contradiction to our assumption that q
lies in three bounding sides of Rp.

Proof of proposition 2.14. Since qedRp9 q lies in some bounding side E(p9 £/?),

ÇeD, by proposition 2.9. One of the éléments {&lt;£, \j/}9 say &lt;j&gt;, is not equal to £. If
£(/?, 0/?) is a bounding side of Rp9 then we are done so we may suppose that E(p9 (j)p)

is net a bounding side of Rp. By proposition 2.11 E(p9 cj)p)nRp is the single point q.
Let a be the canonical parametrization of E(p9 (j&gt;p)9 and let f.H-&gt; R be the function
r-+d(Çp9 r)—d(p9 r). Now q ct(t0) for some number f0, and hence (/oa) 0. Since
Çp # &lt;j&gt;p lemma 2.8a implies that /o a is nonzero at any relative maximum or minimum
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point. Therefore (f°oc) has no relative maximum or minimum at t0, and lemma 2.8b

implies that/oa is strictly monotone in some neighborhood U oî t0. Therefore either
i) (/oa)0)&gt;0 for t&gt;t0, teU or
ii) (/oa)(0&gt;0 for t&lt;t0, teU.

Without loss of generality we may assume that i) occurs. Let tn be any séquence of
numbers suchthat tn&gt;t0 for eachw and tn-&gt;t0 as «-? oo. If qn a(tn), then qneH— Rp
since E(p, &lt;j)p)r\Rp q a(t0). By assumption (f°oi)(tn) d(Çp, qn)-d(p, qn)&gt;0 for
large n. The géodésie segment yMn meets dRp in a point rn, and by the triangle in-
equality d(p, rn) ^ d(p, rn) 4- d(rn9 qn) + d(rn, Çp) - d(qn, Çp) d(p, qn) - d(Çp, qn) +
d{rn, Çp)&lt;d(Çp, rn). Hence rn does not lie in £(/?, £/?) for large n. Since rn is a bounded

séquence in the boundary of i?p, proposition 2.9 and the proper discontinuity of D
imply that by passing to a subsequence we can find an élément \j/ ^^ in D such that
rneE(p, \j/p) for ail n and E(p, \j/p) is a bounding side of Rp. Passing to a further
subsequence we may assume that rn converges to a point r in E(p, ij/p). Since rn lies on the

géodésie ypqn for every n it follows that r lies on the géodésie ypq. Hence ypq meets d/?p

at both q and r, and this implies that r q since a géodésie starting at/? can meet ôRp
at most once. Therefore q lies on the distinct bounding sides E(p, \j/p) and E(p, Çp),

which by définition means that q is a vertex of Rp.
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