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Simplicity of the projective unîtary groups defined by simple factors

P. de la Harpe

Let 26 be a C*-algebra with unit and let (7(38) be the group of ail its unitary
éléments. Assume that the center of 28 is reduced to the set of scalar multiples of
the identity, and identify the center of 1/(38) with the group S1 of complex
numbers with modulus +1. The projective unitary group of 28 is the quotient
Pl/(38) of 1/(38) by S1 [2]. We want to find conditions on 26 for this group to be

simple.
Suppose 26 has a non trivial two-sided idéal 3>\ it is easy to check that Pl/(38)

is not simple, and the argument runs as follows. First, 3 is not dense with respect
to the norm topology (because éléments near 1 are invertible in 26), so that the
closure $ of $ is a non trivial self-adjoint idéal in 26 [8, prop. 1.8.2]. Then the
kernel of the natural map (7(38) -* 1/(98/^) is neither the whole of L/(38), because

it does not contain ail éléments near 1, nor a subgroup of S1, because it contains
(1 — x2)1/2 + ôc if x is self-adjoint in $ with small norm. Hence this kernel defines a

non trivial normal subgroup of PU(38).
From now on, we shall assume that 26 is a von Neumann factor. If 26 is not

countably decomposable Pl/(38) cannot be simple; see [7, chap. I, §1, exerc. 7].
We shall consequently assume that 28 is countably decomposable.

If 26 is infinité and semi-finite, then it has a non trivial two-sided idéal (for
example that generated by ail finite projections), and Pl/(38) is not simple. More
can be said about normal subgroups of Pl/(38) in this case: see [11] for type L
and a later note for type IL; but this is not our main purpose hère. If 26 is finite
and discrète, say 38 =Mn(C) with n a positive integer, it is well-known that any
normal subgroup of PU(38) contains the simple group PSU(n). The proof follows
closely the analogous one for orthogonal groups, which seems to appear first in E.
Catan [4]; the best référence is E. Artin [1, chap. V, §2]; there is a discussion of
the unitary case in Dieudonné [6, chap. VI].

In the remaining cases, 28 is known to be simple. Though this will follow from
our main theorem, see [7, chap. III, §5, n° 2] for type 1^ and [7, chap. III, §8,

exerc. 1] for type III. Kadison has shown that Pl/(38) is topologically simple in
thèse cases, with the topology defined by the norm [12, th. 2]; but he left open the
"algebraic" simplicity of Pl/(38), though asserting the interest of the problem (see

334



Simplicity of the projective unitary groups 335

the final remark in [12]). Kaplansky revived the question when he proved that the
derived group of the projective gênerai linear group of a factor of type 1^ is

algebraically simple; but his methods do not apply to the projective unitary group
([13, appendice IV], and [14]).

The object of the présent paper is to show the following

THEOREM. If 08 is either of type D^ or of type III (and countably décomposa-
ble), then PU(ffl) is a simple group.

The proof splits naturally into two parts. Let fbea normal subgroup of
which is not contained in the center S1. The first part consists of checking that F
contains at least one involution (namely a self-adjoint unitary) which is not trivial
(namely neither +1 nor -1); this is an élaboration of the standard proof that
PSU(2) SO(3) is simple. The second and easiest part consists of checking that
Fcontains ail involutions; this involves playing with the dimension function of the
factor Ôâ. The conclusion follows since the involutions generate ail of L/(â8)

according to a theorem of Broise [3, th. 1], which is due independently to
Fillmore in the purely infinité case [10, corollary to th. 3, which applies indeed to
any properly infinité von Neumann algebra].

I am grateful to A. Haefliger and V. Jones for helpful conversations and to the
"Fonds national suisse de la recherche scientifique", who has partially supported
this work.

On the group of rotations

We recall the standard proof that SO(3) is a simple group. This will be done in
a way preparing the introduction below of a continuous parameter.

We view SO(3) as a compact group acting on the unit sphère S2 of Euclidean

space. This sphère is endowed with its usual metric, which is invariant by SO(3)
and for which diametrically opposite points are at a distance of tt from each

other. The distance ô(P, Q) between two points of S2 is always measured on S2,

never in R3. Any élément g e SO(3)—{1} leaves fixed exactly two points called the
t

pôles of g; any point on the corresponding equator is then moved to a point at a
distance of ag, which is the angle of the rotation g, and which is identified to a

real number in ]0, tt]. The set il of rotations with angle not zéro and strictly
smaller than ir is homeomorphic to the complément of a point in an open 3-cell.
The orientation on JR3 makes it possible to sélect continuously one of the two
pôles fixed by a rotation in il: this will be the north pôle Ng of g e fl, so that the
south pôle Sg —Ng is also defined.
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Given two points P and Q on S2 at a distance a from each other with
a g ]0, tt[ there is exactly one rotation gPO with angle a which maps P onto Q,
because P and Q are on a well-defined great circle. It is important to observe that
gPQ dépends continuously on the pair (P, Q), and that the conjugacy class of gPQ

dépends only on ô(P, Q).
Consider geO and a point Po on the equator between JVg and Sg. The

Archimedean property of real numbers makes it possible to find a finite séquence
CP,)i^n of points in S2 with Pn -Po and with 8(P^l9 P}) ag for j e{1,..., n}.
The following construction of thèse points fits our purpose.

Chose an odd integer n 2fc +1 with nag ^ tt. Let L be the half great circle
containing Po, Pi g(P0) and Pn —Po. Divide the arc of L between P! and Pn

into fc arcs of equal length; thfe defines P3, P5,..., P2k-i with ô(P2j_1? P2l+i)
(l/fc)(ir - ag) for / e {1,..., fc}. Choose such an integer / and let Q] be the point half

way between P2/-i and P2j+i. If nag tt, define P2j to be Qp if nag > tt, there are
exactly two points on the perpendicular bisector M, of P2j_!P2j+1 at a distance ag
from P2,_i, and P2j is going to be one of them. As M, is a great circle orthogonal
to L, each of thèse points is the image of Q, by a rotation having M, as equator
and an angle strictly less that tt; each of thèse rotations thus has its pôles on the

great circle containing L ; choose P2j to be the image of Q, by the rotation which
has its north pôle nearer Po than Pn. The points Pl9 P2,..., Pn are now ail
defined; they dépend only on g, on Po and on n.

It is elementary to check that, given two pairs (P', P") and (Q', Q") of points
on S2 with S(F, P") ô(Q', Q"), there is one rotation mapping P' to Q' and P" to
Q": consider for example the product of any rotation mapping P' to Q' with a
rotation for which Q' is a fixed point. Moreover, if 8(P',P")<it, this rotation is

clearly unique.
For each j e {1,..., n}, let us describe the rotation fc7 which maps Po onto P,_x

and Pt onto Pr There are well-defined segments of great circles on S2 between Po

and P,_! on the one hand and between Pt and P, on the other hand. Thèse hâve

perpendicular bisectors which intersect at exactly two points of S2. And there is

one rotation fc, with thèse points as pôles, with angle strictly less than tt, which

maps Po onto P,_i. By the existence and unicity resuit recalled just above, fc, maps
also Pj onto Pr Define then h, kjgk'1 (with kt 1 and hx g). Then h, is the
unique conjugate of g in SO(3) which maps P,-! onto Pr The product of the h,'s

maps Po onto —Po, and is thus a half-turn.
It follows that any normal subgroup of SO(3) containing more than one

élément contains one half-turn. It is straightforward that two half-turns are
conjugate inside SO(3) and that any rotation in SO(3) is the product of two

' half-turns. Hence the (abstract) group SO(3) is simple.
Let N and S be two diametrically opposite points on S2, let e be a real
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number with 0<e^ir/2, and let <o be the subset of SO(3) consisting of those
rotations with angle in [e, ir — e] and with N as north pôle. If n is an odd integer
with ne ^ tt, the construction above can be made simultaneously for ail rotations
in w; this provides n-tuples of continuous functions

f co -> S2 fo> -» SO(3) feu -* SO(3)

with the following properties: for each /e{l,...,n}, the rotation h,(g)
fcj(g)gfc,(g) x

maps Pj-i(g) to P,(g). Hence the product of the hj(g)'s maps Po to
—Po for each geco. We hâve essentially proved the fact formalized in Lemma 1

below.
Consider the covering r : S1 —> S1 which multiplies angles by two. We assume

in Lemma 1 that the topological space T has the following property; for any
continuous map f:T—> S1, there is a lifting F.T-^S1 with rF f. For example,

any space with vanishing Cech cohomology group H1^, Z) qualifies.

LEMMA 1. Let T be a compact space with the property above, let SO(3, T)
dénote the group of ail continuous maps from T to SO(3) with pointwise
multiplication, and let F be a normal subgroup of SO(3, T). Suppose F contains an
élément y with the following properties: the angle a(t) of y(t) is in ]0, tt[ for each

teT and the north pôle of y(t) does not dépend on t. Then F contains any constant

map.

Proof. The map a being continuous and the space T compact, there exists

ee]0, tt/2] with e^a(t)^7r~e for ail te T. The argument above shows that
there exists also k e SO(3, T) with k(0 moving some point Po (independent of f)
to its opposite for each t g T. In cartesian coordinates with Po on the first axis, this
is expressed by the fact that

r1 ° ° \k(0 0 cos0(O sin0(O I

\ 0 sin0(O -cos0(O/

for ail t g T, where 0 : T —» S1 is some continuous function. (For each t g T, there is

one Une in the plane spanned by the second and the third axis which is fixed by
k(0; if the second axis and this Une define the angle <p'(t), then 0(0 2<p'(0; note
that there is no a priori choice between <p'(0 and (pr(t)±ir, but that 0(0 is

well-defined.)
Let <p : T—» S1 be a continuous function with 2<p(0 0(0 (hère does enter the
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assumption on T). Define p e SO(3, T) by

(10
0 v

0 cos <p(f) sin <p(t) 1

0 —sin <p(t) cos <p(t)J

for ail te T. It is routine to check that picp~x is the constant map onto

r1 ° °\.
0 10\ 0 0 -1/

As F contains one constant map with value a half-turn, it contains also any
constant map with value a half-turn, hence F contains ail constant maps.

The spécial unitary group in a homogeneous von Neumann algebra of type I2

In what follows, T is a compact space which has the property stated just
before Lemma 1, and si is the abelian C*-algebra of continuous maps from T to
the complex numbers. The C*-algebra M of continuous maps from T to the
matrix algebra M2(C) will be identifiée with the algebra of (2 x 2)-matrices with
entries in si. We shall consider the subgroup SU(2, T) of the unitary group of M
which consists of ail continuous maps from T to SU(2). The maps with values in
{4-1,-1} define a central subgroup of S(7(2, T); we do not assume that T is

connected and this group may hâve more than two éléments. We identify the
associated quotient with the group SO(3, T) defined in Lemma 1 (this is possible
since any continuous map from T to SO(3) lifts to SU(2) by hypothesis on T).
The canonical epimorphisms S1/(2) -» SO(3) and SU(2, T)-> SO(3, T) are both
denoted by p.

We assume moreover that T is a stonean space ; this means that the closure of
any open set is again an open set. This happens for example if T is the Gelfand
spectrum of an abelian von Neumann algebra si; in this case, M is also a von
Neumann algebra which is called homogeneous of type I2. It is elementary to
check that T being stonean implies H1(T, Z) {0}, so that Lemma 1 applies.

LEMMA 2. Let f be a normal subgroup of Sl/(2, T). Suppose f contains an
élément y such that y p(y) maps any teT to a rotation y(t) of angle in ]0, tt[.
Then t contains the constant map with value —1.
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Proof. As T is stonean, theorem 2 in [9] shows that y is conjugate within
SU(2, T) to an élément which maps any t e T to a diagonal matrix. It follows then
from Lemma 1 that the image F of f by p contains any constant map, and in
particular that which applies T onto

Hence there is an élément kef and a partition VU V of T in two disjoint open
sets such that

if f e T' and

if teV. Lemma 2 follows because k2 is in f.

LEMMA 3. Let fbe a normal subgroup of S 1/(2, T) which contains more thon
one élément. Then there exist pef and XeM—{0} with pX — X.

Proof. Let y e f with y 9e 1 and let 7 p(y).
Suppose first that 7 1. Then there is a partition V U T" of T in disjoint open

sets such that y(t) 1 if teT and y(t) -1 if f e T"; as 75* 1 the set T" is not
empty. Define p y and XeM by X(f) 0 if feT' and X(t) l if t€Tw.

Suppose next that 7 is such that 7(0 is a half-turn for r in some non empty
(open and closed) subset Tt of T and is the identity for tt Tx. One shows as at the
end of the prooof of Lemma 1 that t contains a map k with k p(k) having the
following properties: #c(f) is a constant half-turn when te Tx and is the identity if
ti Tt. Define p k2, so that

««¦Ci -!)

if teTl9 and chose for X any non zéro map which restricts to zéro outside iy
Suppose finally that there exists toe T with the angle of y(t0) neither 0 nor tt.

Then there exists e e ]0, it/2[ and an open and closed neighbourhood Tt of t0 such
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that the angle of 7(0 is in [e, v — e] for each t e TV One may then apply Lemma 2

above TV As there is no obstruction to extend maps defined on Tx to ail of T, the
assertion to be proved is again correct in this case.

Involutions in non central normal subgroups of

We shall now connect what we hâve established about SU(2, T) with unitary
groups defined by factors.

Consider an infinité dimensional factor 28 and its unitary group L/(S9). The
following fact is an easy corollary of the spectral theorem: let g g (/(£$) and let n
be a positive integer; then there exist fc orthogonal équivalent projections
Pl9..., Pn in 28 commuting with g and adding up to 1.

Indeed, let g JJ"" exp (iq>) dE^ be the spectral décomposition of g[15, n° 109].
Say first that 28 is finite. Let ifr be the smallest number in [0, 2tt] with the
dimension of E^ in Sa being at least 1/n. If dim (E^) 1/n, let Pt E^. If
dim(£^)>l/n, let F be any projection in 28 of dimension (1/n) — dim (JE^o)
which is majorized by E^ — E^_o and let Px E^_o + F. Then Px commutes with g
and has dimension 1/n. Define similarly P2,..., Pn, orthogonal and commuting
with g. As Pt,..., Pn hâve the same dimension, they are équivalent in 28; as their
dimensions add up to 1, their sum is the identity. One may proceed similarly when
28 is infinité.

Suppose moreover that g is not a multiple of the identity and that n ^2; it is

important to notice that Pl9..., Pn are not ail associated to the same portion of
the spectrum of g, so that Ptg,..., Png are not ail unitarily équivalent. This
construction of the P/s overlaps partly with lemmas 3 and 4 in [3].

LEMMA 4. Let F be a normal subgroup of 1/(39) which is not contained in the

center S1. Then there exist keT and X, Y e & -{0} with kX X and kY- Y.

Proof. Choose geF with g£S1. Let Pl9 P2, P3 be three équivalent orthogonal
projections commuting with g and adding up to the identity. Define g, gPj

(j 1,2, 3); as g is not central, one may assume that g2 and g3 are not unitarily
équivalent. It may help to think of g as being the matrix

/gi 0 Ov

o g2 or
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Let Wbea partial isometry in 28 with initial projection P3 and with final
projection P2, which corresponds to

If V Px + W+ W*, then V is in 17(98) and h g* VgV* is an élément in F which
commutes with the P/s. Let h2=g2*Wg3W* and Ji3 g3*W*g2W then h2^P2
and h3 5e P3 since g2 and g3 are not unitarily équivalent; notice that h3 W*h2*W.
One may think of h as being the matrix

Let si be the (abelian) von Neumann algebra generated by h and let
si<8)M2(C) be as before Lemma 2. Then

defines a normal isomorphism from M onto a subalgebra of the réduction of 28 to
3bp2+p3 (notations as in [7, chap. I, §2, n° 1]). We identify M with its image; if T is

the spectrum of si, this identifies SU(2, T) to a subgroup of 1/(38).
Now {y e SU(2, T) \ Pt + y e r\ is a normal subgroup of Sl/(2, T) which con-

tains h, and the conclusion follows from Lemma 3 (with, for example, X P1).

PROPOSITION 1. Let&bea factor (not of dimension 1 or 4), let t/(3B) be the

group of ail unitary éléments ofB, and let Tbea normal subgroup of l/(Ô8) which is

not contained in the center S1. Then F contains a non trivial involution.

Proof. Notice that the proposition is classical for 38 =Mn(C) with n^3, and

assume from now on that 88 is infinité dimensional.
Let H be the Hilbert space associated to some faithful finite state on 28 by the

Gelfand-Naimark-Segal construction. As H is a completion of 28, Lemma 4
shows that F contains some k with both +1 and —1 in its point spectrum. The
projections from H onto Ker(fc-l) and Ker(fc + 1) are thus non zéro,
orthogonal éléments of 38. It follows that there exist an integer n ^ 3 and a family
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Pl9..., Pn of orthogonal équivalent projections commuting with fc, adding up to
the identity, with Pt(H) cKer (fc-1) and P2(H) cKer (fc + 1).

One may furthermore find matrix units (JE^J)1^lJ^n in S8 with EJJ=PJ
(/ 1,..., n), so that each élément in 9& can be identified with a (n x n)-matrix
having its entries in PX^PX. In particular

fc

-1

Now permutation matrices are in 1/(38). As F is normal, the product

/l
-1

V /-l \*

-1
-1

\ 1.

is also in F.

This ends the first part of the proof of the main theorem, as described in the
introduction.

End of proof of the main result

Let S* be a factor and let D be a normalized relative dimension on 2S; see [7,
chap. III, §2, prop. 14]. Let J be an involution in 9&; it can be written J=1-2E
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with E a well-defined projection. The type of J is the pair (p, q) with p D(l—E)
and q=D(E). If 28 is continuous and finite, p+q l; if SS is infinité and
semi-finite, p + q oo; if 28 is purely infinité and if J is not trivial, p q <».

LEMMA 5. Lef Si be a countably decomposable factor and let J,K be two
involutions in Sft. Then J and K are conjugate in [7(38 if and only if they are of the

same type.

Proof. This follows from well-known facts on projections. See [7, chap. III, §2

and corollary 5 of §8].

PROPOSITION 2. The projective unitary group of a purely infinité and countably

decomposable factor is simple.

Proof. Let Sbea factor of type III and let F be a normal subgroup of
which is not contained in S1. Then F contains a non trivial involution by
proposition 1, so that F contains ail involutions by Lemma 5. It follows that
F= 1/(38): see Broise [3, th. 1] or Fillmore [10, corollary to th. 3].

LEMMA 6. Let Sft be a factor of type II and let E be a projection in 98 with
E^O and E* 1. Let rbea real number with 0<r^D(E) and r^D(l-E). Then
there exists Ve 1/(38) such that F EVEV* is a projection with D(F) D(E)-r
and D(l-F) D(l-E) + r.

Proof. Let F be a projection in 28 with D(P) r and P^E (such a P exists by
[7, chap. III, §2]). Let Q be a projection in £8 with D(Q) r and Q^l-E. AsP
and Q are équivalent, there exists a partial isometry S in 28 with S*S=P and
SS* Q; as P and Q are orthogonal, one has S2 SQ PS 0.

Define W E-P + S + S* W*. It is routine to check that W2 E + Q, so

that V W+(l—E — Q) is an involution in 28. It is again routine to check that
VEV E-P + Q, so that F EVEV is a projection of the desired type.

Notice that Lemma 6 is empty if 26 is of type IL and if both E and 1 — E hâve
infinité dimension. But the same trick shows in this case that one can find
Ve 1/(98) with F EVEV a projection of any desired type.

PROPOSITION 3. The projective unitary group of a finite continuous factor is

simple.

Proof. Let F be a normal subgroup of [/(98) not contained in S1, with 28 of
type II!. Then F contains a non trivial involution, hence an involution of any
given type by Lemma 6, hence ail involutions by Lemma 5. It follows from
Broise's theorem that F= 1/(38).



344 p DE LA HARPE

COROLLARY 1. The unitary group l/(Ô8) of a finite continuous factor admits
no non trivial finite dimensional unitary représentation.

Proof. Consider commutative sets of involutions. Thèse sets hâve at most 2n

éléments in U(n) but their cardinals are not bounded in 17(38). It follows that any
homomorphism <p : £7(38) —> U(n) has a non trivial kernel, and so is the trivial
homomorphism. When <p is moreover assumed to be uniformly continuous, see

[12, th. 1].

COROLLARY 2. Let ^ be a continuous, infinité and semi-finite factor; let F
be a normal subgroup of 1/(38) which is not contained in S1. Then F contains ail
unitaries g for which there exists a finite projection Eg g ââ satisfying g — 1

Proof. The argument used above shows that F contains an involution of type
(p, q) in 26 as soon as p <<». If E is any finite projection in 2ft, it is easy to check
that the réduction of âft to SftE it a factor (this follows for example from [7, chap. I,
§1, prop. 7, cor. 3]). As F contains an involution of {g e 1/(93) | g — 1 e S8E} which
is neither 1 nor 1 — 2J5, Proposition 3 shows that F contains this group.

The analogous statement for a discrète, infinité and semi-finite factor is

proposition 3(i) of [11]. A similar statement holds with 20 a factor of type III
which is not countably decomposable (we are grateful to M. Broise for this
remark).

COROLLARY 3. Countably decomposable factors of types Ili and III are

simple.

Proof. See the introduction.

COROLLARY 4. Let 91 be the hyperfinite factor of type II^ The group of
*-automorphisms of 01 has exactly one non trivial normal subgroup, which is the

group of inner *-automorphisms.

Proof. Let us call a short exact séquence

1 >f-L^g-^>H >1

of groups and homomorphisms trivial if there exists an isomorphism <p such that
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commutes (with ix and p2 the canonical injection and projection respectively). The
following is an exercise for pedestrians in group theory: in a non trivial short exact

séquence as above with F and H simple, the only non trivial normal subgroup of
G is F. (Indeed: let N be a normal subgroup in G with N<t F and suppose there is

feF and neN with fn^nf; then nfn'1^1 is in (FPlN)-{l}, so that FczJV; as

N<t F one has ir(N) H; it follows that N G.)
Corollary 3 follows now from proposition 3 because the group of inner

*-automorphisms of 2& is P(7(â£) and because the quotient Out (2ft) of the group
of *-automorphisms of 2ft by PU(0l) is simple by a theorem due to Connes [5, cor.
4]. (That the short exact séquence of concern hère is non trivial is an easy fact, left
to the reader.)
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