Simplicity of the projective unitary groups defined by simple factors.

Autor(en): Harpe, P. de de
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 54 (1979)

PDF erstellt am: 21.07.2024
Persistenter Link: https://doi.org/10.5169/seals-41581

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Simplicity of the projective unitary groups defined by simple factors

P. de la Harpe

Let \mathscr{B} be a C^{*}-algebra with unit and let $U(\mathscr{B})$ be the group of all its unitary elements. Assume that the center of \mathscr{B} is reduced to the set of scalar multiples of the identity, and identify the center of $U(\mathscr{B})$ with the group S^{1} of complex numbers with modulus +1 . The projective unitary group of \mathscr{B} is the quotient $P U(\mathscr{B})$ of $U(\mathscr{B})$ by S^{1} [2]. We want to find conditions on \mathscr{B} for this group to be simple.

Suppose \mathscr{B} has a non trivial two-sided ideal $\mathscr{\mathscr { F }}$; it is easy to check that $P U(\mathscr{B})$ is not simple, and the argument runs as follows. First, \mathscr{I} is not dense with respect to the norm topology (because elements near 1 are invertible in \mathscr{B}), so that the closure \mathscr{F} of \mathscr{I} is a non trivial self-adjoint ideal in \mathscr{B} [8, prop. 1.8.2]. Then the kernel of the natural map $U(\mathscr{B}) \rightarrow U(\mathscr{B} / \mathscr{F})$ is neither the whole of $U(\mathscr{B})$, because it does not contain all elements near 1 , nor a subgroup of S^{1}, because it contains $\left(1-x^{2}\right)^{1 / 2}+i x$ if x is self-adjoint in \mathscr{g} with small norm. Hence this kernel defines a non trivial normal subgroup of $P U(\mathscr{B})$.

From now on, we shall assume that \mathscr{B} is a von Neumann factor. If \mathscr{B} is not countably decomposable $P U(\mathscr{B})$ cannot be simple; see [7, chap. I, §1, exerc. 7]. We shall consequently assume that \mathscr{B} is countably decomposable.

If \mathscr{B} is infinite and semi-finite, then it has a non trivial two-sided ideal (for example that generated by all finite projections), and $P U(\mathscr{B})$ is not simple. More can be said about normal subgroups of $P U(\mathscr{B})$ in this case: see [11] for type I_{∞} and a later note for type II_{∞}; but this is not our main purpose here. If \mathscr{B} is finite and discrete, say $\mathscr{B}=M_{n}(C)$ with n a positive integer, it is well-known that any normal subgroup of $P U(\mathscr{B})$ contains the simple group $P S U(n)$. The proof follows closely the analogous one for orthogonal groups, which seems to appear first in E. Catan [4]; the best reference is E. Artin [1, chap. V, §2]; there is a discussion of the unitary case in Dieudonné [6, chap. VI].

In the remaining cases, \mathscr{B} is known to be simple. Though this will follow from our main theorem, see [7, chap. III, §5, $\mathrm{n}^{\circ} 2$] for type II_{1} and [7, chap. III, §8, exerc. 1] for type III. Kadison has shown that $P U(\mathscr{B})$ is topologically simple in these cases, with the topology defined by the norm [12, th. 2]; but he left open the "algebraic" simplicity of $P U(\mathscr{B})$, though asserting the interest of the problem (see
the final remark in [12]). Kaplansky revived the question when he proved that the derived group of the projective general linear group of a factor of type II_{1} is algebraically simple; but his methods do not apply to the projective unitary group ([13, appendice IV], and [14]).

The object of the present paper is to show the following

THEOREM. If \mathscr{B} is either of type II_{1} or of type III (and countably decomposable), then $P U(\mathscr{B})$ is a simple group.

The proof splits naturally into two parts. Let Γ be a normal subgroup of $U(\mathscr{B})$ which is not contained in the center S^{1}. The first part consists of checking that Γ contains at least one involution (namely a self-adjoint unitary) which is not trivial (namely neither +1 nor -1); this is an elaboration of the standard proof that $P S U(2)=S O(3)$ is simple. The second and easiest part consists of checking that Γ contains all involutions; this involves playing with the dimension function of the factor \mathscr{B}. The conclusion follows since the involutions generate all of $U(\mathscr{B})$ according to a theorem of Broise [3, th. 1], which is due independently to Fillmore in the purely infinite case [10, corollary to th. 3 , which applies indeed to any properly infinite von Neumann algebra].

I am grateful to A. Haefliger and V. Jones for helpful conversations and to the "Fonds national suisse de la recherche scientifique", who has partially supported this work.

On the group of rotations

We recall the standard proof that $S O(3)$ is a simple group. This will be done in a way preparing the introduction below of a continuous parameter.

We view $S O(3)$ as a compact group acting on the unit sphere S^{2} of Euclidean space. This sphere is endowed with its usual metric, which is invariant by $S O(3)$ and for which diametrically opposite points are at a distance of π from each other. The distance $\delta(P, Q)$ between two points of S^{2} is always measured on S^{2}, never in R^{3}. Any element $g \in S O(3)-\{1\}$ leaves fixed exactly two points called the poles of g; any point on the corresponding equator is then moved to a point at a distance of α_{g}, which is the angle of the rotation g, and which is identified to a real number in $] 0, \pi$]. The set Ω of rotations with angle not zero and strictly smaller than π is homeomorphic to the complement of a point in an open 3-cell. The orientation on R^{3} makes it possible to select continuously one of the two poles fixed by a rotation in Ω : this will be the north pole N_{g} of $g \in \Omega$, so that the south pole $S_{\mathrm{g}}=-N_{\mathrm{g}}$ is also defined.

Given two points P and Q on S^{2} at a distance α from each other with $\alpha \in] 0, \pi\left[\right.$ there is exactly one rotation $g_{P, O}$ with angle α which maps P onto Q, because P and Q are on a well-defined great circle. It is important to observe that $g_{P, Q}$ depends continuously on the pair (P, Q), and that the conjugacy class of $g_{P, Q}$ depends only on $\delta(P, Q)$.

Consider $\mathrm{g} \in \Omega$ and a point P_{0} on the equator between N_{g} and S_{g}. The Archimedean property of real numbers makes it possible to find a finite sequence $\left(P_{j}\right)_{1 \leq j \leq n}$ of points in S^{2} with $P_{n}=-P_{0}$ and with $\delta\left(P_{j-1}, P_{j}\right)=\alpha_{g}$ for $j \in\{1, \ldots, n\}$. The following construction of these points fits our purpose.

Chose an odd integer $n=2 k+1$ with $n \alpha_{g} \geqslant \pi$. Let L be the half great circle containing $P_{0}, P_{1}=g\left(P_{0}\right)$ and $P_{n}=-P_{0}$. Divide the arc of L between P_{1} and P_{n} into k arcs of equal length; this defines $P_{3}, P_{5}, \ldots, P_{2 k-1}$ with $\delta\left(P_{2 j-1}, P_{2 j+1}\right)=$ $(1 / k)\left(\pi-\alpha_{g}\right)$ for $j \in\{1, \ldots, k\}$. Choose such an integer j and let Q_{j} be the point half way between $P_{2 i-1}$ and $P_{2 j+1}$. If $n \alpha_{g}=\pi$, define $P_{2 j}$ to be Q_{i}, if $n \alpha_{g}>\pi$, there are exactly two points on the perpendicular bisector M_{j} of $P_{2 j-1} P_{2 j+1}$ at a distance α_{g} from $P_{2 j-1}$, and $P_{2 j}$ is going to be one of them. As M_{j} is a great circle orthogonal to L, each of these points is the image of Q_{j} by a rotation having M_{j} as equator and an angle strictly less that π; each of these rotations thus has its poles on the great circle containing L; choose $P_{2 j}$ to be the image of Q_{i} by the rotation which has its north pole nearer P_{0} than P_{n}. The points $P_{1}, P_{2}, \ldots, P_{n}$ are now all defined; they depend only on g, on P_{0} and on n.

It is elementary to check that, given two pairs ($P^{\prime}, P^{\prime \prime}$) and ($Q^{\prime}, Q^{\prime \prime}$) of points on S^{2} with $\delta\left(P^{\prime}, P^{\prime \prime}\right)=\delta\left(Q^{\prime}, Q^{\prime \prime}\right)$, there is one rotation mapping P^{\prime} to Q^{\prime} and $P^{\prime \prime}$ to $Q^{\prime \prime}$: consider for example the product of any rotation mapping P^{\prime} to Q^{\prime} with a rotation for which Q^{\prime} is a fixed point. Moreover, if $\delta\left(P^{\prime}, P^{\prime \prime}\right)<\pi$, this rotation is clearly unique.

For each $j \in\{1, \ldots, n\}$, let us describe the rotation k_{j} which maps P_{0} onto P_{i-1} and P_{1} onto P_{i}. There are well-defined segments of great circles on S^{2} between P_{0} and P_{i-1} on the one hand and between P_{1} and P_{i} on the other hand. These have perpendicular bisectors which intersect at exactly two points of S^{2}. And there is one rotation k_{j} with these points as poles, with angle strictly less than π, which maps P_{0} onto P_{j-1}. By the existence and unicity result recalled just above, k_{i} maps also P_{1} onto P_{j}. Define then $h_{j}=k_{j} g k_{j}^{-1}$ (with $k_{1}=1$ and $h_{1}=g$). Then h_{j} is the unique conjugate of g in $S O(3)$ which maps P_{j-1} onto P_{i}. The product of the h_{j} 's maps P_{0} onto $-P_{0}$, and is thus a half-turn.

It follows that any normal subgroup of $S O(3)$ containing more than one element contains one half-turn. It is straightforward that two half-turns are conjugate inside $S O(3)$ and that any rotation in $S O(3)$ is the product of two half-turns. Hence the (abstract) group $\operatorname{SO}(3)$ is simple.

Let N and S be two diametrically opposite points on S^{2}, let ε be a real
number with $0<\varepsilon \leqslant \pi / 2$, and let ω be the subset of $S O$ (3) consisting of those rotations with angle in $[\varepsilon, \pi-\varepsilon]$ and with N as north pole. If n is an odd integer with $n \varepsilon \geqslant \pi$, the construction above can be made simultaneously for all rotations in ω; this provides n-tuples of continuous functions

$$
\left\{\begin{array} { l }
{ \omega \rightarrow S ^ { 2 } } \\
{ g \mapsto P _ { j } (\mathrm { g }) }
\end{array} \quad \left\{\begin{array} { l }
{ \omega \rightarrow S O (3) } \\
{ \mathrm { g } \mapsto h _ { j } (\mathrm { g }) }
\end{array} \quad \left\{\begin{array}{l}
\omega \rightarrow \mathrm{SO}(3) \\
\mathrm{g} \mapsto k_{j}(\mathrm{~g})
\end{array}\right.\right.\right.
$$

with the following properties: for each $j \in\{1, \ldots, n\}$, the rotation $h_{j}(g)=$ $k_{j}(\mathrm{~g}) \mathrm{g} k_{j}(\mathrm{~g})^{-1}$ maps $P_{j-1}(\mathrm{~g})$ to $P_{j}(\mathrm{~g})$. Hence the product of the $h_{j}(\mathrm{~g})$'s maps P_{0} to $-P_{0}$ for each $g \in \omega$. We have essentially proved the fact formalized in Lemma 1 below.

Consider the covering $\tau: S^{1} \rightarrow S^{1}$ which multiplies angles by two. We assume in Lemma 1 that the topological space T has the following property; for any continuous map $f: T \rightarrow S^{1}$, there is a lifting $F: T \rightarrow S^{1}$ with $\tau F=f$. For example, any space with vanishing Cech cohomology group $\check{H}^{1}(T, Z)$ qualifies.

LEMMA 1. Let T be a compact space with the property above, let $\operatorname{SO}(3, T)$ denote the group of all continuous maps from T to $S O(3)$ with pointwise multiplication, and let Γ be a normal subgroup of $\operatorname{SO}(3, T)$. Suppose Γ contains an element γ with the following properties: the angle $\alpha(t)$ of $\gamma(t)$ is in $] 0, \pi[$ for each $t \in T$ and the north pole of $\gamma(t)$ does not depend on t. Then Γ contains any constant map.

Proof. The map α being continuous and the space T compact, there exists $\varepsilon \in] 0, \pi / 2]$ with $\varepsilon \leqslant \alpha(t) \leqslant \pi-\varepsilon$ for all $t \in T$. The argument above shows that there exists also $\kappa \in S O(3, T)$ with $\kappa(t)$ moving some point P_{0} (independent of t) to its opposite for each $t \in T$. In cartesian coordinates with P_{0} on the first axis, this is expressed by the fact that

$$
\kappa(t)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \cos \theta(t) & \sin \theta(t) \\
0 & \sin \theta(t) & -\cos \theta(t)
\end{array}\right)
$$

for all $t \in T$, where $\theta: T \rightarrow S^{1}$ is some continuous function. (For each $t \in T$, there is one line in the plane spanned by the second and the third axis which is fixed by $\kappa(t)$; if the second axis and this line define the angle $\varphi^{\prime}(t)$, then $\theta(t)=2 \varphi^{\prime}(t)$; note that there is no a priori choice between $\varphi^{\prime}(t)$ and $\varphi^{\prime}(t) \pm \pi$, but that $\theta(t)$ is well-defined.)

Let $\varphi: T \rightarrow S^{1}$ be a continuous function with $2 \varphi(t)=\theta(t)$ (here does enter the
assumption on T). Define $\rho \in S O(3, T)$ by

$$
\rho(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi(t) & \sin \varphi(t) \\
0 & -\sin \varphi(t) & \cos \varphi(t)
\end{array}\right)
$$

for all $t \in T$. It is routine to check that $\rho \kappa \rho^{-1}$ is the constant map onto

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

As Γ contains one constant map with value a half-turn, it contains also any constant map with value a half-turn, hence Γ contains all constant maps.

The special unitary group in a homogeneous von Neumann algebra of type $\mathbf{I}_{\mathbf{2}}$

In what follows, T is a compact space which has the property stated just before Lemma 1 , and \mathscr{A} is the abelian C^{*}-algebra of continuous maps from T to the complex numbers. The C^{*}-algebra \mathcal{M} of continuous maps from T to the matrix algebra $M_{2}(C)$ will be identified with the algebra of (2×2)-matrices with entries in \mathscr{A}. We shall consider the subgroup $S U(2, T)$ of the unitary group of M which consists of all continuous maps from T to $S U(2)$. The maps with values in $\{+1,-1\}$ define a central subgroup of $S U(2, T)$; we do not assume that T is connected and this group may have more than two elements. We identify the associated quotient with the group $S O(3, T)$ defined in Lemma 1 (this is possible since any continuous map from T to $S O(3)$ lifts to $S U(2)$ by hypothesis on T). The canonical epimorphisms $S U(2) \rightarrow S O(3)$ and $S U(2, T) \rightarrow S O(3, T)$ are both denoted by p.

We assume moreover that T is a stonean space; this means that the closure of any open set is again an open set. This happens for example if T is the Gelfand ' spectrum of an abelian von Neumann algebra \mathscr{A}; in this case, \mathcal{M} is also a von Neumann algebra which is called homogeneous of type \mathbf{I}_{2}. It is elementary to check that T being stonean implies $\check{H}^{1}(T, Z)=\{0\}$, so that Lemma 1 applies.

LEMMA 2. Let $\tilde{\Gamma}$ be a normal subgroup of $\operatorname{SU}(2, T)$. Suppose $\tilde{\Gamma}$ contains an element $\tilde{\gamma}$ such that $\gamma=p(\tilde{\gamma})$ maps any $t \in T$ to a rotation $\gamma(t)$ of angle in $] 0, \pi[$. Then $\tilde{\Gamma}$ contains the constant map with value -1 .

Proof. As T is stonean, theorem 2 in [9] shows that $\tilde{\gamma}$ is conjugate within $S U(2, T)$ to an element which maps any $t \in T$ to a diagonal matrix. It follows then from Lemma 1 that the image Γ of $\tilde{\Gamma}$ by p contains any constant map, and in particular that which applies T onto

$$
p\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=p\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \in S O(3)
$$

Hence there is an element $\tilde{\kappa} \in \tilde{\Gamma}$ and a partition $T^{\prime} \cup T^{\prime \prime}$ of T in two disjoint open sets such that

$$
\tilde{\kappa}(t)=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

if $t \in T^{\prime}$ and

$$
\tilde{\boldsymbol{\kappa}}(t)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

if $t \in T^{\prime \prime}$. Lemma 2 follows because $\tilde{\boldsymbol{\kappa}}^{2}$ is in $\tilde{\Gamma}$.
LEMMA 3. Let $\tilde{\Gamma}$ be a normal subgroup of $S U(2, T)$ which contains more than one element. Then there exist $\tilde{\rho} \in \tilde{\Gamma}$ and $X \in \mathcal{M}-\{0\}$ with $\tilde{\rho} X=-X$.

Proof. Let $\tilde{\gamma} \in \tilde{\Gamma}$ with $\tilde{\gamma} \neq 1$ and let $\gamma=p(\tilde{\gamma})$.
Suppose first that $\gamma=1$. Then there is a partition $T^{\prime} \cup T^{\prime \prime}$ of T in disjoint open sets such that $\tilde{\gamma}(t)=1$ if $t \in T^{\prime}$ and $\tilde{\gamma}(t)=-1$ if $t \in T^{\prime \prime}$; as $\tilde{\gamma} \neq 1$ the set $T^{\prime \prime}$ is not empty. Define $\tilde{\rho}=\tilde{\gamma}$ and $X \in \mathcal{M}$ by $X(t)=0$ if $t \in T^{\prime}$ and $X(t)=1$ if $t \in T^{\prime \prime}$.

Suppose next that $\tilde{\gamma}$ is such that $\gamma(t)$ is a half-turn for t in some non empty (open and closed) subset T_{1} of T and is the identity for $t \notin T_{1}$. One shows as at the end of the prooof of Lemma 1 that $\tilde{\Gamma}$ contains a map $\tilde{\kappa}$ with $\kappa=p(\tilde{\kappa})$ having the following properties: $\kappa(t)$ is a constant half-turn when $t \in T_{1}$ and is the identity if $t \notin T_{1}$. Define $\tilde{\rho}=\tilde{\kappa}^{2}$, so that

$$
\tilde{\rho}(t)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

if $t \in T_{1}$, and chose for X any non zero map which restricts to zero outside T_{1}.
Suppose finally that there exists $t_{0} \in T$ with the angle of $\gamma\left(t_{0}\right)$ neither 0 nor π. Then there exists $\varepsilon \in] 0, \pi / 2\left[\right.$ and an open and closed neighbourhood T_{1} of t_{0} such
that the angle of $\gamma(t)$ is in $[\varepsilon, \pi-\varepsilon]$ for each $t \in T_{1}$. One may then apply Lemma 2 above T_{1}. As there is no obstruction to extend maps defined on T_{1} to all of T, the assertion to be proved is again correct in this case.

Involutions in non central normal subgroups of $\boldsymbol{U}(\mathscr{B})$

We shall now connect what we have established about $S U(2, T)$ with unitary groups defined by factors.

Consider an infinite dimensional factor \mathscr{B} and its unitary group $U(\mathscr{B})$. The following fact is an easy corollary of the spectral theorem: let $g \in U(\mathscr{B})$ and let n be a positive integer; then there exist k orthogonal equivalent projections P_{1}, \ldots, P_{n} in \mathscr{B} commuting with g and adding up to 1 .

Indeed, let $g=\int_{0}^{2 \pi} \exp (i \varphi) d E_{\varphi}$ be the spectral decomposition of $g\left[15, n^{\circ} 109\right]$. Say first that \mathscr{B} is finite. Let ψ be the smallest number in $[0,2 \pi]$ with the dimension of E_{ψ} in \mathscr{B} being at least $1 / n$. If $\operatorname{dim}\left(E_{\psi}\right)=1 / n$, let $P_{1}=E_{\psi}$. If $\operatorname{dim}\left(E_{\psi}\right)>1 / n$, let F be any projection in \mathscr{B} of dimension $(1 / n)-\operatorname{dim}\left(E_{\psi-0}\right)$ which is majorized by $E_{\psi}-E_{\psi-0}$ and let $P_{1}=E_{\psi-0}+F$. Then P_{1} commutes with g and has dimension $1 / n$. Define similarly P_{2}, \ldots, P_{n}, orthogonal and commuting with g. As P_{1}, \ldots, P_{n} have the same dimension, they are equivalent in \mathscr{B}; as their dimensions add up to 1 , their sum is the identity. One may proceed similarly when \mathscr{B} is infinite.

Suppose moreover that g is not a multiple of the identity and that $n \geqslant 2$; it is important to notice that P_{1}, \ldots, P_{n} are not all associated to the same portion of the spectrum of g, so that $P_{1} g, \ldots, P_{n} g$ are not all unitarily equivalent. This construction of the P_{j} 's overlaps partly with lemmas 3 and 4 in [3].

LEMMA 4. Let Γ be a normal subgroup of $U(\mathscr{B})$ which is not contained in the center S^{1}. Then there exist $k \in \Gamma$ and $X, Y \in \mathscr{B}-\{0\}$ with $k X=X$ and $k Y-Y$.

Proof. Choose $g \in \Gamma$ with $g \notin S^{1}$. Let P_{1}, P_{2}, P_{3} be three equivalent orthogonal projections commuting with g and adding up to the identity. Define $g_{j}=g P_{j}$ ($j=1,2,3$); as g is not central, one may assume that g_{2} and g_{3} are not unitarily equivalent. It may help to think of g as being the matrix

$$
\left(\begin{array}{lll}
g_{1} & 0 & 0 \\
0 & g_{2} & 0 \\
0 & 0 & g_{3}
\end{array}\right)
$$

Let W be a partial isometry in \mathscr{B} with initial projection P_{3} and with final projection P_{2}, which corresponds to

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

If $V=P_{1}+W+W^{*}$, then V is in $U(\mathscr{B})$ and $h=g^{*} V g V^{*}$ is an element in Γ which commutes with the P_{j} 's. Let $h_{2}=g_{2}{ }^{*} W g_{3} W^{*}$ and $h_{3}=g_{3}{ }^{*} W^{*} g_{2} W$ then $h_{2} \neq P_{2}$ and $h_{3} \neq P_{3}$ since g_{2} and g_{3} are not unitarily equivalent; notice that $h_{3}=W^{*} h_{2}{ }^{*} W$. One may think of h as being the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & h_{2} & 0 \\
0 & 0 & h_{3}
\end{array}\right)
$$

Let \mathscr{A} be the (abelian) von Neumann algebra generated by h and let $\mathcal{M}=\mathscr{A} \otimes M_{2}(C)$ be as before Lemma 2. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a P_{2}+b W+c W^{*}+d P_{3}
$$

defines a normal isomorphism from \mathcal{M} onto a subalgebra of the reduction of \mathscr{B} to $\mathscr{B}_{\mathbf{P}_{2}+\mathbf{P}_{3}}$ (notations as in [7, chap. I, §2, $\left.\mathrm{n}^{\circ} 1\right]$). We identify \mathcal{M} with its image; if T is the spectrum of \mathscr{A}, this identifies $S U(2, T)$ to a subgroup of $U(\mathscr{B})$.

Now $\left\{\tilde{\gamma} \in S U(2, T) \mid P_{1}+\tilde{\gamma} \in \Gamma\right\}$ is a normal subgroup of $S U(2, T)$ which contains h, and the conclusion follows from Lemma 3 (with, for example, $X=P_{1}$).

PROPOSITION 1. Let \mathscr{B} be a factor (not of dimension 1 or 4), let $U(\mathscr{B})$ be the group of all unitary elements of B, and let Γ be a normal subgroup of $U(\mathscr{B})$ which is not contained in the center S^{1}. Then Γ contains a non trivial involution.

Proof. Notice that the proposition is classical for $\mathscr{B}=M_{n}(C)$ with $n \geqslant 3$, and assume from now on that \mathscr{B} is infinite dimensional.

Let H be the Hilbert space associated to some faithful finite state on \mathscr{B} by the Gelfand-Naimark-Segal construction. As H is a completion of \mathscr{B}, Lemma 4 shows that Γ contains some k with both +1 and -1 in its point spectrum. The projections from H onto $\operatorname{Ker}(k-1)$ and $\operatorname{Ker}(k+1)$ are thus non zero, orthogonal elements of \mathscr{B}. It follows that there exist an integer $n \geqslant 3$ and a family
P_{1}, \ldots, P_{n} of orthogonal equivalent projections commuting with k, adding up to the identity, with $P_{1}(H) \subset \operatorname{Ker}(k-1)$ and $P_{2}(H) \subset \operatorname{Ker}(k+1)$.

One may furthermore find matrix units $\left(E_{i, j}\right)_{1 \leqslant i, j \leqslant n}$ in \mathscr{B} with $E_{i, j}=P_{j}$ $(j=1, \ldots, n)$, so that each element in \mathscr{B} can be identified with a $(n \times n)$-matrix having its entries in $P_{1} \mathscr{B} P_{1}$. In particular

$$
k=\left(\begin{array}{ccccccc}
1 & & & & & \\
& -1 & & & 0 & & \\
& & k_{3} & & & \\
& & & \cdot & & \\
& 0 & & & & \\
& & & & & \\
& & & & & k_{n}
\end{array}\right)
$$

Now permutation matrices are in $U(\mathscr{B})$. As Γ is normal, the product

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
1 & & & & & \\
& -1 & & & & \\
& & k_{3} & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & k_{n}
\end{array}\right)\left(\begin{array}{l}
-1 \\
\\
\end{array}\right. \\
& \left.\begin{array}{ccccc}
1 & & & & \\
& k_{3} & & & \\
& & . & & \\
& & & \cdot & \\
& & & & \\
& & & & k_{n}
\end{array}\right)^{*}= \\
& \left(\begin{array}{cccccc}
-1 & & & & & \\
& -1 & & & & \\
& & 1 & & & \\
& & & \cdot & & \\
& & & & & \\
& & & & & \\
& & & & &
\end{array}\right)
\end{aligned}
$$

is also in Γ.
This ends the first part of the proof of the main theorem, as described in the introduction.

End of proof of the main result

Let \mathscr{B} be a factor and let D be a normalized relative dimension on \mathscr{B}; see [7, chap. III, §2, prop. 14]. Let J be an involution in \mathscr{P}; it can be written $J=1-2 E$
with E a well-defined projection. The type of J is the pair (p, q) with $p=D(1-E)$ and $q=D(E)$. If \mathscr{B} is continuous and finite, $p+q=1$; if \mathscr{B} is infinite and semi-finite, $p+q=\infty$; if \mathscr{B} is purely infinite and if J is not trivial, $p=q=\infty$.

LEMMA 5. Let \mathscr{B} be a countably decomposable factor and let J, K be two involutions in \mathscr{B}. Then J and K are conjugate in $U(\mathscr{B})$ if and only if they are of the same type.

Proof. This follows from well-known facts on projections. See [7, chap. III, §2 and corollary 5 of §8].

PROPOSITION 2. The projective unitary group of a purely infinite and countably decomposable factor is simple.

Proof. Let \mathscr{B} be a factor of type III and let Γ be a normal subgroup of $U(\mathscr{B})$ which is not contained in S^{1}. Then Γ contains a non trivial involution by proposition 1, so that Γ contains all involutions by Lemma 5. It follows that $\Gamma=U(\mathscr{B})$: see Broise [3, th. 1] or Fillmore [10, corollary to th. 3].

LEMMA 6. Let \mathscr{B} be a factor of type II and let E be a projection in \mathscr{B} with $E \neq 0$ and $E \neq 1$. Let r be a real number with $0<r \leqslant D(E)$ and $r \leqslant D(1-E)$. Then there exists $V \in U(\mathscr{B})$ such that $F=E V E V^{*}$ is a projection with $D(F)=D(E)-r$ and $D(1-F)=D(1-E)+r$.

Proof. Let P be a projection in \mathscr{B} with $D(P)=r$ and $P \leqslant E$ (such a P exists by [7, chap. III, §2]). Let Q be a projection in \mathscr{B} with $D(Q)=r$ and $Q \leqslant 1-E$. As P and Q are equivalent, there exists a partial isometry S in \mathscr{B} with $S^{*} S=P$ and $S S^{*}=Q$; as P and Q are orthogonal, one has $S^{2}=S Q=P S=0$.

Define $W=E-P+S+S^{*}=W^{*}$. It is routine to check that $W^{2}=E+Q$, so that $V=W+(1-E-Q)$ is an involution in \mathscr{B}. It is again routine to check that $V E V=E-P+Q$, so that $F=E V E V$ is a projection of the desired type.

Notice that Lemma 6 is empty if \mathscr{B} is of type I_{∞} and if both E and $1-E$ have infinite dimension. But the same trick shows in this case that one can find $V \in U(\mathscr{B})$ with $F=E V E V$ a projection of any desired type.

PROPOSITION 3. The projective unitary group of a finite continuous factor is simple.

Proof. Let Γ be a normal subgroup of $U(\mathscr{B})$ not contained in S^{1}, with \mathscr{B} of type II_{1}. Then Γ contains a non trivial involution, hence an involution of any given type by Lemma 6, hence all involutions by Lemma 5. It follows from Broise's theorem that $\Gamma=U(\mathscr{B})$.

COROLLARY 1. The unitary group $U(\mathscr{B})$ of a finite continuous factor admits no non trivial finite dimensional unitary representation.

Proof. Consider commutative sets of involutions. These sets have at most 2^{n} elements in $U(n)$ but their cardinals are not bounded in $U(\mathscr{B})$. It follows that any homomorphism $\varphi: U(\mathscr{B}) \rightarrow U(n)$ has a non trivial kernel, and so is the trivial homomorphism. When φ is moreover assumed to be uniformly continuous, see [12, th. 1].

COROLLARY 2. Let \mathscr{B} be a continuous, infinite and semi-finite factor; let Γ be a normal subgroup of $U(\mathscr{B})$ which is not contained in S^{1}. Then Γ contains all unitaries g for which there exists a finite projection $\mathrm{E}_{\mathrm{g}} \in \mathscr{B}$ satisfying $\mathrm{g}-1=$ $E_{8}(g-1) E_{\mathrm{g}}$.

Proof. The argument used above shows that Γ contains an involution of type (p, q) in \mathscr{B} as soon as $p<\infty$. If E is any finite projection in \mathscr{B}, it is easy to check that the reduction of \mathscr{B} to \mathscr{B}_{E} it a factor (this follows for example from [7, chap. I, §1, prop. 7, cor. 3]). As Γ contains an involution of $\left\{g \in U(\mathscr{B}) \mid g-1 \in \mathscr{B}_{E}\right\}$ which is neither 1 nor $1-2 E$, Proposition 3 shows that Γ contains this group.

The analogous statement for a discrete, infinite and semi-finite factor is proposition 3(i) of [11]. A similar statement holds with \mathscr{B} a factor of type III which is not countably decomposable (we are grateful to M. Broise for this remark).

COROLLARY 3. Countably decomposable factors of types II_{1} and III are simple.

Proof. See the introduction.
COROLLARY 4. Let \mathscr{R} be the hyperfinite factor of type II_{1}. The group of *-automorphisms of \mathscr{R} has exactly one non trivial normal subgroup, which is the group of inner *-automorphisms.

Proof. Let us call a short exact sequence

of groups and homomorphisms trivial if there exists an isomorphism φ such that

commutes (with i_{1} and p_{2} the canonical injection and projection respectively). The following is an exercise for pedestrians in group theory: in a non trivial short exact sequence as above with F and H simple, the only non trivial normal subgroup of G is F. (Indeed: let N be a normal subgroup in G with $N \not \ddagger F$ and suppose there is $f \in F$ and $n \in N$ with $f n \neq n f$; then $n f n^{-1} f^{-1}$ is in $(F \cap N)-\{1\}$, so that $F \subset N$; as $N \notin F$ one has $\pi(N)=H$; it follows that $N=G$.)

Corollary 3 follows now from proposition 3 because the group of inner *-automorphisms of \mathscr{R} is $P U(\mathscr{R})$ and because the quotient Out (\mathscr{R}) of the group of ${ }^{*}$-automorphisms of \mathscr{R} by $P U(\mathscr{R})$ is simple by a theorem due to Connes [5, cor. 4]. (That the short exact sequence of concern here is non trivial is an easy fact, left to the reader.)

REFERENCES

[1] Artin, E., Geometric algebra, Interscience 1957.
[2] Blattner, R. J., Automorphic group representations, Pacific J. Math. 8 (1958) 665-677.
[3] Broise, M., Commutateurs dans le groupe unitaire d'un facteur, J. Math. Pures et appl. 46 (1967) 299-312.
[4] Cartan, E., Sur les représentations linéaires des groupes clos, Comment. Math. Helv. 2 (1930) 269-283.
[5] Connes, A., Outer conjugacy classes of automorphisms of factors, Ann. Sc. Ec. Norm. Sup., 8 (1975) 383-420.
[6] Dieudonné, J., Sur les groupes classiques, Hermann 1948.
[7] Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), $2^{\text {è éd., }}$ Gauthier-Villars 1969.
[8] Dixmier, J., Les C*-algèbres et leurs représentations, $2^{\text {è éd., Gauthier-Villars } 1969 .}$
[9] Deckard, Don and Pearcy, C., On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963) 322-328.
[10] Fillmore, P. A., On products of symmetries, Canadian J. Math. 18 (1966) 897-900.
[11] de la Harpe, P., Sous-groupes distingués du groupe unitaire et du groupe général linéaire d'un espace de Hilbert, Comment. Math. Helv. 51 (1976) 241-257.
[12] Kadison, R. V. Infinite unitary groups, Trans. Amer. Math. Soc. 72 (1952) 386-399.
[13] Kaplansky, I., Rings of operators, Benjamin 1968.
[14] Lanski, C., The group of units of a simple ring II, J. of Algebra 16 (1970) 108-128.
[15] Riesz, F. and Nagy, B. Sz., Leçons d'analyse fonctionnelle, $5^{\text {è éd., Gauthier-Villars } 1968 . ~}$

Section de mathématiques
2-4 rue du Lièvre
1211 Genève 24 (Suisse).
(Received April 1, 1978)

Buchanzeigen

George Grätzer, General Lattice Theorie. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe Band 52, Birkhäuser Verlag, Basel und Stuttgart 1978, 382 Seiten, Fr. 78.-
I. First Concepts - II. Distributive Lattices-III. Congruences and Ideals-IV. Modular and Semimodular Lattices-V. Equational Classes of Lattices-VI. Free Products. Concluding Remarks. Bibliography. Table of Notations. Index.

Heinz Lüneburg, Vorlesungen über Zahlentheorie. Elemente der Mathematik vom höheren Standpunkt aus. Band 8, 108 Seiten. Birkhäuser Verlag, Basel und Stuttgart 1978, Fr. 28.-

Marcel Dekker, Inc. New York and Basel: Pure and Applied Mathematics: A Series of Monographs and Textbooks.

Volume 44: J. H. Curtiss, Introduction to Functions of a Complex Variable, 416 pages, illustrated, 1978, Fr. 48.00.

1. Real and Complex Number Fields - 2. Sequences and Series - 3. Sequences and Series of Complex-Valued Functions-4. Introduction to Power Series -5. Some Elementary Topological Concepts-6. Complex Differential Calculus -7. The Exponential and related Functions8. Complex Line Integrals - 9. Introduction to Cauchy Theory - 10. Zeros and Isolated Singularities of Analytic Functions-11. Residues and Rational Functions - 12. Approximation of Analytic Functions by Rational Functions, and Generalizations of the Cauchy Theory - 13. Conformal Mapping. References, Index.

Volume 45: Karel Hrbacek and Thomas Jech, Introduction to Set Theory, 200 pages, Illustrated, 1978, Fr.35.00.

1. Sets-2. Relations, Functions, and Orderings-3. Natural Numbers-4. Countable Sets5. Integers and Rational Numbers - 6. Real Numbers - 7. Cardinal Numbers - 8. Ordinal Numbers 9. The Axiom of Choice - 10. Arithmetic of Cardinal Numbers - 11. The Axiomatic Set Theory. Index.

Volume 47: Marvin Marcus, Introduction to Modern Algebra, 512 pages, illustrated, 1978, Fr.52.00.

1. Basic Structures-2. Groups-3. Rings and Fields-4. Modules and Linear Operators 5. Representations of Groups. Index.

Volume 48: Eutioio C. Young, Vector and Tensor Analysis, 544 pages, illustrated, Fr.98.00, 1978.

1. Vector Algebra - 2. Differential Calculus of Vector Functions of One Variable - 3. Differential Calculus of Scalar and Vector Fields - 4. Integral Calculus of Scalar and Vector Fields - 5. Tensors in Rectangular Cartesian Coordinate Systems - 6. Tensors in General Coordinates. Index.
D. V. Gokhale and Solomon Kulback, The Information in Contingency Tables (Statistics: Textbooks and Monographs Series Volume 23) Marcel Dekker Inc. New York and Basel. 384 pages, illustrated, Fr.80.00, 1978.
2. Introduction - 2. Hypotheses of Independence in Two- and Three-Way Tables - 3. Analysis by Fitting Marginals-4. Applications - 5. Analysis: General Form - 6. Computer Algorithms -7. No Interaction on a Linear Scale-8. Futher Applications - Bibliography. Appendix. Index.

Morikuni Goto and Frank D. Grosshans, Semisimple Lie Algebras (Lecture Notes in Pure and Applied Mathematics Series, Volume 38) Marcel Dekker Inc. New York N.Y. 1978. 496 pages, illustrated, Fr. 98.

1. General theory of Lie algebras-2. Semisimple Lie algebra-3. Cohomology of Lie algebras and its application-4. Semisimple Lie algebras over \mathbf{R} and \mathbf{C}. -5 . Groups connected with a root system-6. Linear groups -7. Irreducible representations-8. Classification of real simple Lie algebras - Appendix: Notes on linear operators. Bibliography. Index.
