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Comment. Math. Helvetici 55 (1980) 65-86 Birkhâuser Verlag, Basel

Slowly growing subharmonic function II

Matts Essén

1. Introduction

Let u be subharmonic and not constant in the open z -plane and let

B(r) B(r,u) supu(z). (1.1)
|z|-r

If B(r) grows sufficiently slowly, it is known that for "most" values of z re'°,

u(z) is not much smaller than B(r). In other words, for each e>0, the set

must be small. In [3], Essén, Hayman and Huber proved that if

B(r) O((logr)2), r-^oo, (1.2)

then a generalized Wiener condition will hold at infinity for E. In particular, E
can only be a small subset of each annulus <on ={z:2n <|z|<2n+1} when n is

large. The purpose of the présent paper is to study the case when condition (1.2)
is replaced by

r-^oc, (1.3)

where ty is an increasing function such that

lim sup <Kr)/(log rf <*> (1.4)
r—*oo

log<Kr)/logr-*0, r-*«. (1.5)

Hère, the situation is différent: E can now also contain almost ail points in a

séquence of annuli {û>nk}7> although the séquence {nk} must be rather sparse.
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66 MATTS ESSÉN

(Références to earlier work on small subharmonic functions satisfying (1.3) and

(1.4) can also be found in [3].)
The emphasis is hère on the study of E for subharmonic functions of order

zéro, i.e., we assume that (1.5) holds. If this is not the case and we can consider
functions of positive order, the set JE can be almost the whole plane, as simple
examples show.

The main results are stated in Section 2. In the proofs, we need certain results
from the theory of séries which are given in Section 3. After the proof of the main
results in Sections 4 and 5, we give examples in Section 6. In Section 7, we
consider a question of J. M. Anderson: does there exist a path going out to
infinity which does not meet E(e)? We also sharpen a related resuit of M. N. M.
Talpur.

This work started as a joint effort by W. K. Hayman, A. Huber and myself to
study growth problems for small subharmonic functions. The first part of this

project deals with the case when (1.2) holds, and our results are given in [3]. It
turned out, however, that I was responsible for the research on the remaining part
of the project, and it was therefore decided that this work will appear as a paper
by one author only. I am grateful to my co-authors from [3] for their generosity.
Also, I want to thank W. K. Hayman for interesting discussions and J. M.
Anderson for suggesting the problem mentioned above.

2. The main results

Let u be a subharmonic function of order zéro. Without loss of generality, we
can assume that u is harmonie in {|z|<l} and that w(0) 0. Thus u has a

représentation of the form

M(z) Jlog|l- z/(\ diiU), (2.1)

where /x is the Riesz mass of u and the intégral is taken over the open plane (cf.
[3, Section 4]). If n(t) is the mass in {|z|<f}, we hâve n(l) 0. We define

N(r)=J n(t)/tdt (2.2)

u*(z)= | log|l + 2/|f| |d/*(f) J log|l + z/r|dn(f). (2.3)

B*(r) supu*(z) u*(r). (2.4)
\z\-r
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As examples of possible growth rates, we mention, if a is a positive constant

e, a>2,
iKr) exp {(log log r)°1, r>e, a>\.

More generally, we assume that ^:[0, <»)—»(0, oo) is a positive, increasing and
continuous function for which (1.4) and (1.5) hold and which is either such that

(2.5a)

or which is such that for some constant C> 1, we hâve

/r, r-*«. (2.5b)

The two examples mentioned above satisfy both assumptions (2.5a) and (2.5b)
with C= 1. If we are interested essentially in functions $ which grow in this very
regular way, it is sufficient to use (2.5a). Our results hold, however, also for a

function \\t satisfying the weaker assumption (2.5b). We note that when C=l,
(2.5a) and (2.5b) are équivalent. As a conséquence of (1.3) and (2.5b), we obtain

B*(r)=O(il,(r)), r-^oc. (2.6)

Proof of (2.6). From Lemma 3.5.1 in Boas [2], we see that

B*(r)<N(r)+f N(t)/t2 dt<B(r) + r[ B(t)lt2 df<Const. ^(r)

and (2.6) is proved. We hâve used that N(r)<B(r).
If e > 0 is given, we consider the set

E* E*(e) {z : u{z) < (1 - e)B*(r)}.

We clearly hâve E c= E*. We can now state our main results which describe how
small the set E* is.

THEOREM 1. Let ^ satisfy (1.4), (2.5a) or (2.56) and let ubea non-constant
subharmonic function of order 0 such that (1.3) ^ non-constant holds. For a fixed
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positive e, let JE* E* Pi o>k. We then hâve

t {log(2k+3/cap Eîr^Const. e-'U + log <M2n+3)} (2.7)
i

If *lf(r) (\ogr)a, r>e, where a>2 is given, (2.7) is replaced by

£ {log (2k+3/cap Et)}~1 <Const. e'\l + a log (n + 3)). (2.8)
i

The constant does not dépend on a or e.

COROLLARY. Let 8 > 0 be given. If (2.7) holds, there exists a covering of E*
by disks {z:\z-Rkeiek\<rk} which is such that

X (log (IRJrJ)-1-* Oie1 log <M2n+3)), *-*«>. (2.9)

We fiat;e summed over those indices k which are such that the union of the

associated disks covers E*n{\z\<2n+l}.

Remark. In Section 6, examples are given which illustrate the précision of
(2.8) and (2.9). There are additional results which explain why a 2 is a critical
value and which will appear elsewhere. Let me mention one estimate of this type.
Let the séquences {cn} and {Sn} be defined as in Section 3. Let a >2 be given and

assume that

cn O(na), n-*oo.

Then we hâve

n

lim sup (log n)"1 X *k =s= co(a - 2),

where co supo<x<i (l~x)2(log(l/x))"1« 0.407. There exists an admissible
séquence {cn} which gives equality.

Next, we consider the following resuit of P. D. Barry ([1, Corollary to
Theorem 5, p. 475; also cf, Section 7.4]).



Slowly growing subharmonic functions II 69

THEOREM A. Let u be a subharmonic function such that (1.3) holds with
r) (log r)a, where a<3. Let e>0. Then

inf u(reie)>(l-e)B(r),
e

outside a set F for which

[ (t log t)'1 dt«*.
Jf

This resuit can be strengthened in the following way.

THEOREM 2. Let u and ijj be as in Theorem 1 and assume furthermore that $
is strictly increasing and continuously differentiable on [l,00). Let f be a decreasing,

nonnegative and continuously differentiable function which is such that

I f(s)ds/s<™.

If e > 0 is given, then we hâve

inf u(rete) > (1 - e)B*(r), r > 1 (2.10)
e

outside a set F such that

f fMt))dt/t«». (2.11)
Jf

COROLLARY. Let ip(r) (log r)a, a >2. Then for each h >0, we hâve

f (loglog trl-hdt/t<oo. (2.12)
Jf

Remark. An example given in Section 6 will show that we cannot take h - 0

in the Corollary.
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3. A lemma on séries.

As in [3], our problem will be reduced to a problem in the theory of séries. In
this section, we give a simple lemma

Let if/ be as in Section 2. Let {an}7 be a given non-negative séquence and let

n n

h Z ak, cn X K

We also define

_(ajcn, cn>0,M 0, c^O.

If cn O(i^(2n)), n —> <*>, {sn} is almost a ^-séquence as defined in Section 2 in
[3]. We say almost because we do not assume that i/Kr) O((log r)2), r-»o° (which
is part of the définition of ^-séquence in [3]); we assume in fact that (1.4) holds.
In [3], we gave results on the séries £T 8*, where A > 1/2; hère we study £7 8V.

Since we assume less on if/, the situation is more complicated than that discussed
in [3].

LEMMA 1. Let ty be as in Theorem 1. Let {a,,}, {bn}, {cn} and {Sn} be as above.

If

n l,2,... (3.1)

then we hâve n 1, 2,....

î Ôk <Const. + min {log ^(2n), log (^(22")/n)}. (3.2)
i

If furthermore we assume that an o(cn), n—»<», then we hâve

t n^oo. (3.3)
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Remark. In the case ijj(r) (log r)a, where a>2 is given, we deduce from
(3.2) that

(a-l)logn, n l,2,.... (3.2')
1

The case a 2 is treated in [3, Theorem 4]: then we know that £7 8n <<».

Proo/ o/ Lemma 1. We know that bn < min {cn, c2n/n}. Using [3,(2.19)], we
deduce that

n n

Z ak/ck ^ Z ak/bk < log bn - log b^,
"o n0

where n0 is the smallest integer such that bn does not vanish. It is now clear that
(3.2) follows from (3.1). To prove (3.3), we note that if e >0 is given, there exists

an integer n1 such that an/cn<e2, n>nx. If n>nl and bjcn>e, we see that
ajbn < e. It follows that

Z" (ajbk)(bk/ck)

In the last step, we used once more [3, (2.19)]. The lemma is proved.

Remark. If an o(cn), n-*<*>, we claim that we also hâve

bn o(cn), n->oo. (3.4)

To prove this, let e be given, 0<e < 1/2, and choose nx as in the proof of (3.3). If
P [l/e], we see that if n>nly we hâve

n-p+ l
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It follows that

Thus (3.4) holds.
Lemma 1 is clearly a very simple resuit, but it is ail we need in the proofs of

Theorems 1 and 2, assuming that \\f satisfies (1.4), (2.5a) or (2.5b). Lemma 1 is

unsatisfactory from another point of view: it does not explain why the value a 2

is crucial when i/*(r) 0og r)a. This question was discussed in the Remark after the

Corollary to Theorem 1.

4. Proof of Theorem 1

We start with

LEMMA 2. Let u and $ be as in Theorem 1 and let e0 be given, 0<eo< 1/6.

Let G be the set of positive integers k which are such that

2k[ n(t)/t2dt>e0t 2'[ n(t)/t2 dt.

Let 7r(p) be the number of éléments in G in the set {fc}E i. Then

7r(p) < sô1 log ^(2p) + O(l), p ^ oo. (4.1)

In the complément of G, we hâve

2k f n(t)/t2 dt < 3eoN(2k). (4.2)

Proof. We define qk 2k& n(t)/t2 dt and Ok =1^1 qr Then we hâve

^ £ qk/Qk^l+ t logtQk/Qk-i)

(£j )(| l. (4.3)
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To estimate the right hand side of (4.3), we note that

t 2'{ f2 + f }n(t)/t2 df < f2 n{t)lA I l) dt

+ 2P+1 n(0/r2dr<2{| n(t)/t dt + 2P[ n(0/f2 de}

In the last step, we used three estimâtes: the fact that N(r)<B(r), (1.3) and
(2.5b). Combining (4.3) and (4.4), we obtain (4.1).

To prove (4.2), we note that if ké G, it follows from (4.4) that

2kf n(t)/t2dt^e0t 2>\ n(t)/t2dt^2e0(N(2k) + 2k\ n(t)/t2 dt).

Since 0<eo<l/6, we obtain (4.2). This complètes the proof of Lemma 2.

Let <Dk be as in the introduction. We also define Qk ={z :2k~1<|z|<2k+2},
j

The exceptional set E*(e) is contained in the union of two sets Et and En. We
first define El - U a>k, k 4- 2 € G, where G is the set of integers defined in Lemma
2; we shall see that we can take eo= e/35.

To define En, we hâve to study the potentials which are associated with the
subharmonic functions u and u* (cf. (2.1) and (2.3)). Let us choose k such that
fc -f 2 è G and assume that 2 re10 e cok. We want to estimate

u(z)-B*(r)

First, we estimate It and I3 from below:

I, > f log((|z|- r)/(|z| + 0) dn(r)^ -log 3n(2k~1),

r1 dn(t)
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Adding up, we obtain

I1 + I3>-2k+2log3J n(t)/t2 dt> -3e0\og3N(2k+\

It follows that

u(z)-B*(r)> log(|^-z|2"k~3) d/u,(£)-3e0log3N(2k

(4.5)

Let Ek be the set in (ok where

3). (4.6)

We define En= U£blc+2èG. From (4.5), it follows that

*(r), z^£fUEr, (4.7)

In the last step, we used the inequality

k+3) < B*(2k+3) < 8B*(2k) < 8B*(r).

Choosing eo=e/35 we see that E*(e)c:£r \JEU.
It remains to prove that the set EjUEn is small in the sensé described in

Theorem 1. We first claim that

X {log(2k+3/cap(EIna>k))r1<Const. e-\l+logilf(2n+2)). (4.8)

For each k, there are two possibilités: either Ex fi (ok cok or El H o>k 0. In
the first case, we hâve (Ejrio>k)2~k~3 {z :|<|z|<^}, and the sum in (4.8) is

majorized by the number of indices in GH[1, n + 2] times the constant
(log(l/cap{o_3))~1. Our conclusion follows from Lemma 2.

To discuss En, let ak be the Riesz mass in i\, i.e., ak ii(Ok). Applying
Lemma 4 in [3], we see from (4.6) that

cap Ek <exp {-e0N(2k+3)/ak}2k+3,

t Oog {2k+3/cap E,})"1 < e01 £ ak/N(2k+3). (4.9)
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Starting from {ak}7, we define {bk} and {ck} as in Section 3. We note that

k+2 k

3N(2k+3)>3X n(2-)log2>(Iog2)X ^ cklog2.

Hence the right hand member of (4.9) is majorized by Const. e"1^ ajck.
Since cn O(ip(2n+3)), h-h>o°, we can use Lemma 1. Combining (4.8) and (4.9),
we obtain (2.7) in Theorem 1.

To prove the Corollary, we argue in exactly the same way as in the proof of
Theorem 7 in [3]. We omit the détails.

5. Proof of Theorem 2

We start from the Corollary to Theorem 1. Let ô>0 be given and consider a

covering of E*(e) by disks {Ak} {{z:\z-Rkel0k\<rk}} which is such that (2.9)
holds. Furthermore, we assume that rk ^ JRk, k 1, 2,.... It is known that

where D is a positive constant which dépends on 8. It follows from (2.9) that

S rk/2Rk < D X Oog (IRJrJ)-1-8 Oie1 log i/r(2n+3)), n -> °o; (5.1)

we sum over those indices k which are such that the corresponding disks intersect
Uï<«v We now define F {r>l:r |z| for some ze{J°^Ak}. It is clear that
(2.10) holds outside F. It follows from (5.1) that

dt/t < Const. e"1 log i/r(16r). (5.2)

Applying a standard argument, we see from (5.2) that

[ /(i/>(16f)) dt/t <Const. e"1) /(^(160) d log

J-*K16r) f(s)ds/s. (5.3)
«M16)
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Letting r —»«>, we see that the intégral in the left hand member in (5.3)

converges, and we hâve proved (2.11).

Proof of the Corollary. We choose /(s) (log s)"1~h, s ^ e.

6. Examples

We shall give examples of subharmonic fonctions of order zéro where excep-
tional sets of type El and En occur. We start with En.

Let *p and the nonnegative séquences {ak}, {bk} and {ck} be as in Section 3. We
assume that cn O(^(2n)), n —> °° and that an o(cn), n —» ». From (3.4), we see

that we also hâve

bn o(cn), n-*oo. (6.1)

If D0 {z:l/8<|z|<l/4, Rez<0}, we put L =log(l/cap DO). If De
{Re z < 0} H cun, we know that

0<{log(2n+3/cap D)}-l<L-\

Suppose that the positive number e is given. Since an o(cn), n—>o°, there
exists n0 such that an/(2ecn)<L~\ n>n0. Thus for n>n0, there exists a closed

subset En c o>n n{Re z <0} which is symmetric around the real axis and such that

{log(2n+3/capEn}-1 an/(2ecn).

If n <n0, we put En 0.
Let fin be the equilibrium distribution on En. In particular, the total mass of /xn

is 1 and we hâve

I log \z - C\ diLn(() log (cap En) p.p. on En.

We now define the measure fx X iinan and the subharmonic function

u(z) =J log |l-z/£|dMf). (6.2)

We claim that for this function u, we hâve

B(r) B(r,u) (l + 0(D)N(r) (log 2 + o(l))cn, 2"<r<2"+1. (6.3)
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To prove (6.2), we first note that (cf. (4.21) in [3])

cn_1log2<N(r)<cnlog2, 2n<r<2n+\ (6.4)

N(r)=O(^r(2r)), r^oc. (6.5)

It is known that

B(r)<f r(t + r)-ln(t)/tdt= f r(t + r)-2N(t) dt.
Jo Jo

Since (6.1) holds, we hâve n(r) o(N(r)), r—»o°, and thus

(6.6)

Formula (6.3) now follows from (6.1), (6.4) and (6.6). From (6.5), we see that
B(r)=O(iK2r)), r-^oo.

Since supp jutn <={Re z <0} and En is symmetric around the real axis, we hâve

B(r)= u(r). As in the proof of Theorem 1, we write, if ze<on,

u(z)-B(r) \\ +[ +[ }(\og\l-z/Ç\-\og\l-

Estimâtes similar to those in the proof of Theorem 1 show that if z g con, we
hâve |J1|<(log3)n(2n-1)=0(bn_1) o(cn), |J3| o(cn+2) o(cn).

We also hâve

Iog|r-f| nlog2+0(l), reo>n, ^€(supp ^)Hf2n.

We deduce the following représentation formula which can be compared to
(4.11) in [3]. Uniformly as n-»°o, for z€a>n, we hâve

u(z)~B(r)= f Iog|z-^|d/xa)-(nlog2+0(l))(an_1 + an + an+1) + o(cn).

(6.7)
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In particular, we hâve

-(n log 2 + O(l))(an_1 + an + an+î) + o(cn) -2ecn + o{cn) p.p. on supp /xn.

From (6.3), we finally obtain

n, n^Hi. (6.8)

The exceptional set E U ", Ek is such that

t k+3/cap(E H eu,))}"1 VeT't ak/ck.

Thus the upper bound in (4.9) is of the right order of magnitude for séquences
which satisfy (6.1): furthermore, we hâve from (3.3) that

n), n ~> oo. (6.9)

It is easy to construct examples of séquences such that YJ^X 8k is close to the

upper bound in (6.9), when n—»o°.
The subharmonic function u constructed above has the property that for ail n,

the exceptional set E is such that E H a)n is a small subset of o)n in the sensé that

In our next example, we shall consider an exceptional set E of type El which is

such that EDa)n is for certain indices a large part of the annulus o)n.

Let a>2, ô€(0, a-2) and A €(0,1) be given. If we want to construct a

subharmonic function with the property B(r) O((log r)a), r —> <», we must clearly
hâve n(r)= O((log r)""1), r—?<*>. We shall construct n(r). We choose séquences
{An}, {Bn} and {Kn} tending to infinity which are such that

(log Av_xy-1 < (log AvT~2-\ Bv (log Av)\ Kv (log BV)2I\ (6.10)
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In the sequel, we consider the example given by Av exp {exp yv}, where

y>(a-l)(a-2-ô)~1. The increasing, continuous function n(r) is defined by

n(r) (log Av_xT-\ A^^r^AJB» i/= 1,2,....
dn(r) av dr\ AJBV <r<Av, » 1, 2,....

where av ((log AJ^'-Oog A^r^A^l-B^)'1 ^ A~vk (logA,,)""1. In the

interval (0, ee), we let n(r) be 0 in (0, 1] and then increase to the value n(ee) e

in [1, ee]. Our example is the subharmonic function

u(z) f log|l + z/f|dn(f). (6.11)'¦f
It is easy to prove that B(r) u(r) O((log r)a), r —> oc. We note that u(Al) ~

(log AJa. The séquence {Al} is well outside the support of the measure dn(r).
We note for later référence that ail constants in the O- and o-relations in the

inequalities occurring in the déduction of the estimate of Cv(r) below can be
chosen to be independent of À.

Let z re10 and assume that KvAJBv<r<AJKv. We hâve from (6.10) that

[Avl < «-!< a-l-a

f log (1 + i/O dn(t) < f (i/O dn(0 O((r/AJ(log A,)""1).
*AV t'A,,

It follows that

_
fAv «-i

(logAv)a~1(l + o(l))|| - - | log |1 + z/t\ d(tK/Ai) +O(r/Av)\.

We need the following estimate:

J'
A IB Ç KJBv

log (1 + (AJKJ)) d{tlAvf K;* log (1 + s"1) dsx
0 ^0
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Simple computations now show that

where

Q(r) <(log AvT-\\ + o{l))(B-vx log (1 + Bv) + \'1B;k + O((r/AJ(l - A)"1))

O(r/Av)(l - Ar^log A,)-1, KVAJBV <s r < A.7K,,.

We finally obtain

u(z) (log Av)a-l(rkIAÎ){7r cos A0(sin irA)""1 -h o(l)}, (6.12)

the error estimâtes are uniform in z as v->oo.
We note that if e >0 is small, the set Ef(e) is almost the whole annulus <ok for

indices k which are large and such that 2k e \JV [KVAJBV, AJKV]. Since

cap Ef «2k, it follows that

lim sup (log ny't Oog (2k+3/cap E*)}"1

> Const. lim (log nj'^log Bn - 2 log Kn) Const. 8.
n—*°°

From (2.8), we see that

lim sup (log n)-xX {log (2k+3/cap Ef)}"1 < Const. a/e.

Since 8 can be chosen close to a - 2, the discrepancy between the orders of
magnitude in thèse two estimâtes is essentially the factor e"1. The upper bound
given by (2.8) is not far from the lower bound which holds for the function m

defined by (6.11).
This function u also gives an example which shows that the Corollary of

Theorem 2 is sharp. If F {r>l: reieeE*(e) for some 6} we hâve

0 OO

dt/(t log log 0 « Z 0°g Bv)/(log log Av)
JBi 1
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7. The growth of u on paths going out to infinîty

Let u be a subharmonic function in the plane such that B(r) O((log r)a),
r -^ oo. in the case a 2, Hayman proved in [4] that for almost ail 6 in [0, 2tt], the

ray {arg z 6} meets the set E(e) in a bounded set. An improvement of this resuit
is given in Theorem 6 in [3]: the exceptional set of 6 : s is in fact of capacity zéro.
Hayman's resuit [4] led Dr. Milne Anderson to ask the following question in the

case a > 2 (private communication): if e e (0, 1] is given, does there exist a path F
going out to infinity such that u(z)>(l-e)B(|z|), zeT?

M. Talpur proved in [5] that if u is subharmonic and non-constant in the

plane, there exists a path F going out to infinity on which u(z)—>°°. Clearly, we
hâve m(z)>0, zeF, z large. The answer to Anderson's question is thus yes when
8 1. In the remaining case, we hâve the following resuit which answers Ander-
son's question in the négative.

THEOREM 3. Let a >2 be given. There exists a subharmonic function u such

that B(r, u) O((log r)"), r —» <x>, and such that for any path F going out to infinity,
we hâve

liminf u(z)/B(|z|) 0, z->«>, zeF.

Remark. For convenience, we hâve restricted ourselves to the case ip(r) (log r)a.
The method used in constructing the example also works for a gênerai growth rate
i/> satisfying the conditions of Theorem 1.

In [6], Talpur proved that if u is subharmonic in the plane and of order zéro,
there exists a path going out to infinity on which u(z)>(l- e)B(\z\1~e). Assuming
that a little more is known about the growth of B(r,u), we can prove the

following resuit.

THEOREM 4. Let i/> be as in Theorem 2 and assume furthermore that

lim sup loglog i/f(r)/loglogr< 1
* (7.1)

log«Kr2)<Const.logiKr), r>1- (7-2)

Let u be a subharmonic function in the plane of order zéro which satisfies (1.3) and
let e e (0, 1) be given. Then for ail positive h, there exists a path F going out to

infinity and a constant C(h) such that

u(z) > (1 - e)B(\z\ exp (-C(h) log <M|z|))1+H)), z -* », z e F
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If in particular ijj(r) (log r)a, where a>2, we hâve

u(z) > (1 - e)B(\z\ exp (-C(h) loglog |z|)1+h)), z -+ », 2 € T.

Proof of Theorem 3. Let Se(O, a-2) be given and let {Àn} be an increasing
séquence of positive numbers tending to 1 which is such that A^l/2 and

n(l-Àj/logn^°o, «--?oo. (7.3)

The séquences {An} and {Bn} are defined as in Section 6. Also hère, we can take
An exp {exp 7"}, where •y>(a-l)/(a-2-S). We also introduce Kn

(logBn)2M-. Next, we define three nondecreasing, continuous functions n^r), n2(r)
and n3(r) via the relations

„)—' d(r/AJ\ AJBv<r<AJB]!3, v=l,2,....
riLU(AJBv,AJBl/3),

dnM {o,

f(logA>,r-1d(r/AJ\ AJB2J3<r<Av, v=l,2,....

(log AJ"-1 d(rlAv)\ AJBV < r < Av, v 1, 2,....

'"{*

dn3(r)

We consider the subharmonic functions

ux(z)=J

u2(z) J Iog|l-z/f|dn2(r),

t)(z)
^0

It is easy to see that nk(r) O((log r)""1), r -* », k 1, 2, 3. Consequently, the
maximum moduli of thèse three functions are ail O((log r)a), r -» <».

Our example is the subharmonic function l/ max(u1, u2). We clearly hâve
the following property of the auxiliary function v:

yeR, fc l,2. (7.4)
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To find the properties of thèse subharmonic functions, we use the same
method as in the proof of (6.12). The only différence is that in each interval
[AJBV, Av], we replace in ail formulas the constant À by À,,. If this change is made
in the function u defined in (6.11), we obtain the following estimate of Cv(r)
which is the crucial quantity in the proof of (6.12):

J-^l - \v))9 KVAJBV < r^Av/Kv.

In the last step, we used the fact that (l-Av)logKv + 21og(l-Av)-»°° i/-»oo
which is a conséquence of (7.3) and our spécial choice of Av. Arguing in this way,
we obtain

ux(z) (log AvY-\rlAv)k*{<n cos Àv0(sin rrKY1 + o(\ - AJ},

KvAJBv<r<AJ(KvBl/3),

u2(z) (log AvY-\rlAv)HTT cos \v(tt~ »)(sin ttAJ"* + o(l - Av)}

KvAJB2J3<r<

U(iy) < v(iy) (log AJ«-1(r/AJ^(7r cos (irÀ^Xsin ttAJ"1 + o(l - Av)},

In the last estimate, we used (7.4). The error estimâtes are uniform inzasi'^oo.
Let us now consider u2 when KvAJBv<r<AJ(KVB2J3). From (6.10) and

(7.3), we see that

"Vf V

[ ] dn2(0

<(log AX'1

+ (r/Av+1)(log A^x)-1^20-^-^! - Av+1)" ' o((log AJ^^r/AJ^d - AJ).

For ail large v, we thus hâve

f Re z ^0,
Rez<0,
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The next step is to consider ux when KvAv/By3<r<Av/Xv. We hâve

+ \log(l + r/t)dn1(t) Il

To estimate J^ we write

v r Ak/B£/3 v

1= Z I Iog(l + r/r)dn1(r)= X Jk-

Since n1(AkIB1k/3)-n1(AJBk) (\og Ak)a 1BkKk/3, an intégration by parts shows

that for fc l,2,..., we hâve Jk <(log Ak)a-1 B^/3 i/3

(2/3) logBk). Since r<AJKv, we obtain

In the second term J2, we use the crude estimate n^r) < (log r)a~l. If
we hâve

J»

OO /• QO

r/tdnt(t)<(rB,,^!Av+1)n!(Av)4- r (log f)""1
Av+1/Bv+1 Jav+1/B.+1

Since r>KvAJBl/3, we finally obtain the estimate

Ul(z) ^h + I2 o((log AvT-l){rlAVT-(1 - ÀJ), v

where K.AJJB i/3 < | z | <
It follows that for ail large v, we hâve also

fl/(z)=sl7<i|z|), Rez^O,
Il7(z)=u2(z), Rez<0,

Thus, if |z| r, we hâve

U(z) s (1 + o(l)) cos (ir\J2)B(r, U), z e fv,
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where Fv is a closed curve which consists of the following arcs:

\z\ KVAJBV, |arg z - ir\ < tt/2,
\z\ AJKv, |argz|<ir/2,

KVAJBV < |Im z| < A^/X,, Re z 0.

Clearly, each curve Fv séparâtes the origin from infinity. Since cos(ttàv/2) —> 0,

v -» oo, we hâve our example and Theorem 3 is proved.

Proof of Theorem 4. In the discussion of (4.11) in [3], we use Lemma 2 in [3]
which says that there exist K > 1 and r0 such that if rv r0Kv, we hâve

n(z) > (1 - o(l))B(rv), |z| rv, v -* oo. (7.5)

This resuit is based on a covering resuit of Hayman (cf. (1.4) and (1.5) in [3])
which is true only if B(r) O(logr)2, r—»o°. If we only assume that B{r)
O((log r)**), r —> oo5 where a > 2, we can use the Corollary of Theorem 2 to deduce
a similar, but weaker resuit which is the starting point of this proof.

We claim that there exists a positive number h and an increasing séquence {rv}
tending to infinity such that (7.5) holds and which is such that

To see this, we first note that if the interval [r, R] is contained in F (where F is

defined as in Theorem 2), it follows from (2.11) that if h > 0, there is a constant C
such that

[ (log M))-1-*1 dt/t<C. (7.6)

It follows from (7.6) that log K <2 log r. In fact, if log R >2 log r, we deduce

from (7.6) and (7.2) that

logr<Const. (log i^(r))1+h.

Taking logarithms dividing by loglog r and letting r -* oo, We obtain

K (1 + h) lim sup loglog i/>W/loglog r.
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It follows from (7.1) that there exists h>0 such that this is a contradiction. From
now on, we work with such an h ; then we know that R < r2, and our claim follows
from (7.6) and (7.2).

Consider now the set Gv {z : u(z)>(l-e)B(rv), rv<|z|^rv+1}. The work of
Talpur (cf. [6, Lemma 1]) shows that there exists a path going from {\z\ rv) to
{\z\ rv+1} which is contained in Gv. The curve F mentioned in Theorem 4 is the
union of thèse paths and circular arcs with radii {rv} which are chosen in such a

way that F will be connected. If zeGvnF, we hâve

u(z)> (1 - e)B(rv)> (1 - e)B(rv+1 exp (-C(h)(log iMO)1+h))

>(1 - e)B(\z\ exp (-C(h)(log ^(|

This complètes the proof of Theorem 4.
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