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Eigenvalue estimâtes on homogeneous manifolds

by Peter Li

§0. Introduction

In the récent years, much work has been done on studymg the first eigenvalue
of the équation

Af=-kf
where / îs a C°° function defined on a compact Riemannian manifold In général,
ît îs known that [1] the first eigenvalue Ax cannot be bounded by either the
diameter or the volume alone In [3] Cheng showed that Xx has an upper bound
depending on the diameter, d, and the lower bound of the Ricci curvature,
(n- \)K Yau [12] later conjectured that one should be able to estimate \x from
below in terms of à and (n — \)K also This conjecture was shown to be true in [7]
for a spécial case The gênerai case was later established by Yau and the author
[9]

The purpose of the first part of this paper îs to obtain a lower bound for Ax on
a compact homogeneous manifold M In fact, we will prove that \1>ir2/4d2 This
îs rather surpnsing that homogeneity îs strong enough to guarantee a lower
estimate of Ax in terms of d alone

One can improve this estimate of At by assuming K>0 (î e Ricci
curvature >0) Actually, we will show that by a method in [9], if a gênerai

compact manifold îs non-negatively Ricci-curved and also the first eigenvalue has

multiphcity greater than one, then \x>>n2ld2 In particular, if M îs homogeneous,
the multiphcity condition on \x îs shown to be automatically satisfied Hence in
addition if iC>0, then kx>TT2ld2 Further more, this estimate îs sharp If, in
addition, we assume that M îs an irreducible homogeneous manifold then

In the third section, we will give an estimate on the différences of any two
consécutive eigenvalues of a homogeneous manifold in terms of îts lower eigen-
values The method was also used m [10], [2] and [11] In fact, if A Y?=i K then

m
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Finally, the last section is devoted to the studying of the spectrum of
differential p-forms. When a homogeneous manifold is also assumed to hâve

non-vanishing Euler number, we will show that the first eigenvalue for 1-forms à}
has a lower bound depending on d and K. A sufficient condition for a homogeneous

manifold to hâve its pth Betti number no greater than (£) will also be derived.

Throughout this paper we will assume the M is a compact homogeneous
manifold with isometry group G and isotropy subgroup H, unless specified.

§1. Basic estimâtes

PROPOSITION 1. Let E be a finite dimensional G-invariant subspace of the

space of L2 p-forms on M. Suppose dim E fc, then for ail coeE and x e M

wAli 112

~ v 2

where |co| dénotes the pointwise norm of <o, and V= volume of M.

Proof. Let {«oj^i be an orthonormal basis of E with respect to the L2 inner
product. We define the function

F(x)= £ k|2(*) xeM. (1.1)

Clearly F(x) is well defined under orthogonal change of basis. Let xoe M be fixed,
then

F(xo)= t k|2(x0)= I |g*^(g-1(x0))|

1 \«h(g-\xo))\ geG. (1.2)
i=i

The last inequality follows from the fact that g is an isometry, hence {g^(ol}^1
form an orthonormal basis of E. Since G acts transitively on M, there exists geG
such that g(x) x0. Hence (1.2) becomes

(1.3)
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which shows F is a constant function. Integrating both sides of (1.1) yields

V-F(xo)=f Èk|2=k. (1.4)
•'M i l

Therefore

£ k|2(x) F(x) F(x0) ^ (1.5)

and the proposition follows directly.

COROLLARY 2. Let E£ be an eigenspace of p-forms with eigenvalue À on M.

If a) e El then

Proof. Since the Laplacian commutes with isometries, EPK is a finite dimen-
sional G-invariant subspace, hence proposition 1 can be applied.

Remark. One can also apply the proposition to any G-invariant subspace of

PROPOSITION 2. If E is a finite dimensional G-invariant subspace of L2
functions on M, then

\\f\\l^~ 11/11 for ail feE

where k dim E. Moreover if E¥"{0}, there exists fQeE such that

\\f ||2 - Allf ||2lIJollœ— y lIJolb-

Proof. The first part of the proposition is just a spécial case of proposition 1.

The equality follows from the existence of "zonal functions" discovered by E.
Cartan in the case of symmetric spaces. However for completeness sake, we will
sketch its proof.
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Define E0^E to be the subspace

Eo {feE\f(xo) 0} (1.6)

where xoeM is fixed. By homogeneity of M and the fact that E#{0}, we hâve

Eq^ E. We claim that the perpendicular subspace Eq of Eo in E is of dimension
1. If not, let f0 and fx be two linearly independent functions in Eq. On the other
h and, there exists a, j3 eU such that

But this implies afo + pfxeE0, which is a contradiction. Hence there exists fQeE
such that E0©(f0) E and ||/0||2=l- Let {/J^i be an orthonormal basis of E
with fo fi- By équation (1.5), we hâve

È/?(xo) £. (1-7)
1 1 ^

However /«(xo)^^ f°r a ^2, therefore fl(xQ) k/V which proves the proposition.

Remark. Let us dénote Ho to be the isotropic subgroup of G which leaves x0
fixed. Then /0 is invariant under the action of Ho and hence takes constant value
on each orbit of Ho. This was the original définition of zonal functions. We will
call /0 the zonal function of E at jc0.

COROLLARY 4. Let E° be an eigenspace of functions with eigenvalue À. Then

for a fixed point x0 e M, there exists a unique fQ e E° which satisfies

(ii)

(iii) /o is invariant under Ho

(iv) \\fo\\l>f2(x) for ail feEl
(v)
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§2. The first eigenvalue for fonctions

In this section we will utihze corollanes 2 and 4 of the above section to obtain
a lower bound for A, A sharp estimate can be obtained if in addition we assume
the homogeneous manifold M is non-negatively Ricci-curved

THEOREM 5 Let E" be an eigenspace of functions on M Suppose /()e£j is a
zonal function we obtained in corollary 4 Then

|V/0|2(x) + A^(x)<A||/0|£ for ail xeM
Proof Let xoeM be a point such that /() is a zonal function at x0 Consider

g g G such that g(x0) x Then the action of g on /0 is given by

g /o(y) /o(g(y)) for ail yeM (2 1)

One can complète {/0} to {/Jf x an orthonormal basis for £° with fQ f1 and
fa g Eo, for a > 2 We may also assume that

g fo=afo+bf2 a,beU (2 2)

Since \\g fo\\2= 1, we hâve a2+b2=l By the fact that g is an isometry

IWU) + à/?(jc) |V(g /o)|2(xo) + A(g f())2(x0) b2\Vf2\2(xQ) + \a2f0(x0)
(2 3)

The last equahty follows from (2 2) and the fact that /0 attains îts supremum at x0

a2+b2=\ implies

|V/0|2(x) + \f2(x) - A/g(xo) + b2[\Vf2\2(x0) - A/g(xo)] ^ A||/0||2 + bWfàl~ A||/o|&]

(2 4)

Now we claim that the second term of the nght hand side of (2 4) is non-positive
In fact, if we consider the subspace É {df\ /g Ej} of 1-forms, then ît is easy

to see that since A ¥= 0, É is a subspace of dimension k dim E° Also E is

invariant under G by the fact that d commutes with any geG Hence by

proposition 1,

l|V/Ë ^ll/l! for ail feEl (2 5)
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On the other hand, corollary 4 gives

H/olÊ f (2-6)

Therefore

llVj2lkx>— T7~ ^IIJolloo V^- /J

which proves the theorem.

COROLLARY 6. The first eigenvalue \x for fonctions on a homogeneous

manifold satisfies 7r2/4d2<Àl5 where d diameter of M.

Proof By theorem 5, we hâve

Integrating along the shortest géodésie y joining x0 and N the zéro set of f0 yields

5 (2.9)
2

The corollary follows.

Remark. The gradient estimate in theorem 5 is the same as the one obtained
in [9], where we had to assume M is non-negatively Ricci-curved. In gênerai
without the assumption RicM >0, the conclusion of theorem 5 is false. It is hence

rather surprising that the homogeneity condition alone gives such strong gradient
estimate.

If M is assumed to be non-negatively Ricci-curved and also if dim E°t>2,
then by following the method in [9] one can dérive a sharp lower bound for Ai.

THEOREM 7. Let M be a compact manifold (not necessarily homogeneous)
with Ricci curvature bounded below by (n-l)K Suppose kt is the first non-zero
eigenvalue for

(i) Aip — kt(p when dM=0
(ii) A(p -Ax(p and dç/dv 0 when

where d/dv dénotes the outward unit normal to dM. Assuming also dMis convexed.

If dim Elx>2, then kl^rr2ld2 + min{(n- 1)K, 0}.
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Proof First we show that there exists <peE°Kx such that

supcp |inf <p| (2 10)

Since dimE^2, let <p0 and <px be two hnearly independent eigenfunctions m
E^ We may assume that

supcp^linf <pj i 0, 1 (2 11)

Consider the functions defined by

<pf (l-r)<p0-*Pi fe[0, 1] (2 12)

and

<£(f)-sup<pt + inf <pt (2 13)

Clearly cp^E^ and <P(t) îs a continuous function in t By (2 11), we know that

<f>(0) sup <p0 + inf <p0 > 0

and

<f>(l) sup (-<p0 + inf (-cpx) -inf cpx - sup <px < 0

Therefore there exists te[0, 1] such that

0 <P(t) sup <pt + inf <pt

which proves the claimed
The rest of the proof follows the same way as in Theorems 10 and 12 of [9],

with a slight modification as follows Let 7 be a shortest géodésie joining the

supremum and infemum points of <p Consider yx and y2 as parts of y joining the

supremum point and the zéro set, and joining the infemum point and the zéro set

respectively Since y has length no greater than d, either yï or y2 has length no
greater than d/2 Assume l(y2)^d/2 Integrating the gradient estimate along y2
and using the fact that |inf <p | sup <p the theorem follows
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COROLLARY 8. Let M be a compact homogeneous manifold without bound-

ary. Then

7T2

Proof. In view of theorem 7, it suffices to show that dimE"i>2. However if
^x, (/)» by proposition 1

f2 const

which contradicts the fact that / is the first eigenfunction.

Remark. Theorem 7 yields a sharp estimate for kx. If one considers M
S1(r)xN where N has non-negative Ricci curvature. It is well known that the
eigenvalues of M split into sums of eigenvalues of SV) and N. Hence for r
sufficiently large

On the other hand d2(M) d2(S\r)) +d2(N)= Tr2r2+d2(N). Therefore

which tends to tt2 as r~»oo. This shows the sharpness of theorem 7.

DEFINITION. M G/H is said to be a compact irreducible homogeneous
manifold if G is a compact isometry group of M and the isotropy subgroup H acts

irreducibly on the tangent space of M.

THEOREM 9. Let M be a compact irreducible homogeneous Riemannian
manifold. Suppose £° is an eigenspace of functions on M. ///06Ej is a zonal

function of jEJ, then for ail xeM

Proof. It is known that [5] an irreducible homogeneous Riemannian manifold,
M, can be isometrically minimally immersed into the standard sphère by any of its
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eigenspaces. In fact, the immersion <P : M->Sk~1(r)ç[Rk is given by $^
i,. a<pk) where {cpj^i is an orthonormal basis of E° and À n/r2.

First we will show that for any

We may assume that /= <p1. By the fact that <P is an isometry, we hâve

l (2.15)

for ail unit vector XeTxM. This implies

k

«2 Z (Xcpt)2=l. (2.16)
1 1

By choosing X appropriately, we conclude that

(2.17)

On the other hand, since 4>(M)sSk~1, we hâve

7. (2.18)
A

Hence combining with (2.17) gives

Now Theorem 9 follows from the proof of Theorem 5 where we substitute A/n

instead of A.

COROLLARY 10. Leî M be an irreducible homogeneous Riemannian mani-

fold. Then the first eigenvalue kx for functions satisfies

7T2
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Proof. Follow the proof of Corollary 6 but using Theorem 9 instead of
Theorem 5.

Remark. If we integrate the inequality

|Vf \2(x) + -f2(x)<-\\f II2

n n

over M, we obtain

^11/ II24-— llfo||2<_ y llf IP (2.18)

Hence

(n +1) ||/o||i^ VH/olli (2.19)

for ail zonal functions in any eigenspaces of M. Moreover equality holds if
M^Sn(r). In fact, if (n 4-1) ||/0||| V|j/0||2 then combining with proposition 2:

n + 1 k. However since <P : Mn-*Sk~1(r) Sn(r) is an isometric immersion, this

implies that Mn is a constant curvature manifold with curvature 1/r2. It is not
hard to see that the only constant positive curvature irreducible homogeneous

space which can be isometrically immersed in Sn(r) via its eigenspace has to be

Sn(r) (see [6]).

§3. Higher eigenvalues for functions

In the following theorem we show that Àm can be estimated from above in
terms of À,, i<m-l. In [10] and [2], the authors utilized the fact that the
coordinate functions are harmonie and gave upper bounds for Àm on domains and
minimal submanifolds in Rn. Since the coordinate functions of a minimal sub-
manifold in Sn are eigenfunctions, Yang and Yau fil] found upper bounds for Àm

using similar philosophy as mentioned above. It turns out that a similar method
carries through when M is homogeneous, which dépends heavily on proposition 1.

THEOREM 11. Let A =I£V A,. Then

2

m
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Proof. Let {<pa}JUi be an orthonormal basis of the first eigenspace E°ki, and
{(pJîlT)1 t>e the set of first mth orthonormal eigenfunctions (including constant
function). Then

pa lp(X for l<«<k

and

Aç^-k.ip, for 0<î<m-1. (3.1)

We define

ml
M«i <Pa<P.- X a««,<P, (3.2)

where

Clearly

J m«.<P, 0 for ail 0</<n-l. (3.3)

Hence by the variational principle for Àm, we hâve

Àm ^ "' for ail a, i.
)Uca

However

+ î OmAip/UUj + À,) f ui-2 f i^XV^Vip,). (3.4)
J Jî OmAip/UUj + À,) f ui-2 f i^

1=0 J J J

Therefore

(3.5)
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which implies

But

(V((pD, V(<pf))+ I f attlJ<V<ptt, V

Z «mj^i^^^ (since Z <P« constant).

Also

Z m«.= Z <Pltf~2 Z ^«9.^^+ Z

Hence, if we let A Y,a,,,, &«„ then

- I al,,.

(3.9)

On the other hand

11 j ujyVa, v«p,>| < I (| ui)1/2(|<V(pa, Vcp,)2)1'2

1/2

(3.6)

(3.7)

(3.8)
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The last equality follows from Proposition 1 and the fact that J|V<pa|2=A1.

Substituting this into (3.6), we get

VA

Combining (3.11) with (3.9) yields

^ (I | {««<V,.,VV.)|)"'S^ (^) (by 3.7)

4A"
0.11)

- VA VA
(3.12)

Observe that as a function of VA, kl VA/km - VA is an increasing function on
[0, km] and approaches o° as VA tends to km. Also 4Afc/VA is a decreasing
function on [0, km] and approaches oo as VA tends to 0. Hence the minimum
between the two functions is bounded by their common value taken at

mA1)-4Afe

Therefore

1-A1<— (VA2+mAAt

§4. First eigenvalues for différentiel forms

The celebrated Hodge theorem tells us that the pth Betti number is given by
the dimension of the space of harmonie p-forms. Clearly the Laplace-Beltrami
operator à 8d + dô dépends heavily on the metric. Yet the notion of Betti
numbers are purely topological. This phenomenon explains why the study of the
first eigenvalues for difïerential forms is much more difficult than for functions.
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The only known resuit in estimating lower bounds for AÇ is due to Gallot and

Meyer [4]. They had to assume that the curvature operator is bounded below by a

positive number. However this assumption automatically implied the vanishing of
the Betti numbers, which is the famous vanishing theorem of S. Bochner.

The objective of this section is to establish a lower bound for k\ on
homogeneous manifolds. In most cases, we hâve to impose additional assumption
about the geometry in order to avoid the topological difficulty mentioned above.

THEOREM 12. Let E% be the eigenspace of p-forms with eigenvalue À. Then
there exists coo e E^, such that

d[min jfc, (")}x(À-(n-p)pKp)]1/2+ inf |o>0 | (^xmin {k, ("
\p

where k dim ££ and

f (n - l)~l x (lower bound of Ricci curvature), if p 1

p ~ 1

Uower bound of the curvature operator, if p > 1.

Proof. Consider an orthonormal basis {o^}^! for the eigenspace E%. A formula
of Bochner gives

(4.1)

Summing over ail i and using (1.5) of Proposition 1 yields

(4.2)

However it is known that [4]

FCcuJ^pCn-p^kl2. (4.3)

Hence

pp^^. (4.4)

However Lemma 9 of [8] implies

(4.5)
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Therefore

(4.6)

By Theorem 12 of [8], we can choose œoeE^ to satisfy

min \ k, I \ \\ù)0\\1,^— H^olS- (4.7)

Letting (oQ oj1 and integrating (4.6) along the shortest géodésie y joining inf |coo|

and sup \wo\ Ha^m yields

-WU-infW-/ ±——-l^-infloiol
i V x min I fc,

l \p

This proves the theorem.

COROLLARY 13. Let M be a compact homogeneous manifold with
O.Then the first eigenvalue for 1-forms \\ satisfies

J

Proof. Since Kp K, theorem 11 gives

However x(M)¥=0, implies co0 has to vanish somewhere, hence inf |coo| 0.

The corollary follows.

COROLLARY 14. Let M be a compact homogeneous manifold. Then the first
eigenvalue kx for functions satisfies

1

1~ nd2
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Proof. Let E°, ^e tne first eigenspace for functions. Since É {df \ fe E^} is a

G-invariant subspace of eigen 1-forms, Theorem 11 applies. Moreover, at the

supremum point of /, d/=0, hence inf |o>0| 0.

COROLLARY 15. Let M be a compact homogeneous manifold. Suppose

Then the pth Betti number bp satisfies

Proof. If bp>(p), then since the dimension of p-tensors on an n-dimensional
vector space is (£), at a fixed point xoeM, there exists (o0eEq which vanishes at

x0. By theorem 11, we hâve

which is a contradiction to the assumption.

Remark. Corollary 15 actually shows that if the dimension of the first eigen-

space for p-forms is greater than (£), then

+ (n-p)pKp.

COROLLARY 16. Let M be a compact irreducible homogeneous manifold. If
M is not parallelizable, then

n~d2
Aï 2=332

Proof. It suffices to show that if the dim E\x < n then there exists a> g E^x such

that o) — 0 at some point. If not, say for ail a) e Eji? w never vanish, we want to
flnd a contradiction. Let us first fix a point x e M. By the irreducibility condition of
Hx, {h*co(x)} spans T^M cotangent space of M at x, for any fixed weEj,. On
the other hand, since h*co (heHx) is also an eigen 1-form and dim j
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dim El{ must be at least n. Therefore dimE^^n. However by the assumption
that ail ù)<=E1Ki do not vanish, this implies that there exist n linearly independent
sections of the cotangent bundle of M. Hence M is parallelizable which is a

contradiction.

Combining with the remark above, this proves the corollary.
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