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Affine varieties dominated by C2 (1)

By R V Gurjar

Introduction

The two main results of this paper are Theorems 1 and 2 below

THEOREM 1 Let V be an affine, non-singular, vanety over C, which is

topologically contractible Then ail the algebraic Une bundles on V are trivial i e

Pic V (0)

THEOREM 2 Let f C2-* V be a proper morphism onto an affine, normal

vanety/C Then V is topologically contractible and Pic V (0)

Actually, using the ideas in the récent proof of the cancellation Theorem for
affine 2-space by T Fujita, M Miyanishi and T Sugi, we can see that in Theorem
2, if V is non-singular, then V~C2 We will give a bnef outhne of this argument
The method of cancellation Theorem is géométrie In [20], ît was proved that if V
is non-singular in Theorem 2 and if the degree of the map / is not divisible by
120, then V~C2 The method m [20] is mostly topological We will indicate this
method also Theorem 2 remains true for Stein-mamfold V and analytic map /

Recently the author has been able to prove the following généralisation of
Theorem 2

"Let / Cn —» V be a proper morphism onto an affine, non-singular vanety V
Then V is simply-connected, H,(V, Z) is finite for ail i>0 and Pic V=(0) "

The proof will be pubhshed elsewhere

M Kang proved in [8] that if V is the quotient vanety of Cn by a finite group
of automorphisms, then Pic V (0) We will indicate a topological proof of this by
making use of some strong results of R Oliver See [14]

In §2, we will show some évidence for the vahdity of the conjecture that on a

non-singular, affine surface which is topologically contractible, ail vector bundles

1 This work formed part of the author s Ph D thesis at the Umversity of Chicago March 1979
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Affine vaneties dominated by C2 379

are trivial. The analogous statement in the analytic category has been proved by
Grauert for contractible Stein-manifolds of arbitrary dimension.

In Theorem 1, if dimV=l, then ît îs easy to see that V — C1 We will
therefore assume that dim V> 1. Using a resuit of D. Anderson [1], we get the

following Corollary of Theorem 2.

COROLLARY 2 (§3). In the situation of Theorem 2, ail vector bundles on V
are trivial.

I am very grateful to Prof. M P. Murthy and Prof R. Narasimhan for the help
and encouragement they gave me dunng this work

§1. Picard groups of contractible varieties

We will begin with the préparation for Theorem 1. Recall that we are

assuming dim V^2, and V îs affine, non-singular, irreducible vanety/C Further-

more, V îs topologically contractible By the theorem of resolution of singularises
[7], there exists a projective algebraic vanety X with the following properties

(a) V îs a Zanski-open subset of X, X îs non-singular.
(b) X— V= {Jrl 1Cl, where Ct are closed, irreducible, non-singular sub-

vaneties of codimension 1. For any abehan group G, let H*(Y, G) dénote the

singular cohomology groups of space Y with coefficients in G Recall the

well-known exponential séquence [see 9] 0 —» Z—> Ox —> Oj—» 0. Hère Ox îs the
sheaf of germs of holomorphic functions on X and O* dénotes the sheaf of germs
of invertible holomorphic functions. The associated long exact cohomology
séquences gives

• • • Hl(X, Z)-* H'(X, Ox)-> H!(X, Ox)-> H2(X, Z). • • •

Since V îs simply-connected, so îs X. Hence Hl{X, Z) (0). The group
HJ(X, O*) is in one-to-one correspondence with the group of invertible sheaves

on X. Since X is non-singular, each of the subvaneties Cu Cr are locally
principal, hence give nse to éléments of H!(X, O*).

LEMMA 1.1. The map Hl(X, O*)->H2(X,Z) is surjectwe.

Remark. By the Hodge décomposition theorem [9] 2dimcH1(X, Ox)
dimc H^X, C). Hence in our case, Lemma 1.1 will prove that Hl(X, O*)~
H2(X, Z).
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Proof of Lemma 1.1. We will in fact prove that the cohomology classes

corresponding to the subvarieties Q, Cr generate H2(X, Z) freely.
Let C X — V — U rl=! Cv There is a long exact séquence of cohomology

groups corresponding to the pair (X, C).

• • • H2(X, C) -^ H2(X) -> H2(C) -* H3(X, C) • • •

In this séquence, the cohomology groups are considered with arbitrary abelian
coefficient group G.

If dim V=n (recall, n^2), then we hâve [17, Theorem 6.2.17] H(X, C)-
H2n_t(X- C). In particular, since V is contractible H2n_, (X-C) (0) for i <2n,
and H2n~l(X, G)~H2ni(Q G) for i^2. We will prove that Hr(Q G)^Hr(X, G)
for r<2n by induction on r.

For r 0, we observe that C is connected (since X-G is affine), hence

H0(C, G)~H0(X, G). By the relation between cohomology and homology groups,
we get two exact séquences,

0 -» Ext1 (Hr.^Q Z), G) -> Hr(Q G) -> Hom (Hr(Q Z), G) -> 0

î t î
0 -* Ext1 (Hr_x(X, Z), G) -> Hr(X, G) -> Hom (Hr(X, Z), G) -* 0.

The vertical arrows are induced by the inclusion C<= X. By induction, the fîrst and
the middle vertical arrow is an isomorphism for some r<2n-l. Hence

Hom(Hr(X,Z), G)->Hom (Hr(QZ), G) for r<2n-l. Since this is true for
every coefficient group G, it follows that Hr(Xy Z) ^ Hr(Q Z) for r<2n-2. For
r 2n-l, by Poincaré duality, H2n_t(X, Z)^H1(Xy Z). But since X is simply
connected, H\X,Z) (0). Also dimRC 2n-2, hence H2n_1(C, Z) (0). Since

Hr(Q Z)^Hr(X, Z) for r<2n- 1, it follows by the universal coefficient theorem
that

Hr(QG)~Hr(X,G) for r*s2n-l.

In particular H2n_2(C Z)=«H2n_2(X, Z). Now it is easy to see that the fundamen-
tal cycles of Cx,..., Cr generate H2n-2Q Z) freely. Hence by Poincaré duality,
the cohomology classes corresponding to Q,..., Cr generate H2(X, Z) freely. It
follows that the map

is surjective. By the remark following the statement of Lemma 1.1, we now know
that H^X, O*)^H2(X, Z). This means that the invertible sheaves corresponding
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to the divisors Ct,..., Cr generate the group of invertible sheaves H*(X, O*)
(even freely). By the well-known one-to-one correspondence between the algebraic
line bundles on X and the analytic line bundles on X [16], we see that the

algebraic line bundles corresponding to the divisors Cu Cr generate PicX
Clearly the restrictions of thèse line bundles [CJ,..., [Cr] to V are trivial
because the supports of the divisors Q,..., Cr do not meet V. Ail the algebraic
line bundles on V are trivial because of the following.

LEMMA 1.2. Any algebraic line bundle on V is the restriction of a line bundle

on X.

Proof. [10, Lemma 6.2]. Let L be any algebraic line bundle on V and let F be

the associated sheaf of sections. By [3, Proposition 2] there exists a cohérent
algebraic sheaf G on X whose restriction to V is isomorphic to F. We will dénote

by O the structure sheaf of X (as an algebraic variety).
Consider the sheaf Hom(Hom(G, O), O)=G**. Clearly G**|v-F because

G|V~F and F is locally free. It suffices to show that G** is locally free. But the
stalk at x of G** is a reflexive, f.g. module of rank 1 over the regular local ring
OXx. Consequently G** is locally free and we are done.

This complètes the proof of

THEOREM 1. Let V be an affine, irreducible, non-singular variety/G Suppose

V is topologically contractible. Then Pic V (0). Alternatively, the co-ordinate ring
of V, r(V), is a unique factorization domain.

§2

In this section V is an affine, non-singular, irreducible surface/C, which is

topologically contractible. Let X be a non-singular, projective compactiflcation of
V such that ail the components of X- V are non-singular curves with transverse
intersections. As usual, let Pg(X) géométrie genus of X dimcH2(X? Ox) and

q(X) dimcHl(X,Ox).

LEMMA 2.1.

Proof. By Hodge décomposition theorem [9], 2q(X) dimcH1(X, C).
Since X is simply connected, q(X) 0. From Lemma 1.1, the map

H\X, O*) -> H2(X, Z) is an isomorphism. Also by Lemma 1.1, since H2(X, Z) is

a free group generated by the cohomology classes of the components of X- V,
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the homorphism H2(X, Z) -* H2(X, C) is an injection and the image in H2(X, C)

générâtes H2(X, C) over C (again by the proof of Lemma 1.1).
On the other hand, the image of the composite map Hl{X, O*) —» H2(X, Z) —»

H2(X,C) is contained in the component H\X, Ol) of H2(X, C) in the Hodge
décomposition H2(X, C)-H2(X, O)®Hl(X, nl)®HQ(X, Q2). It follows that
Pg(X) (0).

Now X is a simply-connected, non-singular, projective surface with q(X)
(0) Pg(X). In a récent article I. Dolgacev asks the following.

QUESTION. Let X be a non-singular, irreducible, projective surface/C with
Pg(X) 0, which is simply-connected. Is it true that X is not of gênerai type? (For
définition of surface of gênerai type, see [4]).

In our situation, X is a compactification of a contractible affine surface. Hence

we ask the

QUESTION. Is a projective, algebraic compactification of a contractible,
non-singular surface rational?

Let A0(X) be the group of 0-cycles of degree 0 modulo rational équivalence and

Alb (X) be the Albanese variety of X Let SA()(X) Kernel [A0(X) -» Alb (X)].
Then, with the notation of this section (V not necessarily contractible), P. Murthy
and R. Swan proved [10, Theorem 2] that if SA0(X) is finite, then ail the vector
bundles on V are direct sums of Une bundles.

On the other hand, it is proved in [2] that if Pg(X) 0 and X is not of gênerai

type then SAo(X) (0). It follows that if either of the above questions has an

affirmative answer, then from Theorem 1, we get the

COROLLARY. Let V be an affine, non-singular, contractible surface/C, then

ail the vector bundles on V are trivial.

It is easy to see that if V is an affine, non-singular, irreducible curve, then
Pic V (0) iff V is rational. Unfortunately, this is not true if dim V=2 (even if ail
the vector bundles on V are trivial). In [5], Dolgacev constructs an example of a

non-singular, projective surface X/C such that X is simply connected, Pg(X) 0
and X is not of gênerai type, and not rational Then Pic X is finitely generated. If
the divisors Du D2,..., Dn geate Pic X, then any affine open subset V of
X- UT-i (SuppA) will hâve PicV (0) and then by the results mentioned
above, ail the vector bundles on V are trivial but V is not rational.
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§3

In this section we will prove Theorem 2 We begin with some gênerai results

LEMMA 3 1 Let Cn —» V be a proper morphism of complex affine n-space
onio an affine vanety V/C Then the fundamental group of V is finite If d is the

degree of the map f (i e the number of inverse images of a genenc point of V, this
number being clearly finite), then the order of the fundamental group of V dwides d

Proof Let V^ V be the universai cover of V Since Cn is simply connectée!,
there exists a continuous map Cn -^ V such that / tt <p After removing the

singular locus of V and then applying the Punty of Branch locus [18], we see that
there exists a proper subvanety, S, of V such that C" -/ l(S)-+ V-S is a finite
unramified covenng We hâve a commutative diagram

C"-/ \S)^V-tt \S)

v-s
Since V—tt l(S)JE> V— S is also a covenng map, ît follows by gênerai properties
of covenng spaces [17] that <p Cn-f \S)-^> V-tt l(S) is also a covenng map
It follows that degree of /|Cn f l(s)== (degree of <p|c f i(s)) (degree tt|v ^ i(s))

From this the lemma follows

Remark 1 In the analytic case, if there is an analytic proper map Cn-^> V
onto an analytic space V, then exactly the same proof shows that the fundamental

group of V is finite and îts order divides the degree of the map / Also note that
Cn can be replaced by any irreducible, simply-connected analytic space (and in
the algebraic case by an irreducible, simply-connected algebraic vanety), and the

map / is proper with finite fibres

LEMMA 3 2 With the same notation as in Lemma 3 1, Pic V is finite provided
V is normal

Proof Let S be the singular locus of V Let P be a point of V-S and m
the maximal idéal of P in R F(V), the coordinate ring of V Then ,Rm is

regular Suppose mu mr are the maximal ideals of k[xu ,xn] lying above

m The intégral closure of Rm in the quotient field of k[xu ,xn] is

H'=1 k[xu ,xn]m Rm say Then Rm is a finitely generated Rm -module and

Rm is a regular ring Hence the depth of .Rm as an Rm -module is equal to
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n dim Rm. Since Rm is regular, it follows that the projective dimension of Rm as

Rm -module is 0. Hence Rm is a projective and consequently a free Rm -module.

This shows that the cohérent algebraic sheaf rr^(OCn) restricted to V—S is

locally free of rank à. Now let L be any Une bundle on V. By projection formula
7r:î:(7r*L)~L(8)Ov7r5ï:(0Cn) [6]. But tt*L is a trivial line bundle on Cn, because ail
line bundles aie trivial on Cn. Therefore

Since îr^(OCn)|v_s is locally free, by taking dth exterior,

Since the sheaf on the left hand side is locally free of rank 1, we see that Ld|v^s is

trivial. From this it follows that Ld is trivial on V because of the following.

LEMMA 3.3. Let V be a normal, affine, irreducible variety and L a line bundle

on V. If restricted to the regular points of V, L is trivial, then L is trivial on V.

Proof. Let {L/J be a covering of V such that L|ois trivial for ail L Let
ftJ :(L\Ut)UtnUj —*(L\Uj)UinUi be transition functions for L. Hère fl} are invertible
regular functions in 17, H Ur

We know that L\v_s is trivial. {Ut n(V-S)} is a covering of V- S. There exist

regular invertible functions g, er(Ut- S) such that ftJ gjg, in (17, - S) n(U, - S).

But since V is normal, the function g, will be regular on the whole of Ut. Also,
since on a normal variety the zéros of a regular function form a subvariety of pure
codimension 1, it follows that g, is a unit in r(Ut). Clearly ftJ gjgt in Ut Pi Ur
This means L is a trivial bundle.

Remark. If there is a proper, analytic map C2 -*» V onto V and V is normal
then an exactly similar proof will show that the group of analytic line bundles on
V is finite.

Suppose now we hâve a proper morphism C1-*» V, onto an affine variety/C.
We know by Lemma 3.1 that the fundamental group of V is finite. If V is the
universal covering space of V, then it is possible to show that V has the structure
of an affine variety such that the covering map V —> V is a morphism. Also the

map <p in the proof of Lemma 3.1, <p :Cn —> V is also a morphism. To prove that
V is contractible, it suffices to show that V is contractible, in view of the following
lemma in J. Milnor's Morse Theory [11]. For completeness' sake we will repro-
duce the simple proof.
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LEMMA 3.4. Suppose V is a C-W complex of finite dimension xvhose

universal covering space V is contractible. Then the fundamental group of V has no
élément of finite order.

Proof. Let 7rt(V) (resp. tt^V)) dénote the homotopy groups of V (resp. V)
w.r.t. a fixed base point. For i > 1, one knows 7r,( V) ~ 7rt( V). If V is contractible,
/"'i(V') (0) for ail i. Also the cohomology group Hk(V, Z) can be identified with
the cohomology group Hk(iri(V),Z). If tt^V) contains a non-trivial cyclic
subgroup G, then for a suitable intermediate covering V of V, we hâve tt1(V)
G. Therefore Hk(G, Z) Hk( V, Z) (0) for k > m + 1, where m is the dimension
of V. But a cyclic group has non-trivial cohomology in arbitrarily high dimensions,
a contradiction.

Thus, with the notation of Lemma 3.1, to show that V is contractible, we can
assume that V is simply connected. Therefore, HX(V, Z) (0). Assume now that
V is normal. To prove that V is contractible, it suffices to show that H,(V, Z)
(0) for ail i >0 because of the following theorem of Whitehead [17; Cor. 7.6.24].

THEOREM (Whitehead). Let V be a path connected topological space. If
(0) for ail i, then V is contractible.

But by Hurewicz Theorem [17, Theorem 7.5.5], 7rl(V) (0) for ail i if and

only if irx(V) (1) and H,( V, Z) (0) for i >0. Any affine variety is a Stein space
[13]. For a Stein space of dimension n, R. Narasimhan has shown that Ht( V, Z)
(0) for i>n and Hn(V, Z) is a torsion free group [13]. We can prove

THEOREM 2. Let Cn-*> V be a proper morphism onto an affine, algebraic,
normal variety/C. If V is simply connected, then H2( V, Z) (0) and Pic V (0). In
particular, for n 2, V is contractible and Pic V (0).

Proof. Since H1(V,Z) (0), H2(V, Z)~Hom (H2(V, Z), Z). From the expo-
nential séquence, we get H\ V, O*) ~ H2( V, Z). Hère O* is the sheaf of germs of
invertible holomorphic functions. To show that H2( V, Z) (0), it suffices to show

that H1(V, O*) (0), i.e. ail analytic line bundles on V are analytically trivial.
We hâve already seen by the remark following Lemma 3.3 that the group of

analytic line bundles (and also the group of algebraic line bundles) is finite. To
complète the proof of Theorem 2, we need

LEMMA 3.5. Let V be any irreducible algebraic variety/C (resp. irreducible

analytic space). If L is an algebraic (resp. analytic) line bundle on V which is not

trivial but some power of which is trivial, then V has a non-trival unramified

covering.
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Proof. We will indicate a proof for the algebraic case; the proof in the analytic
case is very similar. We can assume that L is not trivial but Lp is trivial for some

prime p. Let {l/J be a covering of V by affine open sets such that L\Vi is trivial for
ail i and let (ptJ :(L|Ut)uinUi —* CLli/^u.ni/, ^e the transition functions. The cptJ are

regular, nowhere zéro functions in Ul Pi Ur
Since Lp is trivial, there exist regular nowhere-zero functions gt on Ut such

that (gl/gI) (pf] on L/r We can find éléments at in a suitable extension of the

quotient field of r(Ut) such that a^=gr Let Ûl be the affine variety whose

co-ordinate ring is F(LO[aJ. Then there exists a natural morphism Ûl-J>Ul
which is unramified (since gt are units in F(U,)). We can patch up the L/, to obtain
a variety V and a morphism V —> V which is unramified and using the fact that L
is not trivial, one sees that V is irreducible.

The proof of Theorem 2 is therefore complète. We note that a statement
analogous to Theorem 2 in the case of a proper analytic map Cn —> V can be

proved by a similar method. We state it as

COROLLARY 1. In the proof of Theorem 2. Let Cn -U V be a proper, analytic
map onto a Stein space V which is normal. Then if V is simply connectée,
H2(V, Z) (0) and ail the analytic Une bundles on V are trivial.

In particular, if n 2, then V is contractible and the group of analytic line
bundles on V is trivial.

D. Anderson showed in his University of Chicago thesis [1; Theorem 4.17],
that in the situation of Theorem 2, any vector bundle is the direct sum of a trivial
bundle and a line bundle. From this and our Theorem 2, we get

COROLLARY 2 TO THEOREM 2. If C2 -> V is a proper morphism onto

an affine, normal variety/C, then ail the vector bundles on V are trivial

Now let G be a finite group of automorphisms of Cn. Then Cn/G V has the

structure of an affine, normal irreducible variety/C such that the natural map
Cn -> V is a morphism. Recently R. Oliver has proved the following wonderful
resuit [14]: "Let G be a compact Lie group acting on Rrt, then the quotient space

R7G is contractible".
Using this resuit and our Lemma 3.1 and 3.5, we obtain

COROLLARY 3. Let G be a finite group of algebraic (or analytic) automorphisms

of Cn and let V Cn/G. Then any line bundle on (resp. any analytic line
bundle on) V is trivial.

In view of R. Oliver's resuit and our Theorem 2, we can ask the following.
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QUESTION Suppose Cn -^ V is a proper morphism (or proper analytic map)

onto a normal, affine vanety V (resp onto a normal Stem space V) Is V
contractible9

Remark 1 The condition of properness for the map / in Theorem 2 is

essential as shown by the following example We consider the complex affine

smooth surfaces, V, given by -xy + z2 1 in C1 (by change of coordinates one can

see that this is isomorphic to the complex 2-sphere) If we put x u(2+ uv), y

u, z 1 + uv, then the coordinate ring, C[x, y, z]/(xy + z2 — 1), of this surface is

isomorphic to C[w(2+ uv), v, uv] Since this is a subring of C[w, v], we get a

morphism C2-^ V, which is not proper Clearly the ring C[u(2 + uv), v, uv] is not
a UFD It is easy to see that the Picard group of V is infinité cychc The map / is

genencally one-to-one, hence V is simply-connected by Lemma 3 6 But V is not
contractible

Remark 2 In Theorem 2, if the degree of / is a prime number p, then we can

see that Pic is trivial (for arbitrary n) To see this, let I be any invertible idéal in
the coordinate ring, F( V), of V Let A T(Cn) Then F will be a principal idéal

in T(V) IA aA Let F (b) Then FA bA But since ail umts in A are

constants, we can assume that ap b This forces either I to be trivial or
Q(A)/Q(r(V)) to be Galois extension In the latter case we use Corollary 3

above

§4

In this section, we will bnefly outhne the proof of

THEOREM 2' Let f C2-> V be a proper morphism onto an affine, non-

singular surface/C Then V~C2

Proof Ail the important ideas m this proof are due to T Fujita, M Miyanishi
and T Sugi See [21,22] Let F(V) dénote the coordinate ring of V Theorem 2

says that Picr(V) (0) Since T(V) is a subring of T(C2), ail umts in F(V) are

constants Also since the morphism / is dominating, the Kodaira dimension K(V)
of V is -oc Now the Main Theorem of Fujita, Miyanishi, Sugi which enables them
to prove the cancellation Theorem for affine 2-space is, "Let V be an affine,
irreducible non-singular surface such that F(V) is a UFD, ail umts in F(V) are
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constants and K(V) -°c, then V~C2'. The proof of Theorem 2' is thus
complète.

Remark 1. The proof of cancellation Theorem works for arbitrary perfect
field k. One can prove the following characteristic p>0 analogue of Theorem 2'.

"Let /: A2—> V be a proper morphism onto an affine, non-singular surface V.

If the degree of the function-field extension [k(A2):k(V)] is not divisible by p,
then V^A2 (hère A2 dénotes the affine 2-space over the perfect field k)". The

proof of this more gênerai resuit is by induction on [k(A2):k(V)] by making
repeated use of the Main Theorem of Fujita, Miyanishi and Sugi.

Remark 2. We want to indicate briefly a topological proof of Theorem 2'

which was given in [20]. Theorem 2 implies that V is contractible. C. P.

Ramanujam defines the "fundamental group at infinity of V. For this, we embed
V in a projective, non-singular surface X such that X— V is a divisor with normal
crossings. If X-V=U?=iA> where Dt are the non-singular components of

X-V, then we take a "nice" tabular neighbourhood T of D= U"=1Dt in X.
Then for "small" neighbourhoods T, the fundamental group of T-D is indepen-
dent of X and T, which we call the "fundamental group at infinity of V". One

sees easily that C2 has trivial fundamental group at infinity. Then using the fact
that / is proper and using an argument similar to Lemma 3.1, we prove that the
fundamental group at infinity of V is finite.

Next we observe that the cohomology classes of the curves D, generate
H2(X, Z) freely. By Poincare duality, it follows that the intersection matrix
(D, D}) is unimodular. This forces, that the fundamental group at infinity of V is

perfect i.e. equal to it's commutator. But the boundary of T, ÔT, is a 3-

dimensional compact orientable manifold whose fundamental group is the
fundamental group at infinity of V.

We hâve now Ht(8T, Z) (0) and tt^ôT) finite. It follows that the universal

covering space of 8T is a homotopy 3-sphere on which tt^ôT) acts fixed point
freely. This implies that the group tt^ôT) has periodic cohomology with period 4.

Now the list of finite groups with periodic cohomology of period 4, given by J.

Milnor in [12], shows that either rr^ÔT) (0) or it is the group SL(2, 5), of order
120. In proving that tt^ôT) is finite, we actually observe that the order of tt^ôT)
divides degree of the map / (i.e. [k(C2): k(V)]).

Finally we invoke the beautiful resuit of C. P. Ramanujam [15] "If V is a

contractible, affine, non-singular surface which is simply-connected at infinity,
then V^C2". Using ail thèse results, we now get the following slightly weaker
statement than Theorem 2'.

"Let /:C2-» V be a proper, morphism onto a non-singular affine surface V. If
120 does not divide, the degree of /, then V^C2". For détails, see [20].



Affine vaneties dommated by C2 389

REFERENCES

[1] Anderson, D Projectwe modules over subrings of k[X, Y] Ph D Thesis, University of Chicago,
1976

[2] Bloch, S Kas, A and Lieberman, D Zéro cycles on surfaces with Pg 0 Compositio Math
33 (1976), 135-145

[3] Borel, A and Serre, J P Le théorème de Riamann-Roch Bulletin Soc Math France 86
(1958), 97-136

[4] Bombieri, E and Husemoller, D Classification and embeddings of surfaces, Algebraic
Geometry, Arcata 1974

[5] Dolgacev, I On the Seven hypothesis concerning simply connected algebraic surfaces Soviet
Mathematics, Doklady 7 (1966), 1169-1172

[6] Hartshorne, R Algebraic Geometry New York, Spnnger Verlag, Graduate texts in Mathema¬

tics, 1977

[7] Hironaka, H Resolution of singulanties of an algebraic vanety over a field of charactenstic zéro,
I, II Ann of Math 79 (1964), 109-326

[8] Kang, M Projective modules and Picard groups Ph D Thesis, University of Chicago, 1977

[9] Kodaira, K and Morrow, J Complex manifolds New York, Holt, Rinehart and Winston,
1971

[10] Murthy, M P and Swan, R Vector bundles over affine surfaces Inventiones Math 36 (1976),
125-165

[11] Milnor J Morse Theory Annals of Math Studies Princeton University Press 1963

[12] Groups whwh act on Sn without fixed points Amer J Math 79 (1957), 623-630
[13] Narasimhan, R On the homology groups of Stein spaces Inventiones Math 2 (1966-67),

377-385
[14] Oliver, R A proof of the Conner conjecture Annals of Math 103 (1976), 637-644
[15] Ramanujam, C P A topological charactenzation of the affine plane as an algebraic vanety Ann

of Math 94 (1971), 69-88
[16] Serre, J P, Géométrie algébrique et géométrie analytique Ann Inst Founer, Grenoble, 6

(1955-1956), 1-42
[17] Spanier, E H Algebraic Topology, New York, McGraw-Hill, 1966

[18] Zariski, O On the punty of branch locus of algebraic functions Proceedings of the National
Academy of Science, U S A 44 (1958), 791-796

[19] Kaup, L, Eine topologische Eigenschaft Steinscher Raume Nachr Akad Wiss Gottingen,
Math-Phys Kl, 1966, 213-224

[20] Gurjar, R V Projectwe modules on subrings of polynomial rings University of Chicago, Ph D
Thesis, March 1979

[21] Miyanishi, M and Sugi, T, Affine surfaces containing cylinderhke open sets (To appear in J

Math Kyoto Umv
[22] Fujita, T On Zariski Problem Proceedings of the Japan Academy Séries A, March 1979

[23] Miyanishi, M Regular subrings of a polynomial ring (to appear)

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400 005
India

Received February 26/October 15, 1979


	Affine varieties dominated by C2.

